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Abstract— In Colombia, amputations are not only due to 

cardiovascular or traumatic causes. According to the Presidential 

Program for Action against Antipersonnel Mines, amputations 

inflicted by this type of mines increased between 1990 and 2020 

due to the predominance of the armed conflict (mainly in the lower 

members). The most used method for the amputee is the 

prosthesis, however, the prosthetic adaptation requires processes 

and procedures that go according to each individual, existing one 

generalized, the alignment of the prosthesis. Alignment is the key 

element of an optimal prosthetic function. The relationship 

between the prosthesis, the patient, and the components of the 

prosthesis, critically affects the functional performance and 

comfort. A new static alignment method for transtibial prostheses 

is suggested using computational models. An application was 

made in MATLAB® environment, making use of Neural 

Networks of Generalized Regression (GRNN), which allows 

predicting biomechanical data from the alignment of the 

prosthesis socket. A graphical user interface was developed to 

show the functioning of the algorithm, this was validated with 

recorded data of amputees, which allowed to evaluate the 

repeatability and accuracy of the results obtained. This 

application seeks to build a support system for the prosthetics 

technician to improve the rehabilitation process of a person using 

transtibial prosthesis.  

Keywords— Prosthetic alignment, Transtibial prosthesis, Neural 

network 

I. INTRODUCTION  

The incidence of amputation worldwide is 1.5 per 1000 
habitants and the total number of amputees is about 10 million 
people in the world. In Colombia, the number of amputees is 
about 46,200, transtibial amputation being the most common, 
mainly caused by anti-personnel mines. The Presidential 
Program for Integral Action against Mines, dependency of the 
Administrative Department of the Presidency of the Republic 
reports that between 1990 and July 2020 there has been 11,993 
victims by mines, 2202 lost their lives and 8791 suffered injuries  
[1], [2]. 

For the rehabilitation, the amputee commonly uses 
prosthesis, which in transtibial amputation it is called transtibial 

prosthesis. The part of the limb that remains after an amputation 
is called a stump. The interface between the prosthesis and the 
stump is the socket (socket), Fig. 1 [3]. 

 

Fig. 1. Transtibial prosthesis and components 

The adaptation of the prosthesis to the individual is one of 
the important aspects to be taken into account during the process 
of prosthetic rehabilitation. The alignment of the prosthesis 
allows to properly locate both of the components with each 
other, as well as the entire prosthesis to the patient. The 
alignment is one of the determining factors to assure comfort to 
the user and in the fulfilment of its function on limb replacement. 
For this reason, making changes in the alignment can have 
important consequences on the biomechanical and physiological 
efficiency of walking and other activities of the user's daily life, 
the gravitational vertical is displaced by altering the load 
distribution, Fig. 2 [4]–[6]. 
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Fig. 2. Different locations of the socket and the involvement in the line of action 
of gravity on the stump. 

Manufacturers of prostheses give static alignment 
recommendations from clinical experience; these general 
guidelines do not reflect an objective method. It requires 
technological tools that allow an ideal alignment, easy to use and 
easy to record the biomechanical parameters of the amputees. 
The possibility of applying computational methods to prosthetic 
alignment is the subject of this paper. Therefore, an algorithm 
based on Generalized Regression Neural Networks (GRNN) 
was used to predict the location of the pressure centre (COP) and 
the joint ranges of the lower segments of the body according to 
the position angle of the prosthesis socket. 

The GRNN allows modelling unknown relationships and 
non-linear nature, this type of network is used to develop 
regressions between dependent and independent variables, and 
it consists of an input layer, hidden layers and an output layer, 
Figure 3. They are based on normalized Radial Base Functions 
Networks (RBF), where there is a cell in the hidden layer 
corresponding to each training pattern. The algorithm of neural 
networks makes use of the Bayes-Parzen classifier and its 
architecture in the probabilistic networks or functions of Radial 
Base, so this type of networks is based on the Theory of 
Nonlinear Regression, its estimation mechanism makes use of 
Kernel density estimation. The GRNN do not require iterative 
training, they can approximate any arbitrary function between 
input vectors and outputs making the estimation of the function 
directly from the training data. In addition, they have the 
property of consistency as the training set increases; the 
estimation error tends to zero, with only moderate restrictions on 
the function. It is possible to consider the GRNN as a universal 
approximation for smooth functions. The fundamental 
expression of the neuronal model of generalized regression 
(GRNN), is given in Eq (1) [9], [10] [9], [11], [12]. 

𝑦 =
𝑁(𝑋)

𝐷(𝑋)
=

∑ 𝑦𝑖.𝑒
(−𝐷(𝑋,𝑋𝑖))𝑛

𝑖=1

∑ 𝑒
(−𝐷(𝑋,𝑋𝑖))𝑛

𝑖=1

       (1) 

 

Where, yi corresponds to the estimation of the outputs and 
D(X,Xi) to the distance between the vector of inputs (X) and the 
i-th reference vector. 

 

Fig. 3. Model of a Neural Network of Generalized Regression (GRNN). 

This application seeks to build a support system for the 
prosthesis technician to improve the rehabilitation process of a 
person using transtibial prosthesis, based on the use of 
computational tools that show the relationship between the data 
of a patient's position against a patient model that shows the 
correct adjustment parameters. 

II. METHODS 

A computational model of the protocol that allowed the 
integral registration of clinical data, anthropometry and 
biomechanical data was designed as a proposal. We recruited an 
unilateral transtibial amputee left side user of modular 
endoskeleton prosthesis for more than 7 years, functional in 
standing and walking without external aids, with a normal range 
of mobility of the joints of the lower limbs, with prosthetic 
alignment certified by prosthesis. The type of prosthesis is with 
suspension by liner and pin and foot in high activity carbon fibre. 
The evaluation of the study participant was made by a doctor, 
observing that there was no inflammation, with ulcers or any 
other pathology in the stump, that reduced the reliability of the 
samples. 

Initially, measurements of biomechanical parameters such as 
angle of hip, knee and ankle were taken both on the amputated 
(ipsilateral) and non-amputated (contralateral) sides, 
distribution of plantar forces and location of the COP, for this 
the Pedar® systems were used (Novel, Germany) for data 
collection of the distribution of plant forces and location of the 
COP [13]; and Biomectrics Ltda® (Biometrics, 2013) for the 
measurement of the angles of the joint and socket segments [14]. 
The first measurement was made with the prosthesis in 
alignment. The second measurement was made by varying the 
angular location of the socket, it was placed in flexion. The third 
measurement was with the socket in extension.  

Then the data was analyzed, filtering for atypical data and 
obtaining measures of central tendency and distribution. The 
type of statistical distribution of the data was analysed. The 
angular location of the prosthesis socket was selected as the 
entrance to the GRNN. The biomechanical descriptive variables 
(joint ranges and COP in ipsi and contralateral) were selected as 
output from the network. 
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The GRNN was designed with radial base neurons and a 
linear layer, with the following characteristics: 700 hidden 
layers (Data obtained), one Output layer (Approximate), one 
Input (Angle Variation). 

The input data is transferred to the neurons of the first hidden 
layer, which has a number of neurons determined by the number 
of cases that make up the database. The algorithm obtained was 
validated and evaluated based on the repeatability and accuracy 
of the results obtained. The training of the GRNN was done with 
the data of a voluntary subject and validated against data of the 
same subject making use of different statistical tools designed 
for that purpose. For the selection of training and validation data, 
cross-validation was used, which allows to randomly divide the 
data and form two groups: one of training and one of validation.  
An application was designed to predict the behaviour of the 
biomechanical parameters present in the static alignment of 
prosthesis of a transtibial amputee by prosthetic user 
antipersonnel mines, depending on the location of the prosthesis 
socket. 

III. RESULTS AND DISCUSSION 

To observe the behavior of joint angles and COP, we 
affected the location of the socket. Then, the alignment directly 
affects the position of the lower body segments of the amputees; 
this affects the distribution of body burden, the reaction forces 
of the floor and the pressure center, misalignment may be 
contribute to the high incidence of osteoarthritis [15]. 

The data does not present a statistical distribution of normal 
type, they are multimodal. Therefore, statistical analysis should 
use non-parametric techniques [16]. Under all of the alignment 
conditions, the COP on the intact side were significantly larger 
than those on the residual side. The hip angle on the intact side 
were all larger than those on the residual side, but significant 
differences were found only under some of the alignment 
conditions. Other joins was similar behavior [17], [18]. The 
results of the study showed that COP and join angles might well 
indicate the confidence and/or (dis)comfort of the amputee 
subjects to load the prosthetic leg and they are could be 
indicators of alignment [18], [19]. 

The architecture of the model proved to be efficient by 
requiring a minimum processing time. In general, training 
sessions require less than 5 minutes reaching the objective 
training objectives. The maximum error of approximation of the 
GRNN was presented in the angle for the hip of the non-
amputated side with an error of 6.25%. The minimum error was 
0.51 in the location of the COP direction Y.  

Fig. 4 shows the developed interface where the mass of the 
individual and the angular position of the socket of the prosthesis 
are entered as inputs, the outputs of the system are the hip, knee 
and ankle angles, position COP and distribution of force in each 
foot, this on both the amputated and the contralateral side. 
Additionally, it allows observing the response curves of each 
output depending on the value of the input angle. 

 

Fig. 4. Interface of the GRNN as support in the static alignment of transtibial 
prostheses. 

Fig. 5 shows the relationship between the variation of the 
angle of the prosthesis and its reaction in the posture, as well as 
its behavior during a controlled time range. 

 

Fig. 5. Angle of the hip contralateral side depending on the location of the socket. 

IV. CONCLUSION 

According to the analysis of the data, a tendency to the 
average value can be observed in each measurement which 
means that there are many variations during the taking of the 
samples. The behaviour reflected on the limb will be the average 
value of the total samples obtained. 

This study demonstrated the ability of a GRNN model to 
accurately predict the behaviour of biomechanical parameters 
according to socket alignment in static standing position 
measurements (static alignment). The results supported the 
hypothesis that GRNN model architecture is adequate to 
estimate static alignment based on basic measurements of COP 
and joint ranges. 

The network designed and implemented reduced the 
dimensionality of the classification problem and made the 
processing of the data simpler. The GRNN allowed to predict 
the affectation of the selected biomechanical parameters, in the 
future other parameters can be added and observe how the 
alignment affects them.  

The error throws the system is greater than 1% in some 
points but with the help of the neural network that dispersion 
was reduced which allows to say that it is a reliable tool and can 
be used to know the values of the biomechanical parameters of 
standing in the static alignment of prostheses for transtibial 
amputees due to antipersonnel mines. 
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