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Abstract: Identifying influential points in linear regression is vital for ensuring the validity of inferential conclusions. 
Traditional diagnostic measures, such as DFFITs (DFT), Cook’s D (CKD), COVRATIO (CVR), Hadi’s measure (HAD), 
Pena’s statistic (PEN), and Atkinson statistic (ATK), are typically based on the Ordinary Least Squares (OLS) estimator, 
which assumes no violation of the basic linear regression assumptions. This study develops new diagnostic measures for 
these statistics using the New Two-Parameter (NTP) estimator to address multicollinearity. The study evaluated the 
performance of these measures through simulation studies with 1,000 replications under varying levels of multicollinearity, 
error variances, outlier percentages and magnitudes, and sample sizes. Results revealed that the newly proposed CVR 
measure with the NTP estimator achieved 100% detection of influential points and recorded the highest detection counts, 
outperforming all other measures. While traditional measures like CKD, PEN, and ATK based on OLS were effective only 
for small sample sizes in the absence of multicollinearity, their performance declined when multicollinearity was present. 
Conversely, CVRNTP consistently demonstrated superior performance when multicollinearity was mitigated. These findings 
suggest that the proposed CVRNTP is a robust tool for identifying influential points in datasets affected by multicollinearity. 
Real-life data applications further validated their performances.  
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1 Introduction 

Regression analysis is a critical tool in data analysis often 
used to model the relationship between a dependent 
variable and one or more independent variables. However, 
real-world data usually violate the assumptions of classical 
linear regression models. Two major challenges that often 
arise in regression analysis are multicollinearity and the 
presence of extreme values (outliers). Multicollinearity 
occurs when predictor variables are highly correlated, 
leading to instability in coefficient estimates. Outliers or 
extreme values, on the other hand, can distort the 
estimation process and reduce the reliability of inference on 
the model. The common Ordinary Least Squares (OLS) 
estimation methods are sensitive to both multicollinearity 
and extreme values, necessitating the development of 
robust estimators ([1]; [11]). In the same vein, in many 
economic problems, Ordinary Least Squares (OLS) have 
been the most common method of estimating regression 
parameters, but in compliance with some fundamental 
assumptions, such as; regressors must be measured without 
error, explanatory variables must be linearly independent, 

the error terms must be independently and identically 
normally distributed with mean zero and variance 2
among others. But, not in all cases do investigations reveal 
these assumptions to be satisfied. The cause could be the 
problem of high correlation among the predictors 
(multicollinearity) and the presence of extreme 
observations (outliers). To address the problem of 
multicollinearity in linear regression analysis, several 
biasing estimators have been developed in the literature, 
which include the ridge regression estimator by [24], [35]. 
[15] combined the principal component regression 
estimator with the two-parameter estimator proposed by 
[44], New Two-Parameter (NTP) by [62], the Modified 
two-parameter estimator proposed by [19]  modified ridge-
type estimator [40], the Kibria-Lukman estimator by [34], 
Dawoud-Kibria (DK) estimator by [18]. When exogenous 
variables are correlated in a multiple regression model, [2] 
proposed a new two-parameter estimator called Modified 
New Two-type parameter Estimator (MNTPE). [39] also 
combined the Principal Component Regression (PCR) 
estimator with the modified ridge–type estimator, but just 
to mention a few. Meanwhile, to deal with the problem of 
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outliers, some of the already existing estimators are M – the 
estimator by [25], the S-estimator by [55], and MM-
estimator by [65]. Others include the Least Median Squares 
(LMS) estimator proposed by [49] and the Least Trimmed 
Squares (LTS) estimator as a high efficiency to the LMS 
was also proposed by [49]. Also, the Least Winsorized 
Squares (LWS) estimate was proposed by [51]. Least 
Trimmed Mean (LTM) was proposed by [50]. By using 
these methods, it is possible to eliminate some of the data 
points, which in some cases need not be done, especially if 
that data point(s) is (are) important. [56]  
To examine the effect of both good and bad leverage points 
on parameter estimation in regression analysis, [5] carried 
out a robust diagnostic analysis in this respect. The joint 
problems of outliers and multicollinearity in the data set 
may be inevitable, and if present, the least square estimator 
becomes incapacitated. Hence, there is a need for a robust 
estimator to deal with these anomalies. [43] through 
simulation studies, corroborated some estimators, and 
developed a robust estimator in addressing these two issues 
in regression analysis by combining the MM-estimator with 
the Ridge Regression estimator to form a robust Ridge 
regression based on the MM-estimator (RMM). [39] 
proposed a two-parameter ridge-type modified M-estimator 
when the linear regression model suffers both problems of 
multicollinearity and outliers. Other estimators to address 
these two problems include the Robust Ridge and Liu 
estimators [3], the Robust-M Dawoud-Kibria estimator by 
[17], and the Robust-M New Two Parameter by [1]. In the 
literature, measures for detecting influential points based on 
OLS have been proposed, and these include Cook’s 
distance by [16], DFFITs by [16], and Welsch’s distance 
[60]. [42] worked on the detection of single influential 
points in the Ordinary Least Squares (OLS) regression 
model, where the basic survey of the influential statistics of 
a single case, including exploratory analysis of all 
variables, were provided. Likewise, [28] proposed a 
deleting formula known as Modified Ridge Regression 
(MRR) in order to detect influential points in regression 
analysis. [27] proposed an appropriate deletion formula for 
the detection of influential points for the Liu estimator. [58] 
compared the performance of some influential measures, 
which include Cook’s D, DFFITs, COVRATIO, Hadi’s 
measure, and DFBETAS, in detecting influential points in 
the presence of multicollinearity at the choice of different 
Ridge parameters. [8] derived the generalized versions of 
DFFITs and Cook’s D in two parameter ridge-type 
estimator and derived the approximate deletion formulas of 
the influential measures. [22] studied the influence of a few 
points using Pena’s Statistic for the Ridge Regression. 
Meanwhile, Modified Pena’s Statistics for the biased 
estimators were carried out by [38]. Another influential 
measure based on Pena’s Statistic for one parameter, such 
as the Liu regression estimator, was proposed by [31]. [38] 
developed the generalized versions of Cook’s D and 
DFFITs in two parameter Liu-Ridge estimator and derived 

the approximate deletion formula for the two influential 
measures. Also, [10] compared the performance of some 
robust estimators. Among the influential statistics and 
robust estimators considered in their study are Cook’s D, 
Welsch-Kuh distance, DFFITs, DFBETAS, MM-estimator, 
Least Trimmed Square (LTS), and S-estimators 
respectively including OLS. Three real-life data sets were 
used to examine the performances of the estimators using 
Root Mean Square Error (RMSE) as a criterion, and they 
concluded that multiple high-leverage observations could 
be the source of multicollinearity in regression analysis. 
Hence, to tackle these challenges, [12] proposed another 
robust procedure for the parameter’s estimation and 
revealed that the Diagnostic Robust Generalized Potentials 
(DRGP) for MM – estimator is the most efficient among 
the estimators considered which include Diagnostic Robust 
Generalized Potentials (DRGP-L) for L-estimator, 
Diagnostic Robust Generalized Potentials (DRGP-LTS) for 
LTS-estimator, Diagnostic Robust Generalized Potentials 
(DRGP-M) for M –estimator, Diagnostic Robust 
Generalized Potentials (DRGP-MM) for MM-estimator. 
[13] examined the effect of collinearity – influential points 
on data that has the problem of multicollinearity using the 
Monte Carlo experiment approach. In identifying 
prospective outlying cases in the Multiple Circular 
Regression Model (MCRM), [6] developed an outlier 
procedure using DFFITs statistic for circular cases.[32], 
through Monte Carlo experiment and application to real-life 
data, investigated the performances of some influential 
diagnostics for the Cox proportional hazards regression 
models and observed that the proposed Cook’s distance for 
both standardized and adjusted residuals outperformed 
others in terms of influential points detection. To justify 
their claim, they applied their method to real-life data sets 
on bone marrow transplant Leukaemia. 
This study aims to develop influential diagnostic tools for a 
new two-parameter estimator proposed by [62]. Effort is 
made to address the combined effects of multicollinearity 
and influential observations in ensuring more reliable 
estimates for the model parameters. Likewise, the 
approximate deletion formulas for Cook’s D and DFFTITs 
for the estimator are derived. The study's significance lies 
in addressing a critical gap in regression analysis, where the 
simultaneous occurrence of multicollinearity and extreme 
values can distort model results. The development of these 
measures for the new two-parameter estimator enhances 
researchers to detect problematic observations that may 
adversely affect inferences on the linear regression model 
often used in economics, engineering, finance, and medical 
research. 
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2. Background of the study  

The matrix form of linear regression model is written as: 
 1pXy                    

           
     (1) 
Where y is an 1n  vector dependent variable, X  is an 

pn standardized known matrix regressor, 1p  is the 

vector  1p regression coefficients and   is the  1n  
vector of independent random error terms with  0)( E

and  n

T IE 2) (  . Such that nI is an identity matrix of 
nn . 

Suppose ),( XIW  and TT ),( 10   therefore, the 

Ordinary Least Squares (OLS) of 1p in (1) can be written 
as: 

yWWW TT

OLS

1)(ˆ        (2) 
The residual can be expressed as: 

yyi
ˆ ,      

OLSWy ̂ , 

= yWWWWy TT 1)(  , 

=  yWWWW TT 1)(1  , 

=  yH ii1                                                                   
(3) 

where TT

ii WWWWH 1)(  is the hat matrix also 
known as projection matrix. 

2.1 Some Conventional Diagnostic 

Measures in Least Squares Estimator 

In the literature, based on OLS estimator several 
conventional influential diagnostics have been developed, 
some of them are hereby discussed.   

2.1.1 Cook’s Distance Diagnostic Measure 

Cook’s distance is a measure of the distance between the 

least squares estimate based on all n-observations in ̂  and 
the estimate derived when the ith observation is deleted. It is 

usually denoted by )(̂i  and defined as: 

   
2

)()(

ˆ

ˆˆˆˆ
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i

T
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(4) 

Where )(̂i and ̂ respectively are the estimates when the ith 
observation is removed and when for full data. The measure 
is related to the distribution f (p, n − p). Further algebraic 
expression of (4) can be given as: 

𝐷𝑖 =  
𝑡𝑖

2

𝑝
(

ℎ𝑖𝑖

1−ℎ𝑖𝑖
).                

(5) 
where TT

ii wWWwh 1)(  is the ith diagonal elements of 

the hat matrix and where it is ith internally studentized 
residual which is defined as: 
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such that, yyii
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pn

n

i
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2ˆ


 which is the 

residual mean square. 
[16] suggested that observations for which Di >1 warrants 
attention. 
 

2.1.2 DFFITs Influential Measure 

 [61] proposed DFFITs diagnostic influential measure 
which is defined as the deletion influence of ith observation 
on the predicted or fitted value. Also DFFITs can be 
defined as the change in the predicted value for a point 
obtained when the data is full and ith data is deleted divided 
by the estimated standard deviation of the fit at that point. 
The statistic can be expressed as: 

𝐷𝐹𝐹𝐼𝑇𝑠𝑖 =  

iii

ii

h

yy

2
)(

)(

ˆ

ˆˆ




, i = 1, 2, 3,…, n                      

(7) 
Where iŷ is the fitted value when data is full or complete, 

)(ˆ
iy is the fitted value when the ith observation is deleted, 
2

)(ˆ
i  is the estimated mean square error MSE of )(ˆ

iy . 
According to [38], equation (7) can also be expressed as: 

)ˆ(

]ˆˆ[ )(





i

ii

i
wS

w
DFFITs


 .             

(8) 

where )ˆ( iwS  is an estimator of standard error of the 

fitted values, iw is the ith row of the W  matrix, )(̂i is the 

least squares estimator of  when the ith case is deleted in 
fitting the linear regression model. 
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Further algebraic expression, equation (8) can be expressed 
as: 
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(9) 
where �̂�2 is the estimate of σ, iih is the diagonal elements 

of the hat matrix iiH  and 
)1(ˆ 2

ii

i

i

h
t







is the 

studentized residual. 
 [27] suggested that observations for which / 𝐷𝐹𝐹𝐼𝑇𝑠𝑖 

/>2√
𝑝

𝑛
 warrants attention for large data sets and [20] 

claimed that if the absolute value of  𝐷𝐹𝐹𝐼𝑇𝑠𝑖  exceeds 1 for 
small to medium data sets, such observation is influential. 
. 
2.1.3 DFBETAS 

DFBETAS is an influential measure that indicates how 
much the regression coefficient changes if ith observation 
were deleted. Such change is measured in terms of standard 
deviation units. The influential measure can be defined as: 

iii

ijj

ji

h
DFBETAS

2
)(

)(

ˆ
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(10) 

where )(
ˆ

ij  is the regression coefficient obtained when ith 

observation is removed,
 iih is the ith diagonal elements of 

the hat matrix iiH  and 2
)(ˆ

i  is the estimated mean square 

error MSE of )(ˆ
iy  when the ith point is deleted. 

 

2.1.4 Atkinson Diagnostic 

[7] proposed modified Cook’s distance denoted by ( iA ) by 

replacing the variance )ˆ( 2  of the full data used in Cook’s 

distance with the variance 2
)(ˆ

i  when the ith observation is 
deleted. The statistic is defined as: 

    

  2
)(

)()(

ˆ1
1ˆˆˆˆ

i

i

T

i

i
p

pnW
A













,  

n

pn
DFFITsA ii

)1( 
 .                                           

(11) 

wherê  is the OLS estimator when data is complete, )(̂ i  
is the OLS estimator when the ith observation is deleted. 
The statistic can algebraically be expressed as: 

iA =  
𝑡(−𝑖)

2
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 The observation that its PCDi >1 identifies to be 
influential. 
 

2.1.5 COVRATIO diagnostic influential measure 
 

COVRATIO influential statistic is the ratio of the 
determinant of the covariance matrix when the ith 
observation is deleted to the determinant of the covariance 
matrix for the complete data [13]. The statistic is defined 
as: 
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Equation (13) can be expressed as: 
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, p is number of independent 

variables and iih  is the ith diagonal element of the hat 
matrix.  
Alternatively, (13) can further be written as: 
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where
1

ˆ )1(




pn

SSE
EMS p

, such that 





n

i

ii yySSE
1

2)ˆ( and 2
)( iS  is the variance when the 

ith observation is omitted. 
An observation is considered influential if the following 

condition holds; 13


n

p
COVRATIOi

 .
 

2.1.6 Hadi’s influential diagnostic measure 
 

According to [23], Hadi’s measure is an influential 
diagnostic that is based on the identification of influential 
points in both y and x directions. In this statistic, a single 
case deleted measure of leverage was introduced. Hence, 
the influence of the ith point can be measured by using 
notations in equation (12). 
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where,  
SSE

d i
i


 , p is the number of explanatory 

variable and iih  is the ith diagonal elements of the hat 

matrix TT WWWW 1)(  . 
The cut-off point for the statistic is given as 

)var()( 222
ii HcHmeanH

i
 , where c is an 

appropriately chosen constant to be 2 or 3 [21]. 
 

2.1.7 Pena’s statistic 
[46] proposed a new influential diagnostic measure apart 
from the existing ones proposed based on OLS such as 
Cook’s D, DFFITs among others. The diagnostic measures 
the influence of a single observation by the rest of the data. 
He suggested that instead of examining the overall effect on 
the fitted value due to the elimination of one observation, 
how the deletion of each observation affects the prediction 
of a specific observation independently can be measured. 
The statistic is defined as follows: 
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(17) 
where iih  is the ith diagonal element and jih is the jith 

element of the hat matrix TT WWWW 1)(  . In his study, 
he further revealed that (17) tends to follow a Gaussian 
distribution if the sample size and explanatory variables are 
large. He estimated the cut-off point for the statistic as 

)(5.4)( iii SMADSmedianS  and affirmed that a 

point is influential if the value of iS is larger than 

)(/)(( iii SSDSES  . 

 

3. Influential Measures in New Two-

Parameter Estimator 
As a means of further dealing with the problem of 
multicollinearity in linear regression model, [62] proposed 
New Two-Parameter (NTP) estimator aside already existing 
ones. The estimator is defined as: 

     YWkIWWdIWWIWW TTTT

NTP

11ˆ 
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(18) 
where k and d  are the biasing estimated parameters for the 
NTP estimator defined as: 
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          0 < 𝑑 ≤ 1. 

where i is the ith Eigen value of WW T
, OLS

T

i Q  ˆˆ   

and pn

T




2̂  which is the MSE of OLS regression 

model. 
Several influential diagnostics have been proposed based 
on the OLS regression to detect the impact of deletion on 
the regression analysis but some of the Two-Parameter 
estimators have not been considered of which New Two-
Parameter (NTP) estimator is among. As a result of this, 
generalized versions of some diagnostic influential 
measures of DFFITs (DFT) and Cook's D (CKD), 
COVRATIO, Hadi's measure (HAD), Pena's Statistic 
(PEN), and Atkinson statistic (ATK) with the New Two-
Parameter estimator (NTP) are hereby proposed in this 
study. 
 
The fitted value of the equation (16) can expressed as 

follows: 
�̂�𝑖

𝑁𝑇𝑃 = 𝑊�̂�𝑁𝑇𝑃,                     
         

     YWkIWWdIWWIWWW TTTT 11 
 , 
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where, 
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ii WkIWWdIWWIWWWH
11 



. 
NTP

iiH is equivalent to the hat matrix   TT WWWW
1

 of 
the fitted value of OLS when k = 0 and d= 1. It is expected 
to note that NTP

iiH is not an idempotent matrix, hence it is 

not a projection matrix. The ith diagonal element of
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can be written as: 
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where 𝑤𝑖  indicates the ith row of the matrix W, the ith fitted 
value written in terms of NTP

iiH  is given as: 
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Also, minimizing (23) with respect to iY  , leads to (24): 
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such that the ith NTP error term is given as: 
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3.1 DFFITs and Cook’s distance measures 

in NTP Estimator 

Following the conventional DFFITs measure developed 
based on OLS, therefore DFFITs for NTP estimator 
denoted as DFTNTP is hereby proposed and as expressed 
as: 

 
 NTPi
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of the standard error of the NTP estimator fitted values. It 
can still be written as: 
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iiH  and s is the unbiased OLS 
estimator of 𝜎. 
Also, further algebraic expression of (27) is given in (28). 
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where �̂�𝑖

𝑁𝑇𝑃 and �̂�(−𝑖)
𝑁𝑇𝑃 are the NTP estimator predicted 

values of response variable y when no observation is 
omitted  and when the ith observation ,𝑠(−𝑖)𝑁𝑇𝑃 is the NTP 
estimator standard error estimated when the ith data is 
deleted and ℎ𝑖𝑖

𝑁𝑇𝑃 is the ith diagonal elements of the hat 
matrix NTP

iiH . 

|𝐷𝐹𝐹𝐼𝑇𝑠𝑖
𝑁𝑇𝑃|>2√

𝑝

𝑛
  is estimated to be the cut-off point for 

large data. 
In the same vein, the Cook’s distance version for NTP 
estimator can be expressed as follows: 
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Likewise, the other version of NTP

iD is defined as: 
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(31b) 
where NTPNTP

i CKDNTPD **   

In this case, NTP

iD* serves as an alternative influential 
measure to Cook’s distance based on; 
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        1
1

1
0

1ˆ 
 IWWEWWEIWWVar TTT

NTP 

. The measures NTP

iD  and 
NTP

iD* cannot be written as 
functions of leverage and residual, this is because of scale 
dependency of NTP estimator. The estimator is not scale 
invariant. Hence, the design matrix W with ith row deleted 

needs to be rescaled before  NTPî  is computed. 

The cut-off point is 1NTP

iD  this implies that the 

observation that its NTP

iD >1 when sample size (n) is large 
is influential and thereby warrants attention. 
The approximate case deletion formula for NTP estimator 
is hereby presented:  
 

Approximate Case Deletion formulas for NTP estimator 

Given that ith row is deleted from NTP̂ ,  NTPî can then 
be written as: 
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where and 𝑊(𝑖) is the Matrix 𝑊when the ith row has been 
removed. 𝑊 is scaled so that 𝑊(𝑖)W is in correlation form. 
Therefore, by applying Sherman-Morrison-Woodbury 

(SMW) theorem by [47],  NTPî  is approximately obtained 
as follows: 
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where, T

ikiii wBwF 1 , 

By expanding (36), it leads to (37). 
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Therefore, the approximate difference between NTP̂  and 

NTPi)(̂  is given as: 
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Approximate case deletion formula for DFFITs in NTP 

Estimator 

The approximate case deletion formula for DFFITs in NTP 
estimator can be expressed as: 
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Approximate case deletion formula for Cook’s distance 

in NTP Estimator 

The approximate version for Cook’s distance in NTP 
estimator is hereby presented as in (47) 
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Therefore, the approximate version of (47) can be written 
as: 
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3.2 COVRATIO measure in NTP 

Estimator 
 

The generalized version of COVRATIO diagnostic measure 
in NTP estimator can be expressed as in (49). This is 
achieved by following the procedures of conventional 
COVRATIO measures proposed based on OLS by [14]. 
The influential measure is denoted as CVRNTP and defined 
as: 
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variance for the NTP estimator when the ith observation is 
deleted. 
Therefore, observation for which 

n

p
COVRATIO NTP

i

31   is said to be influential and 

this is the cut point for the influential measure. 

3.3 Hadi’s measure in NTP Estimator 

In line with the conventional Hadi’s measure proposed 
based on OLS by [23], therefore the generalized version of 
Hadi’s measure in NTP estimator is hereby proposed which 
is denoted as HADNTP and expressed as: 
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Where 22

iiNTP HADNTPH   

Such that 
iNTP

iNTP

iNTP
SSE

e
d  , such that 

NTP

iiiNTP YYe ˆ ,  



n

i

NTP

iiiNTP YYSSE
1

2ˆ  and p is 

the number of explanatory variable and NTP

iih  is the hat 
matrix for NTP estimator. 
The point at which 

)var()( 222
iNTPiNTPiNTP HcHmeanH  is influential, 

where c is an appropriately chosen constant to be 2. 
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 3.4 Pena’s Statistic version in NTP 

estimator 

Following the procedures of [23] and [22], The generalized 
version of Pena’s Statistic in NTP estimator is hereby 
expressed as: 
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iih  is the ith diagonal element of 

the hat matrix NTP

iiH .and NTP

jih  is the jth element of the hat 

matrix NTP

iiH . The cutoff point for the influential measure 
is given as; 

)(5.4)( iNTPiNTPiNTP SMADSmedianS 
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3.5 Atkinson Diagnostic (ATK) in NTP 

Estimator 
The generalized version of Atkinson diagnostic (ATK) for 
the NTP estimator is hereby proposed by following the 
conventional Atkinson diagnostic proposed with the OLS 
estimator by [7]. The influential measure is presented as: 
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 The observation that its 𝐴𝑇𝐾𝑖
𝑁𝑇𝑃>1 identifies to be 

influential, this is the cut point for the influential measure. 
 
 
3.6 Simulation Procedures 

This study's simulation approach was implemented using 
the R statistical programming language. Equation (53) was 
used to produce all of the exogenous variables as also done 
by [39].  
 
𝑤𝑖𝑗 = √(1 − 𝑟2)𝑧𝑖𝑗 + 𝑟𝑧𝑖(𝑗+1), i = 1, 2, …, n, j = 1, 2,…, p.            

(54) 
ρ indicates the correlation between any two exogenous 
variables, and 𝑧𝑖𝑗  represents independent standard normal 
pseudo-random integers in this equation. To demonstrate 
the degrees of correlations between the regressors, five 
levels of correlations (r=0,0.8,0.9,0.95,0.99) were used, and 
p = 3 denotes the number of numbers of regressors. The 
variables had a standard form of expression. In a similar 
manner, the response variable was produced using the 
following equation:  

..,3,2,1,...3322110  iewwwwy iipp
    

(55) 


𝑖
 is the residual, which is independently and identically 

normally distributed with mean (0) and variance 𝜎2 that is 


𝑖𝑖
~ 𝑖 𝑖𝑑𝑁(0, �̂�2). For the model in (55), zero intercept 

was used, and values of β were selected to satisfy the 
criteria 𝑄𝑇𝑄 = 1 in order to comply with [39] guidelines. 
The simulation experiments were repeated 1000 times for 
the sample sizes n = 10, 20, 30, 40, 50, 100, 250, and 500, 
respectively, with a standard deviation of 1, 5, and 10 
pertaining to the research conducted by [30], [39], [11], 
[15] and others. In order to include outliers in the 
regressors, equation (56) was employed which has been 
used by several authors such as [9], [3] among all other 
authors. 
W(i)outlier = mg*Max (Wi) + Wi             
(56) 
where mg, which is assigned the numbers 0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10 which represents the magnitude of outliers in 
the x-direction. Whereas gx = 10% and 20% means the 
percentage of outliers that is 10% and 20% of the data 
generated were randomly selected and polluted with 
outliers using equation (56). Different diagnostic tools 
considered in the study were acquired and subjected to their 
various cut-off points. Similarly, the number of influential 
points found was divided by the number of inflated outliers 
to get the percentage (%) of influential points. The best 
influential measure was determined using the highest count 
at 100% influential point detection. 
 

3.6.1 Algorithm for the Generation of 

Explanatory Variables, Response 

Variables, Error Terms, and Mean 

Squares Error  
(i) Choose the sample size to work with, say n. 
(ii) Generate exogenous variables using equation 

1
2
1

2 )1(  ipijij rzzrw ,  
(iii) Choose a percentage of the data to be replaced 
with  

outliers. 
(iv) Choose a particular magnitude of outlier to invoke 
into  
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the data to be randomly generated from step 2 
(v) Randomly select those observations making up the  

percentage of the generated data to be replaced 
with outliers. 

(vi) Invoke outliers into the data using;  
W(i)outlier = mg*Max (Wi) + Wi 
 where mg is the magnitude of outliers in the x-

direction 
(vii) Replace the outliers in the original data generated 
in (iii) 
(viii) Generate response variable using: 

....,,3,2,1,...3322110 piewwwwy iipp  

 
(ix) Obtain the MSE of the estimators of the model in 
step  

(viii)  
(x) Compute for each replicate the estimated MSE for 
each  

of the estimators by dividing the result in step (ix) 
by the number of replications. 

(xi) Choose another magnitude of outliers to invoke 
into the  

data and repeat step (iv) to step (x). 
(xii) Repeat step (iv) to (xi) until all the magnitudes of 
outliers  

are exhausted. 
(xiii) Repeat steps (ii) to (xii) until all the sample sizes 
are  

exhausted. 

4. Results and Discussion 
 

Tables 1 – 6 show the samples of simulation results of the 
percentage of influential points detected by some already 
existing diagnostic tools proposed based on OLS and the 
newly proposed ones based on NTP. From the tables, it is 

evident that certain influential diagnostic measures, such as 
CKD, PEN, and ATK (proposed based on OLS), effectively 
detect influential points only when the sample size is small 
(e.g., 10 or 20) and in the absence of multicollinearity and 
outliers. However, their performance declines when 
multicollinearity is controlled, as reflected in Table 7. 
Analyzing the detection percentages in Table 7 reveals 
variability in the effectiveness of the measures. CKD, PEN, 
ATK, and ATKNTP demonstrated inconsistent 
performance, performing weakly except within the 0–
9.99% detection range, where their total counts were 2495, 
2499, 2300, 2515, and 2501, respectively (overall total 
expected =levels of multicollinearity x levels of error 
variance x levels of outliers x levels of magnitude of 
outliers x levels of sample size=5x3x11x2x8=2640). This 
indicates a limited capability for detecting influential 
points, likely influenced by factors such as error variance, 
multicollinearity, outliers, and sample size. In contrast, 
DFT, DFTNTP, HAD, and HAD performed well across 
various detection categories. Additionally, CVR and 
CVRNTP showed strong performance, particularly at 90–
99.99% and 100% detection levels. Notably, CVRNTP 
outperformed the others at 100% detection, achieving the 
highest total count of 1970. This highlights CVRNTP's 
superior ability to detect influential points when 
multicollinearity is mitigated, aligning with the findings of 
[58]. In the same vein, Table 8 reveals the summary of the 
performance of the diagnostic measures that have 100% 
influential points detection when counted over all the 
specifications such as percentage of outliers, magnitudes of 
outliers, correlation levels, and error variances at each 
sample size. Hence, it can be seen that the proposed 
CVRNTP has the highest counts among others, with a wide 
margin of the total count of 1970 followed by CVR. Also, 
Figure 1 is the bar chart of the summary of results. 

 

Table 1: Percentage of influential points detected when n=10, 𝒓=0, σ = 5  

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 2.9 32.9 0 80.7 0 4 0.2 1.2 0.8 98.8 0 0 

 
1 0 9.3 0 73 0 0.2 0 0.3 2.8 97.7 0 0 

 
2 0 20.2 0 79.2 0 1.1 0.1 1.9 19.1 98.9 0 0 

0.1 3 15.3 46.9 100 87.7 0 12.3 1.4 7.7 78 99.2 0 0.5 

 
4 38.4 63.1 100 92.5 100 45.4 3.6 15.9 82.8 99.7 2.1 1 

 
5 52.5 70.3 100 94.5 100 70 5.4 24.5 87.8 99.8 5.3 3.3 

 
6 61.2 75.9 100 96.2 100 83 8.8 35 92.7 99.9 9.7 5.7 

 
7 67.5 79.4 100 97 100 90 13.1 46.1 95.8 100 14.2 8.7 

 
8 71.9 82.4 100 97.6 100 93.7 18 56.9 96.1 100 18.3 13.3 

 
9 74.6 85 100 98 100 95.9 24.3 65.1 98.8 100 24.1 18.7 

 
10 76.9 86.5 100 98.2 100 96.9 30.3 70.9 99.4 100 28.4 25.4 

   

OLS 

      

NTP 

   

 

mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 
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0 0 10.4 0 74.4 0 0.65 0 0.4 2.1 97.85 0 0.05 

 
1 1.8 22.45 0 78.9 0 2.35 0.2 2.85 34.5 98.45 0 0.05 

 
2 3.5 31.05 41.6 82.15 0 4.1 0.2 7.05 42.2 98.95 0 0.05 

0.2 3 3.6 33.4 0.85 82.85 0 4.1 0.55 10.95 45.45 98.6 0 0.1 

 
4 4 34.25 0.05 83.45 0 3.95 0.95 14.1 47.4 98.7 0 0.15 

 
5 4.2 34.95 0 83.75 0 4.05 1.35 16.55 48.55 98.7 0 0.15 

 
6 4.15 35.2 0 84 0 4.15 1.8 17.75 48.5 98.6 0 0.15 

 
7 4.45 35.7 0 83.9 0 4.15 2.15 18.6 48.55 98.65 0 0.25 

 
8 4.65 35.95 0 84.25 0 4.1 2.45 20.1 48.5 98.7 0 0.3 

 
9 4.65 35.95 0 84.1 0 4.1 2.65 20.5 48.1 98.8 0 0.35 

 
10 4.65 36.05 0 84.1 0 4 2.8 21.1 47.9 98.75 0 0.35 

 
Table 2: Percentage of influential points detected when n=20, 𝒓=0, σ = 1  

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 2.05 0 96.75 0 0.15 0 0.55 0.8 99.85 0 0 

 
1 0 15.25 0 97.15 0 3.45 0 6.65 3.2 99.75 0 0.3 

 
2 0.7 30.5 50 98.15 0 16.2 0.35 43.85 55.45 99.95 0 2.5 

0.1 3 1.85 37.3 50 98.65 0 23.55 2.3 71.5 72.8 99.9 0 5 

 
4 3 40 50 98.75 0 27 7.85 77.75 89.35 99.9 0 8.1 

 
5 3.1 41.55 50.2 98.7 0 29 16.35 79.55 97.25 99.95 0 10.8 

 
6 3.55 42.65 52.2 98.7 0 30.5 27.35 79.6 99.45 99.95 0 13.7 

 
7 3.75 43.1 65.1 98.75 0 31.3 36.15 78.85 99.85 99.95 0 15.5 

 
8 3.85 42.9 96.3 98.75 0 31.9 40.55 77.85 99.9 99.95 0 17.3 

 
9 3.85 43 99.7 98.8 0 32.45 42.75 76.75 99.95 99.95 0 19.1 

 
10 3.9 42.95 100 98.85 0 33.25 43.1 75.4 100 99.95 0 20.1 

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 2.65 21.38 25 97.15 0 13.65 0.025 4.125 8.75 99.975 0 0.2 

 
1 3.05 29.08 25 97.6 0 18.3 0.225 17.025 25.13 99.7 0 3.03 

 
2 3.65 33.9 25 97.95 0 23.225 0.175 36.475 32.4 99.975 0 1.25 

0.2 3 4.15 36.55 25.5 98.25 0 25.4 0.3 47.9 36.65 99.95 0 1.53 

 
4 4.25 37.68 27 98.35 0 26.75 0.525 53.775 38.2 99.925 0 1.93 

 
5 4.35 38.38 29.2 98.375 0 27.3 1.2 56.425 38.6 99.9 0 2.25 

 
6 4.4 38.68 31.4 98.475 0 27.525 2.625 56.825 38.7 99.85 0 2.25 

 
7 4.43 39.08 33 98.525 0 27.925 5.575 56.7 38.55 99.8 0 2.38 

 
8 4.43 39.28 34.3 98.55 0 28.075 8.55 55.975 38.18 99.8 0 2.45 

 
9 4.43 39.45 34.8 98.575 0 28.25 11.23 55.05 37.03 99.8 0 2.53 

 
10 4.38 39.43 34.9 98.625 0 28.25 14 53.925 36 99.8 0 2.53 

 

Table 3: Percentage of influential point detected when n=40, 𝒓 =0.8, σ = 5  

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 15.93 0 100 0 0 0 13.625 1.4 100 0 0 

 
1 0 28.03 25 100 0 0 0 15.525 21.28 100 0 0 

 
2 0.33 39.48 75 100 0 0 0 24.975 24.33 100 0 0 

0.1 3 0.35 42.23 75 100 0 0 0 27.65 66.5 100 0 0 

 
4 0.38 43.28 75 100 0 0 0.025 31.625 91.7 100 0 0 
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5 0.38 43.83 75 100 0 0 0.025 35.75 95.35 100 0 0 

 
6 0.33 44.15 75 100 0 0 0.025 39.4 96.83 100 0 0 

 
7 0.33 44.5 75 100 0 0 0.025 42.35 97.68 100 0 0 

 
8 0.33 44.6 75 100 0 0 0.025 43.85 98.23 100 0 0 

 
9 0.33 44.68 75 100 0 0 0.025 45.15 98.73 100 0 0 

 
10 0.33 44.85 75 100 0 0 0.025 46.225 99.08 100 0 0 

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 8.038 0 100 0 0 0 12.525 9.95 100 0 0 

 
1 0 18.46 12.5 99.988 0 0 0 17.763 12.61 100 0 0 

 
2 0 20.93 12.5 99.988 0 0 0 16.75 36.68 100 0 0 

0.2 3 0 21.74 12.5 99.988 0 0 0 15.6 40.38 100 0 0 

 
4 0 21.98 12.5 99.988 0 0 0 15.825 40.9 100 0 0 

 
5 0.01 22.03 12.9 99.988 0 0 0 16.488 40.88 100 0 0 

 
6 0.01 22.13 25 99.988 0 0 0 17.488 40.63 100 0 0 

 
7 0.01 22.16 25 99.988 0 0 0 18.325 40.3 100 0 0 

 
8 0.01 22.14 25 99.988 0 0 0 19.188 39.88 100 0 0 

 
9 0.01 22.15 25 99.988 0 0 0 19.963 39.54 100 0 0 

 
10 0.01 22.18 25 99.988 0 0 0 20.413 38.94 100 0 0 

 

Table 4: Percentage of influential point detected when n=100, 𝒓 =0.9, σ = 10  

   

OLS 

      

NTP 

   

gx 

m

g 

CK

D DFT 

HA

D 

CV

R 

PE

N ATK 

CK

D DFT HAD 

CV

R 

PE

N 

AT

K 

 
0 0 10 0 100 0 0 0 0 10 100 0 0 

 
1 0 20 50 100 0 0 0 20 20 100 0 0 

 
2 0 30 60 100 0 0 0 20 50 100 0 0 

0.
1 3 0 30 60 100 0 0 0 20 80 100 0 0 

 
4 0 30 80 100 0 0 0 20 80 100 0 0 

 
5 0 30 80 100 0 0 0 20 100 100 0 0 

 
6 0 30 80 100 0 0 0 30 100 100 0 0 

 
7 0 30 80 100 0 0 0 30 100 100 0 0 

 
8 0 30 80 100 0 0 0 30 100 100 0 0 

 
9 0 30 80 100 0 0 0 30 100 100 0 0 

 
10 0 30 80 100 0 0 0 30 100 100 0 0 

   

OLS 

      

NTP 

   

gx 

m

g 

CK

D DFT 

HA

D 

CV

R 

PE

N ATK 

CK

D DFT HAD 

CV

R 

PE

N 

AT

K 

 
0 0 10 0 100 0 0 0 0 0 100 0 0 

 
1 0 20 15 100 0 0 0 5 10 100 0 0 

 
2 0 20 10 100 0 0 0 5 30 100 0 0 

 
3 0 20 10 100 0 0 0 5 35 100 0 0 

0.
2 4 0 20 10 100 0 0 0 5 35 100 0 0 

 
5 0 20 10 100 0 0 0 10 35 100 0 0 

EQUATIONS 
DOI: 10.37394/232021.2024.4.11

Taiwo Joel Adejumo, Kayode Ayinde, 
Emmanuel Taiwo Adewuyi, Christiana Toyin Adejumo

E-ISSN: 2732-9976 102 Volume 4, 2024



 
6 0 20 10 100 0 0 0 10 35 100 0 0 

 
7 0 20 10 100 0 0 0 10 40 100 0 0 

 
8 0 20 10 100 0 0 0 10 40 100 0 0 

 
9 0 20 10 100 0 0 0 5 40 100 0 0 

 
10 0 20 10 100 0 0 0 5 40 100 0 0 

 
Table 5: Percentage of influential point detected when n=250, 𝒓 =0.95, σ = 5  

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 10.14 8 100 0 0 0 29.04 4.14 100 0 0 

 
1 0 31.28 60 100 0 0 0 45.812 27.02 100 0 0 

 
2 0 32.59 60 100 0 0 0 43.784 79.82 100 0 0 

0.1 3 0 32.8 56 100 0 0 0 37.856 93.42 100 0 0 

 
4 0 32.84 52 100 0 0 0 36.452 97.55 100 0 0 

 
5 0 32.9 52 100 0 0 0 37.52 98.36 100 0 0 

 
6 0 32.92 52 100 0 0 0 38.192 99.33 100 0 0 

 
7 0 32.94 52 100 0 0 0 38.944 99.54 100 0 0 

 
8 0 33.02 52 100 0 0 0 39.308 99.7 100 0 0 

 
9 0 33.01 48 100 0 0 0 39.316 99.8 100 0 0 

 
10 0 32.99 48 100 0 0 0 39.108 99.83 100 0 0 

   

OLS 

      

NTP 

   gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 10.35 4 100 0 0 0 31.312 2.234 100 0 0 

 
1 0 19.61 20 100 0 0 0 43.796 23.63 100 0 0 

 
2 0 19.89 16 100 0 0 0 29.372 29.77 100 0 0 

0.2 3 0 19.93 16 100 0 0 0 22.288 30.51 100 0 0 

 
4 0 19.9 16 100 0 0 0 20.51 30.7 100 0 0 

 
5 0 19.9 16 100 0 0 0 20.304 30.86 100 0 0 

 
6 0 19.92 16 100 0 0 0 20.476 30.75 100 0 0 

 
7 0 19.93 16 100 0 0 0 20.618 30.6 100 0 0 

 
8 0 19.93 16 100 0 0 0 20.68 30.56 100 0 0 

 
9 0 19.93 16 100 0 0 0 20.736 30.46 100 0 0 

 
10 0 19.93 16 100 0 0 0 20.772 30.38 100 0 0 

 
Table 6: Percentage of influential point detected when n=500, 𝒓 =0.99, σ = 10  

   

OLS 

      

NTP 

   
gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 8.906 6 100 0 0 0 10.708 2.232 100 0 0 

 
1 0 31.41 64 100 0 0 0 40.664 25.86 100 0 0 

 
2 0 31.64 66 100 0 0 0 43.006 89.05 100 0 0 

0.1 3 0 31.68 58 100 0 0 0 39.928 98.18 100 0 0 

 
4 0 31.69 56 100 0 0 0 36.944 99.01 100 0 0 

 
5 0 31.7 58 100 0 0 0 35.298 99.56 100 0 0 

 
6 0 31.71 60 100 0 0 0 34.274 99.62 100 0 0 

 
7 0 31.7 60 100 0 0 0 34.028 99.78 100 0 0 
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8 0 31.71 60 100 0 0 0 33.696 99.69 100 0 0 

 
9 0 31.71 60 100 0 0 0 33.558 99.77 100 0 0 

 
10 0 31.72 60 100 0 0 0 33.608 99.93 100 0 0 

   

OLS 

      

NTP 

   
gx mg CKD DFT HAD CVR PEN ATK CKD DFT HAD CVR PEN ATK 

 
0 0 10.09 9 100 0 0 0 13.257 10.32 100 0 0 

 
1 0 19.7 16 100 0 0 0 34.809 19.08 100 0 0 

 
2 0 19.8 15 100 0 0 0 31.797 23.91 100 0 0 

0.2 3 0 19.79 15 100 0 0 0 26.79 24.93 100 0 0 

 
4 0 19.81 15 100 0 0 0 23.191 25.67 100 0 0 

 
5 0 19.81 15 100 0 0 0 20.794 26.19 100 0 0 

 
6 0 19.81 15 100 0 0 0 19.588 26.24 100 0 0 

 
7 0 19.82 15 100 0 0 0 18.842 26.28 100 0 0 

 
8 0 19.82 15 100 0 0 0 18.445 26.26 100 0 0 

 
9 0 19.81 15 100 0 0 0 18.157 26.14 100 0 0 

 
10 0 19.82 15 100 0 0 0 18.012 26.05 100 0 0 

 

Table 7: Percentage of influential points detected when counted overall specifications 

   

OLS 

      

NTP 

   % of 

detection CKD DFT HAD CVR PEN ATK 

 

CKD DFT HAD CVR PEN ATK 

100 0 0 377 1573 134 29 
 

0 17 103 1970 0 0 
90-99.99 39 60 40 870 0 82 

 
0 36 547 668 0 0 

80-89.99 36 48 48 168 0 11 
 

5 15 113 0 17 3 
70-79.99 30 21 180 28 0 7 

 
8 74 49 1 10 14 

60-69.99 15 9 188 0 0 4 
 

9 109 314 0 24 9 
50-59.99 9 3 203 0 0 17 

 
5 134 58 0 25 4 

40-49.99 3 438 162 0 0 36 
 

4 234 267 0 18 4 
30-39.99 6 852 81 1 0 44 

 
10 556 349 1 14 7 

20-29.99 3 709 247 0 3 60 
 

26 475 415 0 8 13 
10-19.99 4 451 487 0 4 50 

 
78 638 162 0 9 85 

0-9.99 2495 49 627 0 2499 2300 
 

2495 352 263 0 2515 2501 
Total 2640 2640 2640 2640 2640 2640 

 

2640 2640 2640 2640 2640 2640 

 

Table 8: Frequency of the influential measures that correctly detected 100% influential point when counted over all 

(mg), (gx), (r), and (σ) at each sample sizes (n) 

 
Sample size (n) 

Total 

 Influential 

Measures 10 20 30 40 50 100 250 500 Rank 

CVRNTP 96 0 226 330 330 330 329 329 1970 1 

CVR 9 0 9 237 330 330 329 329 1573 2 

HADNTP 0 1 3 3 1 86 9 0 103 5 

HAD 126 94 110 0 47 0 0 0 377 3 

DFTNTP 0 0 0 0 0 17 0 0 17 6 
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PEN 134 0 0 0 0 0 0 0 134 4 
Source: Counted from simulation results 

 

 
Figure 1: Graphical illustration of the best influential measures that correctly detect influential points when counted 

overall specifications. 

4.1 Application; Longley data 
 

Longley data used by Longley (1967) was employed in this 
study, the regression equation is defined as: 
𝑦 = 

1
𝑤1 + 

2
𝑤2 + 

3
𝑤3 + 

4
𝑤4 + 

5
𝑤5 + 

6
𝑤6  

      
 (55) 
where y is the total derived employment, 𝑥1  is the gross 
national product implicit price deflator, 𝑤2  is the gross 

national product, 𝑤3 is unemployment, 𝑤4 is the size of 
armed forces, 𝑤5is the non-institutional population 14 years 
of age and over and 𝑤6 is the time. Meanwhile, (Walker and 
Birch, 1988) affirmed that the scaled condition number of 
the data is 43.275. In the same vein, very many researchers 
have used this data to identify influential points, such as; 
([59], [16],  [29], [27],  [64] , [57] , [33], and [38]. The 
value of parameter k used in this study is the one used by 
[64], [57] and [34], which was computed as 0.0012. 

 

Table 9: Most five influential points detected by the existing influential measures compared with the 

proposed ones in NTP using Longley data sets. 

  

Influential Diagnostic based on OLS Estimator (Existing Method) 

  

Author(s) Year 

Influential 

Measure 

Cases 

identified in 

order         Method 

   Cook 1977 CKD 5, 16, 4, 10, 15 Cook's distance  based on OLS 
 Welsch and Kuh,  1977   DFT 5, 16, 10, 15, 4  DFFITs based on OLS 
 Hadi 1992 HAD 10, 5, 4, 16, 15 Hadi's measure based on OLS 

 Atkinson 1985 ATK 5, 16, 4, 10, 15 Atkinson measure based on OLS 
Belsley etal. 1980 CVR 8, 2, 12, 9, 11 COVRATIO based on OLS 

 
Pena 2005 PEN 

16, 15, 14, 1, 
12 Pena's Statistic based on OLS 

 
  

Influential Diagnostic based on NTP Estimator (Proposed Method) 

  

 

Influential Measure 

Cases 

identified in 

order           Method 

   

 CKDNTP        Proposed 16, 10, 6, 4, 13 
Cook’s distance  in NTP 
estimator    

 
DFTNTP Proposed 10, 9, 11, 1, 8 DFFITs in the distance in NTP estimator 

 
ATKNTP Proposed 16, 10, 6, 4, 2 Atkinson measure in NTP estimator 

 
CVRNTP Proposed 12, 2, 9, 3, 8 COVRATIO in NTP estimator 

 HAD_NTP Proposed 16, 10, 2, 6, 4 Hadi’s measure in the NTP estimator 
 PEN_NTP Proposed 16, 15, 14, 5, 7 Pena's Statistic in NTP estimator 
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5. Summary 
The identification of influential points in linear regression is 
essential to avoid distorted inferential conclusions about 
regression coefficients. Existing diagnostic measures, 
primarily based on OLS, are limited by their dependence on 
the basic assumptions of linear regression, such as the 
absence of multicollinearity and outliers. This study 
introduced new diagnostic measures—DFFITs, Cook's D, 
COVRATIO, Hadi's measure, Pena's Statistic, and Atkinson 
Statistic using the New Two-Parameter estimator that can 
address multicollinearity problems. Simulation studies with 
1,000 replications under various conditions, including levels 
of outliers, percentage of outliers, multicollinearity levels, 
error variances, and sample sizes, as well as applications to 
real-life data, revealed the superior performance of the 
proposed measures. The influential measures identified 
different percentages of influential point at different 
categories of the percentage of detection. Among them, 
CVRNTP consistently achieved 100% detection rates, 
outperforming existing OLS-based measures and 
demonstrating the highest detection counts of 1970. The 
proposed measures identified additional influential points 
that OLS-based measures missed, particularly under 
conditions of multicollinearity and outliers such as 
CKDNTP identified cases 6 and 13 more, DFTNTP 
identified cases 9, 11, 1 and 8, CVRNTP identified only 
case 3 more, cases 6 and 2 in this order were identified by 
Atkinson measure in NTP (ATKNTP), Hadi’s measures in 
NTP (HADNTP) identified cases 2 and 6 more meanwhile, 
Pena’s statistic in NTP (PENNTP) identified cases 5 and 7. 
The results confirm that the new diagnostic tools are robust 
and reliable, offering improved detection capabilities 
compared to existing methods.  

6. Conclusions 
This study highlights the critical role of identifying 
influential points in linear regression to ensure accurate 
inferential conclusions, particularly regarding regression 
coefficients. Existing diagnostic measures based on 
Ordinary Least Squares (OLS) often fail when the basic 
assumptions of linear regression, such as the absence of 
multicollinearity and outliers, are violated. To address this 
limitation, new diagnostic measures—DFFITs, Cook's D, 
COVRATIO, Hadi's measure, Pena's Statistic (PEN), and 
Atkinson Statistic were developed using the New Two-
Parameter estimator designed to handle multicollinearity. 
Simulation studies and real-life data applications 
demonstrated that the proposed measures outperform their 
OLS-based counterparts in detecting influential points, 
especially under challenging conditions such as high 
multicollinearity, varying error variances, and the presence 
of outliers. Notably, the COVRATIO measure with NTP 
(CVRNTP) achieved 100% detection rates and exhibited the 
highest detection counts across all scenarios. The newly 

proposed measures also identified more influential points 
than  
existing ones, confirming their robustness in practical 
applications. This research underscores the importance of 
addressing multicollinearity and outliers in regression 
models using appropriate estimators like NTP. Practitioners 
and policymakers can use these findings to decide whether 
to eliminate contaminated observations or adopt advanced 
diagnostic measures capable of handling such complexities, 
thereby improving the reliability of regression analysis. 
 

List of Abbreviations 

OLS: Ordinary Least Squares 
CKD: Cook's D 
DFT: DFFITs 
HAD: Hadi's measure 
ATK: Atkinson statistic 
PEN: Pena's Statistic 
NTP: New Two-Parameter estimator 
DK: Dawoud-Kibria  
MNTPE: Modified New Two-type parameter Estimator  
PCR: Principal Component Regression 
MM: MM-estimator 
M: M – estimator 
S: S-estimator 
LMS: Least Median Squares estimator  
LTS: Least Trimmed Squares estimator 
LWS: Least Winsorized Squares 
RMM: Ridge regression based on MM-estimator 
DRGP: Robust Generalized Potentials for MM – estimator 
DRGP-L: Diagnostic Robust Generalized Potentials for L-
estimator 
DRGP-LTS: Diagnostic Robust Generalized Potentials for 
LTS-estimator 
DRGP-M: Diagnostic Robust Generalized Potentials for M 
–estimator 
DRGP-MM: Diagnostic Robust Generalized Potentials for 
MM-estimator 
MCRM: Multiple Circular Regression Model 
CVRNTP: Covratio in New Two-Parameter estimator 
HADNTP: Hadi’s measure in the New Two-Parameter 
estimator 
DFTNTP: DFFITs in New Two-Parameter estimator 
CVR: COVRATIO in OLS estimator  
CKD: Cook’ D in OLS estimator 
CKDNTP: Cook’s in New Two-Parameter Estimator 
ATKNTP: Atkinson measure in NTP estimator 
PENNTP: Pena's Statistic in NTP estimator 
 

Suggestions for future research 

The study only captured when multicollinearity is mitigated 
hence, the work can be extended when both 
multicollinearity and outliers are addressed simultaneously.  
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