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Abstract: - This investigation applied Bivariate Conditional Erlang Distribution (BCED) to model two key 

sequential medical procedures: Time to Blood Glucose Monitoring (T1) and Time to Follow-Up Treatment 

(T2). The findings estimated T1 to have a shape parameter of 24.14 and a scale parameter of 0.642, while 

T2 had a shape parameter of 25.87 and a scale parameter of 0.847. The Goodness-of-fit tests using the 

Kolmogorov-Smirnov method yielded p-values of 0.9129 for T1 and 0.9462 for T2, confirming that the 

Erlang distribution adequately describes both processes. A strong positive correlation of 0.983 between T1 

and T2, with a highly significant p-value of 3.9 × 10−223.9, indicated a close relationship between the two 

procedures. These outcomes confirmed that, when the time for blood glucose monitoring increases, the time 

for follow-up treatment also rises proportionately. Visualizations using bivariate Gaussian kernel density 

estimates further reinforced these findings by demonstrating the concentration of data points around the 

joint mode of the two variables. This investigation illuminates the appropriateness of the BCED for 

modelling real-world dependent stochastic processes, particularly in healthcare where interrelated tasks like 

T1 and T2 can be adequately trapped. The analysis offers a solid foundation for using the Erlang distribution 

in healthcare procedure modelling and offers insights for improving time efficiency in sequential medical 

operations. 
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1 Introduction 
Univariate distribution relationships, [8] delve 

into the intricate connections between Erlang 

distribution and other probability distributions, 

[5], [12]. Lawrence’s work encompasses an 

investigation of Erlang’s placement within the 

family of exponential distributions and its ties to 

the gamma distribution. Moreover, Saralees 

noted in 2005 that there have been limited 

proposals for bivariate gamma distributions 

within statistical literature [13]. 

The Erlang distribution, pioneered by Erlang, 

originally aimed to model the number of 

telephone calls received simultaneously by an 

operator at a switching station, [8]. This 

distribution holds significant relevance in 

telecommunications and queueing theory, [14]. 

Halliday in 1990 established the complementary 

relationship between the Erlang and Poisson 
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distributions [6]. While the Poisson distribution 

counts events occurring within a fixed time 

frame, the Erlang distribution quantifies the time 

until a fixed number of events occur, [3]. 

Consequently, the Poisson, Exponential, Erlang, 

and Gamma distributions are closely intertwined, 

[11]. The gamma distribution widely employed in 

reliability analysis, queueing theory, and finance, 

shares mathematical properties with the Erlang 

distribution, [14], [1]. Specifically, the bivariate 

gamma distribution is notably linked to the Erlang 

distribution due to their shared underlying 

mathematical characteristics, [10]. As we embark 

on this study, our focus turns to the bivariate 

conditional Erlang distribution. Building upon the 

foundational research of Gongskin and Saporu [5] 

and Saralees and Arjun [13], we aim to unravel 

the complexities and implications of this bivariate 

conditional extension. 

 

2 Problem Formulation 
The method of extending family of distributions 

for added flexibility and potentiality is a familiar 

technique in the literature. In random phenomena, 

modeling and analyzing lifetime data are very 

essential in the fields of sciences and applied 

sciences such medicine, engineering, finance, 

economics, biomedical sciences, public health, 

among others. Several lifetime distributions have 

been used to analyze such kinds of data in 

practice, but the quality of the procedure used in 

statistical study depends on the assumed 

probability model [8]. 

 

2.1 Bivariate conditional Erlang 

distribution model 
The Erlang distribution is a continuous 

probability distribution that is widely used in 

various fields such as queueing theory, 

telecommunications, and reliability engineering 

[2] [14] [7]. It is a special case of the Gamma 

distribution, specifically designed for modeling 

the sum of several exponential variables, where 

the shape parameter α is an integer (𝛼 = 𝑘) and 

the rate parameter 𝛽 is equal to 𝜆. 

The Gamma distribution’s PDF is given by: 

  (1) 

where Γ(α) is the Gamma function, which 

generalizes the factorial function to real and 

complex numbers. 

In this article, we will explore the Erlang 

distribution and its connection to the exponential 

family of distributions. The Erlang distribution is 

parameterized by two values: k, a positive integer, 

and λ, a positive real number. The probability 

density function (PDF) for 𝑥 ≥ 0, 𝑘 ∈ 𝑍+ 

(positive integers), and 𝜆 > 0 of an Erlang 

distributed random variable X is given by: 

 (2) 

Given a random variable 𝑌 that depends on 

another random variable 𝑋, where the distribution 

of 𝑌 given 𝑋 = 𝑥 follows an Erlang distribution 

with scale parameter 𝑥 and shape parameter 𝜆, we 

can express the probability density function 

(PDF) of 𝑌|𝑋 = 𝑥. 

Recall that the PDF of an Erlang distributed 

random variable with shape parameter 𝑘 (which 

is an integer) and rate parameter 𝜆 is given by: 

 (3) 

Note that x must be a positive integer for this 

distribution to be an Erlang distribution, as the 

shape parameter of the Erlang distribution is 

defined as a positive integer. In this scenario, 

since 𝑌|𝑋 = 𝑥 follows an Erlang distribution with 

shape parameter 𝑥 and rate parameter 𝜆. 

Therefore; for 𝑦 ≥ 0, the probability density 

function of Y given 𝑋 = 𝑥 is 

 (4) 

This PDF characterizes the conditional 

distribution of Y given the value of X, showing 

that Y follows an Erlang distribution whose shape 

parameter is determined by the realization of X 

and whose scale parameter is 𝜆. To derive the 

joint probability density function known as the 

bivariate conditional Erlang distribution (BCED) 

for 𝑋 and 𝑌 in terms of the marginal and 

conditional density functions, we can utilize the 

concept of conditional probability. Given that 𝑌 

follows an Erlang distribution conditional on the 

realization of 𝑋, we can express the joint PDF of 

𝑋 and 𝑌 using the conditional PDF of 𝑌 given 𝑋 

and the marginal PDF of 𝑋. 
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Let  Xf x denote the marginal PDF of X, and 

 Y X
f y x denote the conditional PDF of Y given 

𝑋 = 𝑥. Then, the joint PDF of X and Y, denoted 

as  ,XYf x y can be derived using the conditional 

PDF and the marginal PDF as given in Equation 

(5) where, 

     ,XY XY X
f x y f y x f x , 

and the BCED for 𝑥 > 0, 𝑦 > 0, and 𝜆 > 0 is 

then given by: 

 (5) 

         (6) 

Theorem 1: 

If 𝑓(𝑥, 𝑦) is a true bivariate probability density 

function for 𝑥, 𝑦 ∈ (0, ∞) then, 

 (7) 

Proof: 

Let 

 

Since 𝑒−𝜆(𝑥+𝑦) = 𝑒−𝜆𝑥𝑒−𝜆𝑦, the integrand can 

be separated: 

 

 
Evaluating the inner integral with respect to 𝑦, we 

have 

The inner integral is the Gamma function,  
Γ(x) for 𝑦𝑥−1𝑒−𝜆𝑦 

 
Substitute the result back into the integral 

 

Since Γ(𝑥) = (𝑥 − 1)!, then 

 
Again, 

 
Therefore, 

 
Since Γ(𝑘) = (𝑘 − 1)!, the expression simplifies 

to 

 
Thus, the given integral evaluates to 1, which 

verifies the normalization condition for the 

bivariate conditional Erlang distribution is 

 
Since 𝑀 = 1, it indicates that Equation (7) is a 

true bivariate probability density function and 

represented in Fig. 1 for different values of λ and 

k. 

 
Fig 1: Density curves of the bivariate conditional 

Erlang distribution for various parameter values 

 

2.2 Generalization 

Let Erlang density defined as in Equation (3) and 

the conditional Erlang density function of 

𝑌𝑖|𝑋 = 𝑥, for 𝑥 ≥ 0 be given by 

 
Consider 𝑝 + 1 random variables 𝑋, 𝑌1, . . . , 𝑌𝑝 

such that 𝑌𝑖|𝑋 = 𝑥 and 𝑌𝑗|𝑋 = 𝑥, 𝑖, 𝑗 = 1,2, . . . , 𝑝, 
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𝑖 ≠ 𝑗, are independent. It is easy to show that the 

joint density of 𝑋, 𝑌1, . . . , 𝑌𝑝  is given by 

     1

1

, , ,
p

p i

i

f x y y f x f y X x


      (8) 

2.3 Properties of BCED (Marginal 

distribution of Y) 
Theorem 2: 

The random variable Y in the joint density (6) has 

a marginal distribution, given by: 

 
where X follows a Poisson distribution with 

parameter λ, i.e., 

  , 0,1,2,...
!

x

X

e
f x x

x

 

   

   
0

,Yf y f x y dx



   
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y
e

x x

  
 




 

  (9) 

Given that Y given X follows an Erlang 

distribution and X follows a Poisson distribution, 

we can identify that the marginal distribution of Y 

(which is the sum of X exponential random 

variables) follows a Gamma distribution 𝑓𝑌(𝑦) =
𝜆𝑒−𝜆𝑦, 𝑦 ≥ 0, which is the form of an 

exponential distribution with rate λ. 

2.4 Moments of BCED (Joint Moment) 
The (𝑟, 𝑠)th joint moments for X and Y can be 

derived as follows: 

 
Simplifying 

 
Combining the exponential terms, we have 

 
Separating the integral gives 

 
Therefore, 

 
Substitute this result becomes 

 
Simplifying further 

 

 (10) 

 

2.5 Marginal moments and covariance 

matrix 
The marginal moments of X and Y can be derived 

from the joint moment in Equation (10) by 

appropriate substitution. When 𝑠 = 0, we obtain 

the rth marginal moment of X given by 

 (11) 

Similarly, when 𝑟 = 0, we obtain the 𝑠th marginal 

moment of Y as 

 (12) 

while, the covariance between X and Y is defined 

by: 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) 
From Equation (9), 

 
Then, 
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Thus, a random vector 𝑋 = (𝑋, 𝑌) having the 

bivariate conditional Erlang distribution has the 

mean vector: 

 

 

 
 

1

0

1 !

1 !

k

s x

k s

r k

k

k
t dt









 



  
 

 

 
 
 
 



  (13) 

And the variance–covariance matrix of X is given 

by: 

 

   

 

 

 
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      (14) 

The correlation between X and Y is defined by 

(15) 
 

2.5 Method of Parameter Estimation 

The maximum likelihood method of estimation of 

the parameter of BCED can be obtained as 

follow: 

 (16) 

The derivatives of the log likelihood function (16) 

with respect to λ is given below 

    (17)  

Set the Derivative to Zero and Solve for λ 

 
where 

 
and 

 
Thus, the maximum likelihood estimate for λ is: 

 (18) 

 

3 Problem Solution 
In this study, the time required for two sequential 

medical procedures in diabetes management, 

modeled using a bivariate Erlang distribution was 

analyzed. The dataset comprises measurement of 

the time to complete blood glucose monitoring 

(T1) and the time to finalize follow-up treatment 

based on monitoring results (T2). 

The estimated Erlang distribution parameters 

for the Time to Blood Glucose Monitoring (T1) 

were a shape parameter of 24.14 and a scale 

parameter of 0.642. While, for the Time to 

Follow-Up Treatment (T2), the parameters were 

a shape parameter of 25.87 and a scale parameter 

of 0.847. 

The Kolmogorov-Smirnov tests for both T1 

and T2 produced high p-values (0.9129 for T1 

and 0.9462 for T2). These results suggested that 

the Erlang model provides a good fit for both 

procedures, capturing their distributional 

characteristics effectively. 

A strong positive correlation of 0.983 between 

T1 and T2 with a highly significant p-value of 

3.9 ×  10−22 also indicates that the times for 

these two sequential medical procedures are 

closely related. The plots in Figs. 2, 3, 4 and 5 

strengthens the statistical outcomes. The contour 

lines in Fig. 2 represent the bivariate Gaussian 

kernel density estimate (KDE). 
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Fig 2: The contour plot overlaid with a scatter plot 

of T1 (Time to Blood Glucose Monitoring) versus 

T2 (Time to Follow-Up Treatment). 

 

 
Fig 3: The histograms for T1 (Time to Blood 

Glucose Monitoring) and T2 (Time to Follow-Up 

Treatment), each overlaid with the fitted Gamma 

(Erlang) distribution curve. 

 

 
Fig 4: Bivariate Cumulative Exponential 

Distribution (BCED) Plot for T1 and T2. 

The BCED plot of Fig 4, typically show a 

smooth gradient from lower to higher cumulative 

probabilities as both T1 and T2 increase. 

 
Fig 5: Density plot of Y for varying λ and k. 

The results of numerical integration of the 

area under curve of the marginal distribution y are 

given as publicized in Table 1 to Table 4. 

 

Table 1. The results of numerical integration of 

the area under curve of the marginal distribution 

y for Fig. 1 

Parameter value    

a b c Numerical Integration 

0.5 0.5 0.5 0.999926060672114 

1 1 1 1.000000000002793 

1.5 1.5 1.5 1.000000000004236 

2.5 2.5 2.5 1.000000000006227 

3.5 3.5 3.5 1.000000000179541 

4.5 4.5 4.5 1.000000000237848 

5.5 5.5 5.5 1.000000000007505 

7.5 7.5 7.5 0.999999999989926 

 

Table 2. The results of numerical integration of 

the area under curve of the marginal distribution 

y for Fig. 2. 
Parameter 
value 

   

a b c Numerical Integration 

0.5 0.5 0.5 0.999977140718329 

1 1 1 1.0000000000007145 

1.5 1.5 1.5 1.0000000000000645 

2.5 2.5 2.5 1.0000000000008510 

3.5 3.5 3.5 1.0000000000015686 
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4.5 4.5 4.5 1.0000000000045356 

5.5 5.5 5.5 0.9999999999967937 

7.5 7.5 7.5 0.9999999999878894 

 

Table 3. The results of numerical integration of 

the area under curve of the marginal distribution 

y for Fig. 3. 
Parameter 
value 

   

a b c Numerical Integration 

0.5 0.5 0.5 1.0000000000019935 

1 1 1 1.0000000000006379 

1.5 1.5 1.5 1.0000000000003677 

2.5 2.5 2.5 1.0000000000004343 

3.5 3.5 3.5 1.0000000000288260 

4.5 4.5 4.5 0.9999999999961643 

5.5 5.5 5.5 0.9999999999979663 

7.5 7.5 7.5 1.0000000000012034 

 

Table 4. The results of numerical integration of 

the area under curve of the marginal distribution 

y for Fig. 4. 
Parameter 

value 
   

a b c Numerical Integration 

0.5 0.5 0.5 0.9999999999122686 

1 1 1 1.0000000000016196 

1.5 1.5 1.5 0.9999999999999252 

2.5 2.5 2.5 1.0000000000027870 

3.5 3.5 3.5 1.0000000000003789 

4.5 4.5 4.5 1.0000000000046242 

5.5 5.5 5.5 1.0000000000047694 

7.5 7.5 7.5 0.9999999999894141 

 

4 Conclusion 
In this paper, Bivariate Conditional Erlang 

Distribution was introduced with properties such 

as moments, generating functions, quantile 

function, random number generation, and other 

statistics, were extensively considered and 

analyzed. The analysis of the time to blood 

glucose monitoring (T1) and the time to follow-

up treatment (T2) was conducted using the 

bivariate Erlang distribution, demonstrating a 

significant relationship between these two 

sequential medical procedures. Through 

parameter estimation and goodness-of-fit tests, 

the individual distributions of T1 and T2 were 

confirmed to align well with the Erlang 

distribution, as evidenced by the Kolmogorov-

Smirnov test results. The high Pearson correlation 

coefficient further supported the positive 

dependency between T1 and T2, indicating that 

as the time for one procedure increases, the other 

is likely to follow suit. Visualizations, including 

scatter plots and BCED contour plots, provided a 

clear depiction of this relationship, which 

showcase the joint cumulative probabilities of the 

two times. The marginal density plots of T1 and 

T2 confirmed the consistency of the data with the 

assumed distribution, justifying the use of the 

bivariate Erlang model in this context. 
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