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Abstract: This paper is concerned with the dynamics of a double belt friction oscillator which is subjected to
periodic excitation, linear spring-loading, damping force and two friction forces using the flow switchability theory
of the discontinuous dynamical systems. Different domains and boundaries for such system are defined according
to the friction discontinuity, which exhibits multiple discontinuous boundaries in the phase space. Based on the
above domains and boundaries, the analytical conditions of the stick motions and grazing motions are obtained
mathematically. There are more theories about such friction oscillators to be discussed in future.
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1 Introduction

Discontinuous dynamical systems exist widely in the
real word, especially in mechanical engineering. In
mechanical engineering, most of the dynamical sys-
tems are discontinuous. This is because the dynamical
systems in mechanical engineering are constrained by
engineering requirements and limitations. The tradi-
tional theory of continuous dynamical systems can not
be applied to discontinuous dynamical systems and
only makes it more complicated and difficult to be
solved. Therefore, a theory applicable to discontin-
uous dynamical systems should be built.

The early study of discontinuous dynamical sys-
tems goes back to Den Hartog [1] in 1931. Den Har-
tog considered a forced oscillator with Coulomb and
viscous damping. In 1960, Levitan [2] investigated
a friction oscillator with the periodically driven base,
and also discussed the stability of the periodic motion.
In 1966, Masri and Caughey [3] discussed a discontin-
uous impact damper, and obtained the stability of the
symmetrical period-1 motion of the impact damper.
More detailed discussions on the general motion of
impact dampers were also developed in Masri [4].
In 1976, Utkin [5] first controlled dynamical system
through the discontinuity, this method is called sliding
mode control. Utkin [6] applied the sliding mode con-
trol in variable structure systems, and more detailed
theory of this method was also developed in [7] by
Utkin. In 1986, Shaw [8] investigated the non-stick
periodic motion of a dry-friction oscillator, and dis-
cussed the stability of this motion through the Poincar-

e mapping. In 1988, Filippov [9] investigated the dy-
namic behaviors of a Coulomb friction oscillator and
developed differential equations with discontinuous
right-hand sides. The analytical conditions of sliding
motion along the discontinuous boundary were devel-
oped through differential inclusion, and the existence
and uniqueness of the solution were also discussed.
Leine etal. [10] investigated the stick-slip vibration
induced by an alternate friction models through the
shooting method in 1998. In 1999, Galvanetto and
Bishop [11] discussed dynamics of a simple dynami-
cal system subjected to an elastic restoring force, vis-
cous damping and dry friction forces and studied the
non-standard bifurcations with analytical and numer-
ical tools. Pilipchuk and Tan [12] studied the friction
induced vibration of a two-degree-of-freedom friction
oscillator in 2004. In 2005, Casini and Vestroni [13]
investigated dynamics of two double-belt friction os-
cillators by means of analytical and numerical tools.

However, the dynamical behaviors of discontinu-
ous dynamical system is stilled difficult to investigate.
In 2005, Luo [14] developed a general theory to study
discontinuous dynamical systems on connectable do-
mains. Luo [15] introduced the imaginary, sink and
source flows, and also developed the sufficient and
necessary conditions of sink and source flows. More
detailed definitions and theorems can be referred to
Luo [16]. In 2008, Luo [17] defined G-functions and
developed a theory to determine the flow switchability
to the discontinuous boundary through G-functions.
The detailed discussion can be referred to Luo [18].
Based on this theory, lots of discontinuous models can
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be investigated easily, for example [19− 25].
In this paper, analytical conditions for stick,

non-stick and grazing motions of the double-belt
friction oscillator will be developed using the flow
switchability theory of the discontinuous dynamical
systems. Different domains and boundaries for
such system are defined according to the friction
discontinuity, which exhibits multiple discontinuous
boundaries in the phase space. Based on the above
domains and boundaries, the analytical conditions of
the stick motions and grazing motions are obtained
mathematically. The switching plans and basic
mappings will be defined to study grazing motions.

2 Physical Model
Consider a periodically forced oscillator, attached to
a fixed wall, as shown in Fig. 1. This friction-
induced oscillator includes a mass m, a spring of s-
tiffness k and a damper of viscous damping coeffi-
cient c. In this configuration, the mass m is contin-
uously in contact with both belts which are pushed
onto the mass with a constant forced FN and possess
the same friction characteristics. The periodic driving
force A0 + B0 cos Ωt exerts on the mass, where A0

, B0 and Ω are the constant force, excitation strength
and frequency ratio, respectively.

Figure 1: Physical model

Since the mass contacts the moving belts with
friction, the mass can move along or rest on the belt
1 or belt 2 surface. Further, a kinetic friction force
shown in Fig. 2 is described as

Ff (ẋ)


= (µ1 + µ2)FN , ẋ ∈ [ v2,+∞),
∈ [(µ1 − µ2)FN , (µ1 + µ2)FN ], ẋ = v2,
= (µ1 − µ2)FN , ẋ ∈ [ v1, v2 ],
∈ [−(µ1 + µ2)FN , (µ1 − µ2)FN ], ẋ = v1,
= −(µ1 + µ2)FN , ẋ ∈ (−∞, v1 ],

(1)

where ẋ := dx/dt,FN and µk(k = 1, 2) are a normal
force to the contact surface and friction coefficients
between the mass m and the belt k (k = 1, 2), respec-
tively. Here we assume that v2 > v1 and µ1 ≥ µ2.

Figure 2: Friction force

The motions of the mass in a double-belt friction
oscillator can be divided into two cases. If the mass
moves along belt 1 and belt 2, the corresponding mo-
tion is called the non-stick motion. If the mass moves
together with belt 1 or belt 2, the corresponding mo-
tion is called the stick motion.

For the mass moving with the same speed of the
belt 1 surface, the force acting on the mass in the x-
direction is defined as

Fs1 = A0 +B0 cos Ωt−kx−cẋ+µ2FN for ẋ = v1.
(2)

If this force cannot overcome the friction force µ1FN
(i.e., |Fs1| ≤ µ1FN ), the mass does not have any rel-
ative motion to the belt 1. The equation of the motion
for the mass in such state is described as

ẋ = v1, ẍ = 0. (3)

For the mass moving with the same speed of the belt 2
surface, we can also obtain the equation for the mass
as follows

ẋ = v2, ẍ = 0. (4)

For the non-stick motions of the friction-induced
oscillator, we can obtain the equations of the motions
as follows

mẍ = A0 +B0 cos Ωt− kx− cẋ+ (µ1 + µ2)FN
for ẋ < v1,

mẍ = A0 +B0 cos Ωt− kx− cẋ− (µ1 − µ2)FN
for v1 < ẋ < v2,

mẍ = A0 +B0 cos Ωt− kx− cẋ− (µ1 + µ2)FN
for ẋ > v2.

(5)
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3 Domains and Boundaries
From the previous discussion, there are five motion
states including three non-stick motions in the three
regions and two stick motions on the boundaries. The
phase plane can be partitioned into three domains and
two boundaries, as shown in Fig. 3. In each domain,
the motion can be described through a continuous dy-
namical system.

Figure 3: Domains and boundaries

The three domains are expressed by Ωα(α =
1, 2, 3 ):

Ω1 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (−∞, v1)
}
,

Ω2 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (v1, v2)
}
,

Ω3 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (v2,+∞)
}
.

(6)

The corresponding boundaries are defined as:

∂Ω12 =∂Ω21 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ = v1

}
,

∂Ω23 =∂Ω32 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ = v2

}
.

(7)

Based on the above domains and boundaries, the
vectors for motions of the mass in the domains can be
introduced as follows

x(λ) = (x(λ), ẋ(λ))
T, F(λ) = (ẋ(λ), F(λ))

T, (8)

where λ = 1, 2, 3 and

F(1)(x(1), t) = − c

m
ẋ(1) −

k

m
x(1) +

B0

m
cos Ωt

+
1

m
[A0 + (µ1 + µ2)FN ],

F(2)(x(2), t) = − c

m
ẋ(2) −

k

m
x(2) +

B0

m
cos Ωt

+
1

m
[A0 − (µ1 − µ2)FN ],

F(3)(x(3), t) = − c

m
ẋ(3) −

k

m
x(3) +

B0

m
cos Ωt

+
1

m
[A0 − (µ1 + µ2)FN ].

(9)

From Eq. (5), the equations of the non-stick mo-
tions for the mass are rewritten in the vector form of

ẋ(λ) = F(λ)(x(λ), t) for λ ∈ {1, 2, 3}. (10)

For the stick motion, the equations of the motion
for the mass are rewritten in the vector form of

ẋ(0)
(λ) = F(0)

(λ)(x(λ), t) for λ ∈ {1, 2} (11)

and
F

(0)
(λ) (x(0)

(λ), t) = 0, (12)

where

x(0)
(λ) = (x

(0)
(λ), ẋ

(0)
(λ))

T
, F(0)

(λ) = (vλ, F
(0)
(λ) )

T
.

4 Analytical Conditions
By the theory of the flow switchability to a specific
boundary in discontinuous dynamical system in [17],
the switching conditions of the passability, stick mo-
tions and grazing flows of the double-belt friction os-
cillator will be developed in this section.

For convenience, we first introduce some con-
cepts and several lemmas in flow switching theory.

Consider a discontinuous dynamical system

ẋ(α) ≡ F(α)(x(α), t,Pα) ∈ Rn (13)

in domain Ωα(α = i, j) which has a flow x(α)
t =

Φ(t0, x
(α)
0 ,Pα, t) with an initial condition (t0, x

(α)
0 ),

and on the boundary

∂Ωij =
{

x | ϕij(x, t, λ) = 0,

ϕij is C r− continuous (r ≥ 1)
}
⊂ Rn−1 ,

(14)

there is a flow x(0)
t = Φ(t0, x

(0)
0 , λ, t) with an initial

condition (t0, x
(0)
0 ). The 0-order G-functions of the

flow x(α)
t to the flow x(0)

t on the boundary in the nor-
mal direction of the boundary ∂Ωij are defined as

G
(α)
∂Ωij

(x(0)
t , t±, x

(α)
t± ,Pα, λ)
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≡ G(0,α)
∂Ωij

(x(0)
t , t±, x

(α)
t± ,Pα, λ)

= Dx(0)
t

tnT
∂Ωij
· (x(α)

t± − x(0)
t )

+tnT
∂Ωij
· (ẋ(α)

t± − ẋ(0)
t ).

(15)

The 1-order G-functions for a flow x(α)
t to a boundary

flow x(0)
t in the normal direction of the boundary ∂Ωij

are defined as

G
(1,α)
∂Ωij

(x(0)
t , t

(α)
± , x(α)

t± ,Pα, λ)

= D2

x(0)
t

tnT
∂Ωij
· (x(α)

t± − x(0)
t )

+2Dx(0)
t

t nT
∂Ωij
· (ẋ(α)

t± − ẋ(0)
t )

+tnT
∂Ωij
· (ẍ(α)

t± − ẍ(0)
t ),

(16)

where the total derivative

Dx(0)
t

(·) :=
∂(·)
∂x(0)

t

· ẋ(0)
t +

∂(·)
∂t

,

the normal vector of the boundary surface ∂Ωij at
point x(0)(t) is given by

tnT
∂Ωij

(x(0), t, λ) = 5ϕij (x(0), t , λ)

= (
∂ϕij

∂x
(0)
1

,
∂ϕij

∂x
(0)
2

, · · · , ∂ϕij
∂x

(0)
n

)T
(t, x(0))

,

(17)

and t± = t± 0.
If the flow x(α)

t contacts with the boundary at the
time tm, that is x(α)

tm = xm = x(0)
tm , and the boundary

∂Ωij is linear, independent of time t, we have

G
(0,α)
∂Ωij

(xm, tm,Pα, λ)

:= G
(0,α)
∂Ωij

(x(0)
tm , tm±, x

(α)
tm± ,Pα, λ)

= tnT
∂Ωij
· ẋ(α)
t

∣∣∣
(xm,tm±)

,

(18)

G
(1,α)
∂Ωij

(xm, tm,Pα, λ)

:= G
(1,α)
∂Ωij

(x(0)
tm , tm±, x

(α)
tm± ,Pα, λ)

= tnT
∂Ωij
· ẍ(α)
t

∣∣∣
(xm,tm±)

.

(19)

Here tm+ and tm− are the time before approaching
and after departing the corresponding boundary, re-
spectively.

Lemma 1 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
is a time interval [ tm−ε, tm ). Suppose x(i)(tm−) =

xm = x(j)(tm−). Both flows x(i)(t) and x(j)(t)
are Cr[ tm−ε,tm )-continuous (r ≥ 1) for time t, and

‖dr+1x(α)/dtr+1‖ < ∞ (α ∈ {i, j}). The necessary
and sufficient conditions for a sliding motion on ∂Ωαβ

are

G
(0,α)
∂Ωij

(xm, tm−,Pα, λ) < 0

G
(0,β)
∂Ωij

(xm, tm−,Pβ, λ) > 0

 for n∂Ωαβ → Ωα,

(20)
where α, β ∈ {i, j} and α 6= β.

Lemma 2 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
are two time intervals [ tm−ε, tm ) and ( tm, tm+ε ].
Suppose x(i)(tm−) = xm = x(j)(tm+). Both flows
x(i)(t) and x(j)(t) are Cr[ tm−ε,tm ) and Cr( tm, tm+ε ]-
continuous (r ≥ 1) for time t, respectively, and
‖dr+1x(α)/dtr+1‖ < ∞ (α ∈ {i, j}. The flow x(i)(t)

and x(j)(t) to the boundary ∂Ωij is semi-passable
from domain Ωi to Ωj iff

either

G
(0,i)
∂Ωij

(xm, tm−,Pi, λ) > 0

G
(0,j)
∂Ωij

(xm, tm+,Pj , λ) > 0

for n∂Ωαβ→ Ωj ,

(21)

or

G
(0,i)
∂Ωij

(xm, tm−,Pi, λ) < 0

G
(0,j)
∂Ωij

(xm, tm+,Pj , λ) < 0

for n∂Ωαβ→ Ωi.

(22)

Lemma 3 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
is a time interval [ tm−ε, tm+ε ]. Suppose x(α)(tm±) =

xm. The flow x(α)(t) is Cr[ tm−ε,tm+ε ]-continuous

(rα ≥ 2) for time t, and ‖dr+1x(α)/dtr+1‖ <

∞ (α ∈ {i, j}). A flow x(α)(t) in Ωα is tangential
to the boundary ∂Ωij iff

G
(0,α)
∂Ωij

(xm, tm,Pα, λ) = 0 for α ∈ {i , j}; (23)

either G
(1,α)
∂Ωij

(xm, tm,Pα, λ) < 0 for n∂Ωαβ→Ωβ,

or G
(1,α)
∂Ωij

(xm, tm,Pα, λ) > 0 for n∂Ωαβ→Ωα.


(24)
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More detailed theory on the flow switchability
such as high-order G-functions, the definitions or the-
orems about various flow passability in discontinuous
dynamical systems can be referred to [17] and [18].

From the aforementioned definitions and lemmas,
we give the analytical conditions for the flow switch-
ing in the double-belt friction oscillator.

For the double-belt friction oscillator in Section 2,
the normal vectors of the boundaries ∂Ω12 and ∂Ω23

are given as

n∂Ω12 = n∂Ω21 = (0, 1)T, n∂Ω23 = n∂Ω32 = (0, 1)T.
(25)

The G-functions for such friction oscillator are sim-
plified as G(0,α)

∂Ωij
(x(α), tm±) or G

(1,α)
∂Ωij

(x(α), tm±).

Theorem 4 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The stick motion on xm ∈ ∂Ω12 at time tm
appears iff the following conditions can be obtained:

F(1)(xm, tm−) > 0 and F(2)(xm, tm−) < 0. (26)

(ii) The stick motion on xm ∈ ∂Ω23 at time tm
appears iff the following conditions can be obtained:

F(2)(xm, tm−) > 0 and F(3)(xm, tm−) < 0. (27)

Proof: From the aforementioned definitions, the 0-
order G-functions for the stick boundaries ∂Ω12 and
∂Ω23 in the double-belt friction oscillator are

G
(0,1)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(1)(xm, tm±),

G
(0,2)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(2)(xm, tm±),

(28)

and

G
(0,2)
∂Ω23

(xm, tm±) = nT
∂Ω23
· F(2)(xm, tm±),

G
(0,3)
∂Ω23

(xm, tm±) = nT
∂Ω23
· F(3)(xm, tm±).

(29)

From (25), the Eqs. (28) and (29) can be computed as:

G
(0,1)
∂Ω12

(xm, tm−) = F(1)(xm, tm−),

G
(0,2)
∂Ω12

(xm, tm−) = F(2)(xm, tm−),

(30)

and

G
(0,2)
∂Ω23

(xm, tm−) = F(2)(xm, tm−),

G
(0,3)
∂Ω23

(xm, tm−) = F(3)(xm, tm−).

(31)

By Lemma 1, the stick motion on xm ∈ ∂Ω12 at time
tm appears iff

G
(0,1)
∂Ω12

(x(m), tm−) > 0 and G
(0,2)
∂Ω12

(x(m), tm−) < 0,
(32)

i.e.

F(1)(xm, tm−) > 0 and F(2)(xm, tm−) < 0. (33)

Therefore, (i) holds. Similarly, (ii) holds. 2

Theorem 5 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The non-stick motion (or called passable mo-
tion to boundary) on xm ∈ ∂Ω12 at time tm appears
iff the following condition can be obtained:

F(1)(xm, tm±)× F(2)(xm, tm∓) > 0. (34)

(ii) The non-stick motion on xm ∈ ∂Ω23 at time
tm appears iff the following condition can be ob-
tained:

F(2)(xm, tm±)× F(3)(xm, tm∓) > 0. (35)

Proof: By Lemma 2, passable motion on the boundary
xm ∈ ∂Ω12 at time tm appears iff

G
(0,1)
∂Ω12

(xm, tm±)×G(0,2)
∂Ω12

(xm, tm∓) > 0. (36)

By (25), we obtain

G
(0,1)
∂Ω12

(xm, tm±) = F(1)(xm, tm±),

G
(0,2)
∂Ω12

(xm, tm∓) = F(2)(xm, tm∓).

(37)

The Eqs. (36) and (37) implies that (i) holds. The
proof for (ii) is similar. 2

Theorem 6 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The grazing motion on xm ∈ ∂Ω12 at time tm
appears iff the following conditions can be obtained:

F(α)(xm, tm±) = 0 for α ∈ {1, 2}, (38)

∇F(1)(xm, tm±)·F(1)(xm, tm±)+
∂F(1)(xm, tm±)

∂tm
<0,

(39)

∇F(2)(xm, tm±)·F(2)(xm, tm±)+
∂F(2)(xm, tm±)

∂tm
>0.

(40)
(ii) The grazing motion on xm ∈ ∂Ω23 at time tm

appears iff the following conditions can be obtained:

F(α)(xm, tm±) = 0 for α ∈ {2, 3}, (41)
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∇F(2)(xm, tm±)·F(2)(xm, tm±)+
∂F(2)(xm, tm±)

∂tm
<0,

(42)

∇F(3)(xm, tm±)·F(3)(xm, tm±)+
∂F(3)(xm, tm±)

∂tm
>0.

(43)

Proof: By Lemma 3, the sufficient and necessary con-
ditions for the grazing flows on the boundary ∂Ω12 are

G
(0,α)
∂Ω12

(xm, tm±) = 0 for α = 1, 2, (44)

G
(1,1)
∂Ω12

(xm, tm±) < 0, G
(1,2)
∂Ω12

(xm, tm±) > 0. (45)

From (25), (28) and (29), we have

G
(0,α)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(α)(xm, tm±)

= F(α)(xm, tm±) for α = 1, 2.

(46)

From (19), we obtain

G
(1,1)
∂Ω12

(xm, tm±) = nT
∂Ω12
·Dx(0)

tm

F(1)(xm, tm±)

= (0, 1) ·Dx(0)
tm

(
ẋ(1), F(1)(xm, t)

)T
∣∣∣∣
(xm,tm±)

=∇F(1)(xm, tm±) · F(1)(xm, tm±)+
∂F(1)(xm, tm±)

∂tm
.

(47)

Similarly,

G
(1,2)
∂Ω12

(xm, tm±)

=∇F(2)(xm, tm±) · F(2)(xm, tm±)+
∂F(2)(xm, tm±)

∂tm
.

(48)

From (46),(47) and (48), (i) holds. In a similar man-
ner, (ii) holds. 2

5 Switching Plan and Mappings
The switching plans are introduced as (λ = 1, 2):

Σ0
(λ) = {(xi, ẋi,Ωti)|ẋi = vλ},

Σ1
(λ) = {(xi, ẋi,Ωti)|ẋi = v−λ },

Σ2
(λ) = {(xi, ẋi,Ωti)|ẋi = v+

λ },
(49)

where v−λ = limδ→0(vλ − δ) and v+
λ = limδ→0(vλ +

δ) for arbitrary small δ > 0. Therefore, eight basic

mappings will be defined as:

P1 : Σ0
(1) → Σ0

(1), P2 : Σ1
(1) → Σ1

(1),

P3 : Σ2
(1) → Σ2

(1), P4 : Σ0
(2) → Σ0

(2),

P5 : Σ1
(2) → Σ1

(2), P6 : Σ2
(2) → Σ2

(2),

P7 : Σ1
(2) → Σ2

(1), P8 : Σ2
(1) → Σ1

(2).

(50)

From foregoing (49) and (50), we obtain

P1 : (xi, v1,Ωti)→ (xi+1, v1,Ωti+1),

P2 : (xi, v
−
1 ,Ωti)→ (xi+1, v

−
1 ,Ωti+1),

P3 : (xi, v
+
1 ,Ωti)→ (xi+1, v

+
1 ,Ωti+1),

P4 : (xi, v2,Ωti)→ (xi+1, v2,Ωti+1),

P5 : (xi, v
−
2 ,Ωti)→ (xi+1, v

−
2 ,Ωti+1),

P6 : (xi, v
+
2 ,Ωti)→ (xi+1, v

+
2 ,Ωti+1),

P7 : (xi, v
−
2 ,Ωti)→ (xi+1, v

+
1 ,Ωti+1),

P8 : (xi, v
+
1 ,Ωti)→ (xi+1, v

−
2 ,Ωti+1).

(51)

With (11) and (12), the governing equations for
Pλ(λ = 1, 4) can be described as
xi+1 = v1(ti+1 − ti) + xi,

A0+B0 cos Ωti+1−kxi+1−cv1+µ2FN =µ1FN ,
(52)

xi+1 = v2(ti+1 − ti) + xi,

A0+B0 cos Ωti+1−kxi+1−cv2−µ1FN =µ2FN ,
(53)

respectively.
For the double-belt friction oscillator, the do-

mains Ωα (α ∈ {1, 2, 3}) are unboubded. From
the basic theorems of discontinuous dynamical sys-
tem, only three possible bounded motions exist in the
three domains, from which the governing equation-
s of mapping Pλ (λ ∈ {1, 2, · · · , 8}) are obtained.
With (51), the governing equations of each mapping
Pλ (λ ∈ {1, 2, · · · , 8}) can be expressed as

f
(λ)
1 (xi,Ωti, xi+1,Ωti+1) = 0,

f
(λ)
2 (xi,Ωti, xi+1,Ωti+1) = 0.

(54)

The grazing motion occurs when a flow in a do-
main is tangential to the boundary and then returns
back to this domain. The analytical conditions for the
grazing motion in the double-belt friction oscillator
were described as Lemma 3 and Theorem 6. If the
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grazing motion occurs at (xm, tm) ∈ ∂Ωαβ (α, β ∈
{1, 2, 3}), more detailed theorem on the grazing mo-
tions will be developed.

For the double belt friction oscillator described in
Section 2, there are four cases of grazing motions on
the boundaries: the flow in domain Ω1 tangential to
the boundary ∂Ω12, the flow in domain Ω2 tangential
to the boundary ∂Ω21, the flow in domain Ω2 tangen-
tial to the boundary ∂Ω23, and the flow in domain Ω3

tangential to the boundary ∂Ω32, corresponding to the
mapping P2, P3, P5 and P6, respectively. With (54),
we can obtain the following theorem.

Theorem 7 For the double-belt friction oscillator de-
scribed in Section 2, there are four kinds of grazing
motions:

(i) Suppose the flow in domain Ω1 reaches xm ∈
∂Ω12 at time tm, the grazing motion on the boundary
∂Ω12 appears (i.e. the mapping P2 is tangential to the
boundary ∂Ω12) iff

mod(Ωtm, 2π)∈ [ 0, π + |Θcr
2 | )∪( 2π − |Θcr

2 |, 2π ]

for 0 < γ2 <
B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 3
2π ) ∪ ( 3

2π, 2π ]

for 0 < γ2 = B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for 0 < B0
m Ω < γ2;

mod(Ωtm, 2π)∈( 0, π )
for γ2 = 0;

mod(Ωtm, 2π)∈( Θcr
2 , π −Θcr

2 ) ⊂ ( 0, π )

for γ2 < 0 and B0
m Ω > |γ2|;

mod(Ωtm, 2π)∈{Ø}
for γ2 < 0 and B0

m Ω < |γ2|,


(55)

where

Θcr
2 = arcsin(−γ2m

B0Ω
),

and

γ2 =
c

m
ẍ(1)(tm) +

k

m
ẋ(1)(tm).

(ii) Suppose the flow in domain Ω2 reaches xm ∈
∂Ω21 at time tm, the grazing motion on the boundary
∂Ω21 appears (i.e. the mapping P3 is tangential to the

boundary ∂Ω21) iff

mod(Ωtm, 2π)∈(π + |Θcr
3 |, 2π − |Θcr

3 | )⊂(π, 2π)

for 0 < γ3 <
B0
m Ω;

mod(Ωtm, 2π)∈{Ø}
for 0 < B0

m Ω ≤ γ3;
mod(Ωtm, 2π)∈(π, 2π )

for γ3 = 0;
mod(Ωtm, 2π)∈ [ 0,Θcr

3 ) ∪ (π −Θcr
3 , 2π ]

for γ3 < 0 and B0
m Ω > |γ3|;

mod(Ωtm, 2π)∈ [ 0, π2 ) ∪ ( π2 , 2π ]

for γ3 < 0 and B0
m Ω = |γ3|;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for γ3 < 0 and B0
m Ω < |γ3|,


(56)

where

Θcr
3 = arcsin(−γ3m

B0Ω
),

and

γ3 =
c

m
ẍ(2)(tm) +

k

m
ẋ(2)(tm).

(iii) Suppose the flow in domain Ω2 reaches xm ∈
∂Ω23 at time tm, the grazing motion on the boundary
∂Ω23 appears (i.e. the mapping P5 is tangential to the
boundary ∂Ω23) iff

mod(Ωtm, 2π)∈ [ 0, π + |Θcr
5 | )∪( 2π − |Θcr

5 |, 2π ]

for 0 < γ5 <
B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 3
2π ) ∪ ( 3

2π, 2π ]

for 0 < γ5 = B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for 0 < B0
m Ω < γ5;

mod(Ωtm, 2π)∈( 0, π )
for γ5 = 0;

mod(Ωtm, 2π)∈( Θcr
5 , π −Θcr

5 ) ⊂ ( 0, π )

for γ5 < 0 and B0
m Ω > |γ5|;

mod(Ωtm, 2π)∈{Ø}
for γ5 < 0 and B0

m Ω < |γ5|,


(57)

where

Θcr
5 = arcsin(−γ5m

B0Ω
),

and

γ5 =
c

m
ẍ(2)(tm) +

k

m
ẋ(2)(tm).

(iv) Suppose the flow in domain Ω3 reaches xm ∈
∂Ω32 at time tm, the grazing motion on the boundary
∂Ω32 appears (i.e. the mapping P6 is tangential to the
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boundary ∂Ω32) iff

mod(Ωtm, 2π)∈(π + |Θcr
6 |, 2π − |Θcr

6 | )⊂(π, 2π)

for 0 < γ6 <
B0
m Ω;

mod(Ωtm, 2π)∈{Ø}
for 0 < B0

m Ω ≤ γ6;
mod(Ωtm, 2π)∈(π, 2π )

for γ6 = 0;
mod(Ωtm, 2π)∈ [ 0,Θcr

6 ) ∪ (π −Θcr
6 , 2π ]

for γ6 < 0 and B0
m Ω > |γ6|;

mod(Ωtm, 2π)∈ [ 0, π2 ) ∪ ( π2 , 2π ]

for γ6 < 0 and B0
m Ω = |γ6|;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for γ6 < 0 and B0
m Ω < |γ6|,


(58)

where
Θcr

6 = arcsin(−γ6m

B0Ω
),

and

γ6 =
c

m
ẍ(3)(tm) +

k

m
ẋ(3)(tm).

Proof: For the double-belt friction oscillator de-
scribed in Section 2, by Theorem 6, the grazing mo-
tion conditions for the flow x(1)(t) in domain Ω1 on
the boundary ∂Ω12 at time tm are given as

F(1)(xm, tm±) = 0, (59)

∇F(1)(xm, tm±)·F(1)(xm, tm±)+
∂F(1)(xm, tm±)

∂tm
<0.

(60)
With (9), the Eqs. (59) and (60) can be computed as

− c

m
ẋ(1)(tm)− k

m
x(1)(tm) +

B0

m
cos Ωtm

+
1

m
[A0 + (µ1 + µ2)FN ] = 0,

(61)

− c

m
ẍ(1)(tm)− k

m
ẋ(1)(tm)− B0Ω

m
sin Ωtm < 0.

(62)
The grazing conditions are computed through (54),
(61) and (62). Three equations and an inequality have
four unknowns, then one unknown must be given.

From (62), the critical value for mod(Ωtm, 2π) is
introduced through

Θcr
2 = arcsin(−γ2m

B0Ω
),

where γ2 = c
m ẍ(1)(tm) + k

m ẋ(1)(tm), and the super-
script ”cr” represents a critical value relative to graz-
ing.

If 0 < γ2 < B0
m Ω, then −1 < − γ2m

B0Ω < 0, we
have

mod(Ωtm, 2π) ∈ [ 0, π + |Θcr
2 | ) ∪ ( 2π − |Θcr

2 |, 2π ].

If 0 < γ2 = B0
m Ω, then − γ2m

B0Ω = −1, we have

mod(Ωtm, 2π) ∈ [ 0,
3

2
π ) ∪ (

3

2
π, 2π ].

If 0 < B0
m Ω < γ2, then − γ2m

B0Ω < −1, we have

mod(Ωtm, 2π) ∈ [ 0, 2π ].

If γ2 = 0, then − γ2m
B0Ω = 0, we have

mod(Ωtm, 2π) ∈ ( 0, π ).

If γ2 < 0 and B0
m Ω > |γ2|, then 0 < − γ2m

B0Ω < 1,
we have

mod(Ωtm, 2π) ∈ ( Θcr
2 , π −Θcr

2 ) ⊂ ( 0, π ).

If γ2 < 0 and B0
m Ω < |γ2|, then − γ2m

B0Ω > 1, we
have

mod(Ωtm, 2π) ∈ {Ø}.

Therefore (i) holds. Similarly we can prove that (ii),
(iii) and (iv) hold. 2

6 Conclusion
In this paper, analytical results of complex motions of
a double belt friction oscillator which was subjected
to periodic excitation, linear spring-loading, damping
force and two friction forces were investigated using
the flow switchability theory of the discontinuous dy-
namical systems. Different domains and boundaries
for such system were defined according to the friction
discontinuity, which exhibited multiple discontinuous
boundaries in the phase space. Analytical condition-
s of the stick motions and grazing motions of such
system were obtained in the form of theorem mathe-
matically. More theories about the double belt friction
oscillator need to be investigated in the next.
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