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Abstract—In this work, the steady heat transfer process
to find the temperature distribution through of a viscoelastic
fluid flow in a parallel flat plate microchannel was solved.
The fluid flow is based in a combination of electroosmotic and
magnetohydrodynamic driven forces. A fully-developed flow is
considered and the fluid obeys a constitutive relation based in a
simplified Phan-Thien-Tanner model. The non-dimensional fluid
flow model is expanded in a regular expansion series in powers of
small Hartmann numbers. The effect of certain non-dimensional
parameters on the fluid flow is predicted and we report ad-
vantages in the simultaneous application of electroosmotic and
magnetohydrodynamic forces due to significant increase in the
flow rate and by the diminishing of the unnecessary Joule heating
in microfluidic devices. Therefore, by employed low magnetic
fields with low electrical conductivities in the buffer solution, is
possible that the electric and magnetic effects can be used to
move a charged solution in the flow control and sample handling
in biomedical and chemical analysis.

I. I NTRODUCTION

The great potential of microscale and nanoscale technology
for chemical and biological analysis is reflected by recent
explosive growth in research on laboratory-on-a-chip and
miniature diagnostic devices. The terms laboratory-on-a-chip
and micro total analysis system stand synonymous for devices
that use fluids as a working medium and integrate a number of
different functionalities on a small scale. Advances in micro-
fabrication and microelectromechanical systems (MEMS) over
the past few decades has allowed miniaturized devices of grow-
ing complexity and sophistication to be developed for various
applications [1]. Microchip devices have already been devel-
oped for drugs screening, electrochemical immunoassays, drug
delivery, point-of-care-medical diagnostics, bacteria detection,
environmental monitoring, and the detection of explosives and
biological warfare agents [2], [3]. Also, Microfluidics devices
based in the Polymerase Chain Reaction (PCR) chips are used
in amplification of DNA and separate species through capillary
electrophoresis [4]–[6].

Many microfluidic applications would benefit from a
laboratory-on-a-chip active pump with size comparable to
the small volume of fluid to be pumped, i.e. an integrated
micropump. A number of micropumps have been designed
and built using emerging microfabrication technologies. Laser
and Santiago [3] classifying many of these into two groups:
membrane-displacement pumps and field-induced flow pumps.
Membrane pumps may be further classified based on how

membranes are actuated, including piezoelectric, thermopneu-
matic, electromagnetic and photothermally actuated pumps.
Field-induced flow pumps include electroosmotic, electrohy-
drodynamic and magnetohydrodynamic pumps. A clear advan-
tage of field-induced pumps over membrane pumps is that they
do not require moving parts. However, the moving parts in
displacement micropumps make the fabrication and operation
delicate [7]. In this context, the requirement of an integrated
micropump with no moving parts can be fulfilled by using
electrohydrodynamic and magnetohydrodynamic micropumps
[5].

The term electrokinectics concerns the use of applied
electric fields to impart a net electrostatic force in polarized
surface regions such that fluid motion or the motion of
particles suspended within the bulk of a liquid is induced
[8]. Afonso et al. [9] present an analytical solution of mixed
electroosmotic and pressure driven flows of viscoelastic fluids
in microchannels, which rheological behavior can be described
by the constitutive equation of the simplified Phan-Thien-
Tanner model, as blood, saliva and synovial fluids. The solution
is non-linear with a significant contribution arising from the
coupling between the electric and pressure potentials. Others
studies about fluid flow characteristics of purely electroosmotic
flows in microchannels [10]–[12] with complex fluids has been
developed already.

Magnetohydrodynamic is the study of flow of electrically
conducting liquids in electric and magnetic fields and the
basic principle of the magnetohydrodynamic micropump is
the generated Lorentz force [13]. Compared with other types
of nonmechanical micropumps, the magnetohydrodynamic mi-
cropump has several advantages, such as simple fabrication
process, bidirectional pumping ability, and the usability of
medium conducting liquid. It is believed that the magneto-
hydrodynamic micropump can be used in biomedical devices
or microfluidic propulsion application [14]–[17].

In many of these applications, an upper limit of the device
performance has often been restrained by the limitations of the
strength of the axial electric field that can be employed to actu-
ate the flow, in order to minimize the Joule heating effects and
the associated adverse consequences. Has been appreciated that
combined electromagnetohydrodynamic effects can potentially
be utilized to enhance the liquid flow rates in microchannels.
In all of them, electric current flows through the working
liquid and a variety of pumping techniques is encountered
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depending on the conductivity of the liquids [18]. This authors
have examined the influence of the combined electromagneto-
hydrodynamic forces in controlling the Newtonian fluid flow
through parallel plate rectangular microchannels. In this study
shows that, with the aid of a relatively low-magnitude magnetic
field, a substantial augmentation in the volumetric flow rates
can be achieved, and certain dimensionless parameters are also
identified, which can play significant roles in the overall flow
augmentation mechanism.

The main goal of the present work is to describe the
physical principles that describes the performance of the elec-
troosmotic and magnetohydrodynamic micropumps, and what
physical parameters affect the performance of these devices
with the consideration of Joule heating effects. The dimen-
sionless temperature profiles in the fluid and the microchannel
wall are obtained as function of the dimensionless parameters
involved in the analysis, and the interactions between the cou-
pled momentum and thermal energy equations are examined.

II. M ATHEMATICAL FORMULATION

A. Physical model

The physical model shown in Figure 1 consider a flat
parallet plate microchannel of height2b, width w and length
L, with w ≫ 2a andL ≫ 2b. The origin of the rectangular
coordinate system is placed in the following way, thex-
axis is in the transverse direction, normal to the surface of
the microchannel, they-axis is in the symmetry line of the
microchannel, and thez-axis is in the inlet of the microchannel.
The system described above is filled with fluid medium based
of a mixture of an ionized solution and solutes that exhibits
non-Newtonian behavior. The fluid flow is driven by the
combination of an electric fields and a magnetic field. The
componentEy along the axis of the microchannel provides an
electroosmotic force when acting over the high concentration
of free electric charges within the electrical double layer.
The interaction between the magnetic fieldBx and electric
field Ez produces the magnetohydrodynamic force in the flow
direction. Because of the symmetry of the physical model,
we consider only the upper half of this configuration. The
high concentration of electric charge is placed into the Debye
length,κ−1, in the electric double layer. The temperature of
the fluid at the inlet and outlet of microchannel is assumed
to be at the ambient temperature,T0. The external surfaces of
the microchannel walls are subjected to convection boundary
conditions with temperatureT0 and heat transfer coefficienth.

B. Governing equations

Assumptions are adopted in order to simplify the analysis:

· Incompressible fluid.
· Steady, fully-developed flow (u = 0, v(x) = 0, w =

0).
· The EDL’s does not overlap on the centerline of the

microchannel.
· The wall potentials are low enough (≤25mV ) that the

Debye-Hückel linearization approximation is valid.
· Constant thermophysical properties in the system for

smaller temperature changes (less than 10 K).
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Fig. 1. Electroosmotic and magnetohydrodynamic flows in a parallel flat
plates microchannel.

The flow field is governed by the momentum equation,
which takes de following form

dτyx
dx

+ σB2
xv + σEzBx + ρeEy = 0, (1)

whereτyx is the shear stress,σ is the electrical conductivity
of the medium andρe = −ǫκ2ζ cosh(κx)

cosh(κb) is the net free
electric charge within the electrical double layer in the called
Debye length, which is obtained from the Poisson-Boltzmann
equation for electroosmotic flows and low zeta potentials [8].
Whereζ is the zeta potential in the microchannel walls andǫ
is the dielectric permittivity. From the previous equation, the
velocity gradient of the flow is obtained as

dv

dx
=

1

σB2
x

[
d2τyx
dx2

− ǫκ3ζEy

sinh (κx)

cosh (κb)

]
. (2)

Using the constitutive equation for simplified Phan-Thien-
Tanner [9], the analogous velocity gradient as a function of
the shear stress is

dv

dx
=

(
1 +

2ελ2

η20
τ2yx

)
τyx
η0

, (3)

where ε is the PTT parameter,λ is the relaxation time andη0
is the polymer viscosity coefficient. Equating the Eqs. (2) and
(3), the non-linear differential equation for the shear stress is
defined by

d2τyx
dx2

−
2ελ2σB2

x

η30
τ3yx −

σB2
x

η0
τyx = ǫκ3ζEy

sinh (κx)

cosh (κb)
, (4)

subject to the following boundary condition in the centerline
symmetry asτyx (x = 0) = 0 and a compatibility condition to
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find the relationship for the shear stress in the microchannel
wall from the Eq. (1), that isdτyx

dx

∣∣∣
x=b

= −σEzBx+ ǫκ2ζEy .

The energy equation is defined as

ρCpv
∂T

∂y
= k

(
∂2T

∂x2
+

∂2T

∂y2

)
+ τyx

du

dx
+

σ
(
E2

y + E2
z

)
− 2σEzuBx + σv2B2

x, (5)

where ρ is the fluid density,Cp is the specific heat,T
is the temperature andk is the thermal conductivity. The
corresponding boundary conditions to Eq. (5) are

T (y = 0) = T (y = L) = T0,
∂T

∂x

∣∣∣∣
x=0

= 0,

∂T

∂x

∣∣∣∣
x=b

= −
heq

k
[T (x = b)− T0] . (6)

The equivalent heat transfer coefficientheq is:

heq = b−1

(
bw
kwL

+
1

hL

)
−1

. (7)

where kw is the thermal conductivity of the microchannel
walls.

C. Non-Dimensional model

The non-dimensional variables taking account are:

ȳ =
y

L
, x̄ =

x

b
, τ̄yx =

bτyx
η0vHS

, v̄ =
v

vHS

, θ =
T − T0

△Tc

, (8)

where vHS = −ǫζEy/η0 is the Helmholtz-Smoluchowski
electroosmotic velocity and△Tc = σeE

2
yLb/k is the charac-

teristic temperature change in the microchannel configuration.
Therefore, Eqs. (5) and (6) can be rewritten as

Peβv̄
∂θ

∂ȳ
= β2 ∂

2θ

∂ȳ2
+

∂2θ

∂x̄2
+Brτ̄yx

dv̄

dx̄
+

β
(
1 + γ2

)
+ 2γHa2Φv̄ +Ha2Ψv̄2, (9)

θ(ȳ = 0) = θ(ȳ = 1) = 0,

∂θ

∂x̄

∣∣∣∣
x̄=0

= 0,
∂θ

∂x̄

∣∣∣∣
x̄=1

= −Λθ(x̄ = 1). (10)

The non-dimensional parameters in Eqs. (9) and (10) are
defined as:

Pe =
ρCpvHSb

k
, β =

b

L
,Br =

η0v
2
HS

k△Tc

,

Ha = Bxb

√
σ

η0
, γ =

Ez

Ey

,Φ =
ǫζ

BxLbσ
,

Ψ =
ǫ2ζ2

η0Lbσ
,Λ =

b
kL

bw
kwL

+ 1
hL

(11)

wherePe is the Péclet number,β is ratio of the microchannel
thickness to the microchannel length,Br is the Brinkman
number,Ha is the Hartmann number,γ is the ratio of the
applied electric field in thez-axis direction to the applied
electric field in they-axis,Φ andΨ are parameters and finally
Λ is the ratio of the thermal resistance by conduction in the

fluid to the thermal resistance by conduction in the wall plus
the convection in the external wall of the microchannel.

The non-dimensional velocity,̄v, of the flow has been
determined by Escandón et al. [19] in a asymptotic solution
for the shear stress in powers ofHa2 = α, with α ≪ 1, when
was introduced the expansionτyx = τyx,0 +ατyx,1+ .... into
Eq. (4) and his corresponding boundary conditions, given the
next solution for the shear stress:

α0 :

τyx,0 = −κ
sinh (κx)

cosh (κ)
. (12)

α1 :

τyx,1 =
2εDe2κκ

cosh3 (κ)

{
3

4κ

[
sinh (κx)

κ
− x cosh (κ)

]
−

1

12κ

[
sinh (3κx)

3κ
− x cosh (3κ)

]}
+

x−
sinh (κx)

κ cosh (κ)
− Ω∗x. (13)

Introducing the corresponding non-dimensional variables
of Eq. (8) in Eq. (3), and considering the following regular
expansion to the velocityv = v0+αv1+... and of the previous
solution for the shear stress, we have to the velocity gradient
in powers ofα :

α0 :
dv0
dx

= τyx,0 +
2εDe2κ
κ2 τ3yx,0. (14)

α1 :
dv1
dx

= τyx,1 +
6εDe2κ
κ2 τ2yx,0τyx,1. (15)

Both Eqs.(14) and (15) are integrated once and by using
the no-slip boundary condition we obtain the velocity profile
of the flow in the microchannel. The dimensionless parameters
in Eqs. (12)-(15) are defined as:

εDe2κ = ε (λvHSκ)
2
, κ̄ = κb,Ω∗ =

Ez

BxvHS

, (16)

whereDeκ is the Deborah number,εDe2κ is the viscoelastic
parameter,κ̄ is the electrokinetic parameter andΩ∗ is a
parameter. We identify that the productΩ∗Ha2 is the ratio
of magnetic forces to electroosmotic forces.

The order of magnitude of the changes in temperature
through they, x coordinates are∆Ty ∼ σE2

yL
2/k and∆Tx ∼

σE2
xb

2/k, respectively, as can be obtained from Eq.(5). Hence,
the dominant temperature changes in the microchannel are in
the longitudinal direction, that is(∆Ty/∆Tx) ∼ (L/b)

2
≫ 1;

thus, in a first approximation the fluid temperature can be cal-
culated as a function of the axial coordinate, that isT = T (y)
or θ = θ(ȳ). Integrating the Eq. (17) in the transverse direction
and considering the corresponding boundary conditions of Eq.
(10), the energy equation is transformed as

β2 d
2θ

dx̄2
− Peβk1

dθ

dx̄
− Λθ =

−Brk3 − β
(
1 + γ2

)
−Ha2 (2γΦk1 +Ψk2) , (17)
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where the constants

k1 =

∫ x̄=1

x̄=0

v̄dx̄, k2 =

∫ x̄=1

x̄=0

v̄2dx̄,

k3 =

∫ x̄=1

x̄=0

(
τ̄yx

dv̄

dx̄

)
dx̄, (18)

For typical electroosmotic flows the Brinkmann number
is Br ≪ 1 and the combined electroosmotic and magne-
tohydrodynamic effect is given trough ofk3 ∼ 101 − 102,
therefore de viscous dissipation can be neglected in the thermal
analysis,Brk3 ≪ 1. Additionally, the parameterΨ ≪ 1
and k2 ∼ 100 − 101, then the product associated to mag-
netohydrodynamic effectsΨk2 ≪ 1, also can be neglected.
Considering the boundary conditions given by Eq. (10) at the
inlet and outlet of the microchannel, the solution of the non-
homogeneous ordinary differential equation, Eq. (17) is

θ(ȳ) =
β
(
1 + γ2

)
+ 2γΦk1Ha2

Λ
×

[
1− exp(ω)

exp(ω)− exp(π)
exp(πȳ)+

exp(π)− 1

exp(ω)− exp(π)
exp(ωȳ) + 1

]
. (19)

In the previous equationπ andω are defined as

π =
Pek1
2β

+

√(
Pek1
2β

)2

+
Λ

β2
, (20)

ω =
Pek1
2β

−

√(
Pek1
2β

)2

+
Λ

β2
, (21)

D. Results and discussion

In Figures 2 and 3, the dimensionless temperature dis-
tributions are shown as function of the dimensionless axial
coordinate. In order to compare the temperature distributions
of the combined EO+MHD effects in the fluid flow, was
introduced the case of purely EO flow whenEz → 0 and
Bx → 0, resulting in γ = 0, Ha ≪ 1, Ω∗ = O(1) and
Φ = O(1).

Figure 2 shows the dimensionless temperature distributions
along the length of the microchannel with different values of
the ratio of the applied electric fieldEz to the applied electric
field Ey, γ(= 0.25, 0.5, 0.75, 1). The other fixed parameters
are β = 0.01,Φ = 0.5, P e = 0.05,Λ = 0.001, κ̄ =
100, εDe2κ = 1,Ω∗ = 2x106 andHa = 0.001. In the cases
with γ > 0, the ratio of magnetic forces to electroosmotic
forces isΩ∗Ha2 = 2, and are a combination of electroos-
motic and magnetohydrodynamic flows. The value ofγ = 1
represents the condition withEz = Ey, in which the Joule
heating increases doubling the magnitude of the temperature
distribution respect toγ = 0 (case of purely electroosmotic
flow). Reducing the electric fieldEz below or equal of50%
of value ofEy, that isγ ≤ 0.5, the combined electroosmotic
and magnetohydrodynamic flows can be achieve temperature
distributions similar or below of an purely electroosmotic flow
due to the increases of the convection heat transfer viak1 in
the productPek1 in Eqs. (20) and (21). But, to maintained the

same value ofΩ∗Ha2 = 2 and the corresponding fluid flow
conditions, the magnetic fieldBx must be diminished and the
microchannel height should to be increased.
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Fig. 2. Dimensionless temperature distribution as function of the dimension-
less axial coordinate in combined electroosmotic and magnetohydrodynamic
flows with different values of the parameterγ.

In Figure 3, any applied electric fieldEz interacting with
the magnetic fieldBx to generate a Lorentz force, produce an
increase of the temperature in the fluid (as shown in Figure 2).
For the fluid flow conditions in in this figure, a value ofγ = 0.5
and increasing values of the Hartmann number, diminish the
temperature distributions by convection heat transfer effects.
Thereby, is possible obtain an increase of the fluid flow by the
interaction of the electroosmotic and magnetohydrodynamic
flows without increasing the temperature too much, under the
following conditions γ ≤ 0.5 and Ω∗Ha2 > 1, i.e. high
Hartmann numbers. Values ofΩ∗Ha2 < 1 only produce an
excess of Joule heating, without significantly increasing the
fluid flow, via the constantk1.

III. C ONCLUSION

In this study, we have examined the effects of heat trans-
fer to find the temperature distribution through of a Non-
Newtonian fluid flow. An analysis of the Joule effects on the
electroosmotic and magnetohydrodynamic flow of viscoelastic
fluids in parallel flat plate microchannels, with the simplified
Phan-Thien-Tanner model has been made. The undesirable
Joule heating in the microchannels fluid flow can be reduced by
the combination of electroosmotic and magnetohydrodynamic
forces, increasing the fluid flow without increase the fluid
temperature whenγ ≤ 0.5 andΩ∗Ha2 > 1. Therefore, this
study contributes to the understanding of the different coupled
transport mechanisms for the design of microfluidic systems.
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