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Abstract—In order to solve the problem of low positioning 

accuracy of ocean wireless sensor networks (WSNs), a new positioning 

method based on gradient boosting decision tree (GBDT) is proposed 

in this paper. Firstly, the average positioning error is defined according 

to the hop count of the unknown node to the anchor node and the 

average connectivity degree of the network in this method. Next, the 

position coordinates of the unknown node are obtained. At the same 

time, the network topology is optimized. The free-space broadcasting 

model is used for power control, and signal interference and energy 

consumption are reduced consequently. A decision tree based on 

gradient is used to establish an ocean WSN positioning algorithm. 

Finally, the simulation experiment was out in MATLAB. The 

relationship among node communication distance, node density, link 

loss product and positioning error was analyzed. The results show that 

the method has good adaptability. 

 

Keywords—ocean wireless sensor network, gradient boosting 

decision tree, positioning error, node density 

I. INTRODUCTION 

LONG with the deepening of ocean resources development 

and exploitation, positioning technology in ocean wireless 

sensor network (WSN) has begun to play an increasingly 

important role and become the research focus in the discipline 

of ocean environment
[1, 2]

. Ocean WSN consists of wireless 

sensors, network routers and signal nodes. Ocean environment 

is more complex than the continent, and conventional WSN has 

the defect of low positioning accuracy of nodes. Addressing this 

problem, many researches have been conducted at home and 

abroad and a series of models and algorithms have been 

established. Guo et al.
 [3]

 made a thorough exposition of 

underwater sensor network nodes and architecture, with the 

focus laid on research progress of underwater positioning 

technology. Guo et al.
 [4]

 designed the self-adaptive time 

 
 

 
  

synchronization algorithm for ocean parameters, which 

improved the adaptability of time synchronization algorithm to 

different ocean environments by adjusting the parameters. 

Simulation experiments showed that this algorithm was superior 

to conventional algorithms in both synchronization precision 

and energy efficiency. He
[5]

 used time-of-arrival (TOA) ranging 

method for monitoring node positioning, and applied VBF 

routing protocol to WNS, which improved network robustness. 

Li et al.
 [6]

, using the Bayesian theory and continuous 

positioning algorithm, established new prior distribution and 

cost function from the positioning results of the previous 

moment. This method improved the positioning accuracy of the 

next moment and realized continuous positioning of moving 

sound source. In order to inhibit the impact of external strong 

vibration noise to measurement, Song et al.
 [7]

 proposed a vortex 

signal detection method based on multi-sensor information 

integration and performed data fusion by unscented 

Kalman filter algorithm, thereby lowering the interference. In 

literature report [8], infrared and microwave radar detection 

method was introduced. The atmospheric refraction over 

complex ocean environment was compared with that at the 

near-ocean level, and the differences in detection features in an 

optoelectronic system were obtained, which served as the basis 

for evaluation and analysis. For the strong reverberation 

environment of coaxial circular array, Yu et al. 
[9] 

proposed a 

moving multi-target detection method. The spatial information 

of the target was obtained by mode decomposition of linear 

frequency-modulated signals received and conventional 

beamforming algorithm. Literature [10] described a predictive 

node deployment algorithm for underwater acoustic sensor 

network. Integer linear programming theory, which resulted in a 

considerable increase in the positioning scope of the nodes. 

Zhang et al. 
[11]

 put forward an algorithm named CLIP and used 

in WSN location, simulation results indicate that the modified 

localization algorithm can greatly improve the localization 

accuracy of wireless sensor networks．In spite of the above 
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researches, ocean WNS still has the defects of low positioning 

accuracy and overestimation.   

Based on existing researches, new positioning method for 

ocean WNS based on gradient boosting decision tree (GBDT) is 

proposed in this paper 
[12-15]

. This method provides the 

coordinates of unknown nodes and implements power control 

by the free-space broadcasting model. Then, this method is 

compared against conventional positioning algorithm. The 

contents of the article are organized as follows: section 1 

reviews existing researches on ocean WNS; section 2 presents 

the performance indicators of ocean WNS; section 3 establishes 

the positioning algorithm for ocean WNS; section 4 is the 

simulation experiment; and section 5 is the concluding part. 

 

II. PERFORMANCE PARAMETERS 

The minimum hop counts of the known nodes x and y to the 

anchor node i are dmin(x,i) and dmin(y,i), respectively. nbs(x) is 

the set of all neighborhood nodes of unknown node x. d(x,i) is 

the hop count of the unknown node x to the anchor node i. 

|���(�)| is the number of all neighborhood nodes of unknown 

node x. Then the hop count of the unknown node to the anchor 

node is calculated as follows:  

min( , ) min( , )
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Let R be the communication radius of the node, S the total 

area of the zone under monitoring, and n the total number of 

nodes. Then the average connectivity degree N of the network 

can be calculated by using formula (2):  

2n
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π=                                                       (2) 

The average distance per hop D is given by 
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Thus the distance from the unknown node to each anchor 

node is given by:  
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Let N be the number of unknown nodes, and the position of 

the unknown node i is estimated as (xi,yi). The actual position of 

the unknown node is 
( , )i ix y

. Then, the average positioning 

error is defined as :  
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In a WNS, the anchor node first periodically sends the hop 

count packet and coordinates of the anchor node to the 

neighborhood nodes. The hop count is set to 0 during 

initialization. When the neighborhood nodes receive the 

information for the first time, they will update the minimum hop 

count of themselves to the anchor node. The minimum hop 

counts of the unknown node to each anchor node are recorded 

and updated. The hop count plus 1 and the coordinates of the 

corresponding anchor node are stored and forwarded to the 

adjacent node. Next, the distance between the nodes is 

estimated. That is, the records of the previous step are used to 

calculate the average distance per hop, including the coordinates 

of other anchor nodes calculated from each anchor node and the 

minimum hop counts to these nodes. Here, the hop count of the 

anchor node i at (xi,yi) to the anchor node j at (xj,yj) is expressed 

as hij. Thus for a total of n nodes, the corrected average distance 

per hop between the anchor nodes is  
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Literature [16] describes the regulated neighborhood distance 

method (RND), a new approach for estimating the distance 

between nodes and solving the obscurity of positioning in 

DV-Hop algorithm. This method uses the number of shared 

neighborhood nodes between the two neighborhood nodes to 

express the adjacency degree between them and to estimate the 

distance. Let Ni and Nj be the number of neighborhood nodes of 

node i and node j, respectively; and let the number of shared 

neighborhood nodes between node i and node j be nij. Thus the 

RND value can be calculated from the neighborhood nodes:  

( , ) 1
2

i j

ij

i j

N N
RND i j n

N N

+
= − ×         (7)                            

The shortest path RNDmin between any two nodes can be 

found by using the Floyd–Warshall algorithm. Let the set of 

anchor nodes be X, and the Euclidean distance between the 

anchor node i and anchor node j be dij. Then, from the shortest 

path RNDmin, the correction factor RNDϕ
 for the unknown factor 

can be calculated:  

, ,

min, ,
( , )
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                      (8) 

The product of the correction factor and shortest path RNDmin 

is obtained and used to derive the distance from the unknown 

node to the corresponding anchor node. To calculate the position 

using trilateration, it is necessary to know the distances from the 

unknown node to at least three anchor nodes.  

As shown in Fig. 1, let the coordinates of unknown node D be 

(x,y). Then, the coordinates of nodes A, B and C are expressed as 

(xa,ya), (xb,yb) and (xc,yc), respectively; the distances from nodes 

A, B and C to node D be da, db and dc, respectively. Thus, there is 
2 2 2

2 2 2

2 2 2
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                             (9)          

From formula (9), the estimated coordinates of node D 

are obtained. On this basis, we can further know the 

position coordinates of the unknown node concerned:  
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Fig. 1. Schematic for trilateration 

III. MODIFIED ALGORITHM 

Conventional positioning method in ocean WSN has the 

defects of high complexity of topological structure, signal 

interference and high energy consumption. Addressing these 

problems, we propose a positioning algorithm for ocean WSN 

based on GBDT. In order to reduce topological complexity, the 

topology of the Gabriel graph (GG) network is optimized. To 

reduce signal interference and energy consumption, free-space 

broadcasting model is used for power control, which further 

reduces the signal communication distance. Finally, the node 

mobility is learned by using GBDT. After learning the hidden 

connections in node mobility from the data, the high-accuracy 

node position will be recommended. The nodes are finally 

positioned using the formulae in section 2. The conditions for 

building GG, the topology connection graph based on graph 

theory, are as follows: for any two nodes i and j, if there is any 

node x other than nodes i and j that satisfies 
2 2 2

( , ) ( , ) ( , )i x j x i jd d d+ ≤ , then there is no direct connection 

between nodes i and j. Free-space broadcasting model is used 

for power control. Suppose that the transmission power of 

signals sent by the sending node at the source node is Pt, and Pr 

is the receiving power of the signals arriving at the receiving 

node. The transmitting gain and receiving gain are Gt and Gr, 

respectively, wavelength λ, link loss L, and communication 

distance between nodes d. Then, the broadcasting model is 

expressed as  
2

2
( )

(4 )

t t r
r

PG G
P d

d L

λ
π

=                        (11) 

Let the original sampling data of the WSN node be X=[xij]n*m

，i=1,2,3…,n，j=1,2,3,…,m, where n is the sample number, 

and m is the number of features (including the residual node 

energy, distance between node and base station and average 

connectivity degree of the network). The mean value of each 

feature 
1j m

X x
×

 =    is calculated for the data matrix X. 

Demeaning is performed for X to obtain the normalized matrix 

ij n m
Y y

×
 =   : 

Y X X= −                                  (12) 

Covariance matrix COV(Y) is calculated for the normalized 

matrix X :  

1( ) ( 1) TCOV Y n Y Y−= −           (13) 

In order to get the eigenvalue λi and eigenvector ηi, the 

eigenvector and eigenvalue of the covariance matrix COV(Y) 

are analyzed:  

( ) 0COV Y Eλ− =                     (14) 

where E is the m*m-order identity matrix. The eigenvalues are 

arranged in a decreasing order, i.e., 1 2 3 mλ λ λ λ≥ ≥ ≥ ≥⋯

. 

Correspondingly, the eigenvectors are η1,η2,η3,…,ηm. Variance 

contribution ξi is calculated for each eigenvalue λi, i=1,2,3…,n:  

1

100%i
i n

i

i

λ
ξ

λ
=

= ×

∑
                                    (15) 

Let the threshold for cumulative variance contribution be Q. k 

pivot elements are chosen to describe the majority of the feature 

information in the original samples:  

1

k

i

i

Qξ
=

≥∑                                                        (16) 

From the above formula, eigenmatrix after 
m kR R→  

eigenspace transformation is obtained. This is the matrix 

consisting of eigenvectors corresponding to k pivot elements. 

Since there is data loss during false information classification 

and recognition, logarithmic loss function is used:  

1

( , ( )) 2 log(1 exp( 2 ))
f

i i

i

L y F x y p
=

= + −∑      (17)                                  

where n is the number of samples; f is the number of features 

recognized in the false information; yi is the actual label of the 

samples; pi is the predicted label of the samples.  

Based on the above formula and description in section 2, 

positioning algorithm in ocean WSN based on GBDT is 

derived:  

Step 1 Initialize the model and original sampling data 

X=[xij]n*m at WSN nodes;  

Step 2 Select qualified nodes according to formula 
2 2 2

( , ) ( , ) ( , )i x j x i j
d d d+ ≥

 to establish the topological structure of 

WSN;  

Step 3 Extract feature information for WSN nodes using 

formulae (12)-(16);  

Step 4 Let the threshold for cumulative variance contribution 

be Q. Select k pivot elements that satisfy 

1

k

i

i

Qξ
=

≥∑  to 

describe the majority of feature information in the original 

samples; otherwise, return to Step 3;  

Step 5 Train the GBDT model:  
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Step5.1: Calculate constant α that makes the loss function 

minimal using formula 0

1

( ) arg min ( , )
n

i

i

F x L yα α
=

= ∑ . 

Start iterations for M generations from m=1. Build the model 

successively by performing descent along the direction of the 

gradient of the loss function in the previous step: 

0

1

( ) arg min ( , )
n

i

i

F x L yα α
=

= ∑  

Step5.1.1 Calculate the value of the negative gradient of loss 

function in the current model, as the estimate value of residual 

rim: 

                 

[ ]
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( , ( )) ( ) , 1, 2, ,
m m

im i i i F x F x
r L y F x F x i n

−=
= − ∂ ∂ = ⋯ ； 

Step5.1.2 Takes the residual in Step 5.1.1 as input and 

calculate the leaf node of the regression tree Rj,m(j=1,2,…,J) as 

well as the optimal step length αjm along gradient descent: 

,

1arg min ( , ( ) )
i j m

jm i m

x R

L y F xαα α−
∈

= +∑ ; update the model 

Fm(x):
1

1

( ) ( ) ;
J

m m jm jm

j

F x F x I x Rα−
=

= + ∈∑ ;  

Step5.2 After the iterations are over, model FM(x):

1 1

( ) ;
M J

M jm jm

m j

F x I x Rα
= =

= ∈∑ ∑  is derived. 

Step6 Analyze K pivot elements in Step 4 using model FM(x) 

to get the node position information;  

Step7 Estimate the distance from the unknown node to the 

corresponding anchor node based on the product of correction 

factor , ,

min, ,
( , )

iji j i j X

RND

i j i j X

d

RND i j
ϕ ≠ ∈

≠ ∈

=
∑

∑
 and shortest path 

RNDmin;  

Step8 Repeat Step 6 and Step 7, until there are no unknown 

nodes to be positioned;  

Step9 Perform positioning calculation by trilateration. The 

algorithm is over. 

  

IV. SIMULATION EXPERIMENT 

To verify the applicability of the described algorithm, 

simulation experiment was conducted for the ocean WSN in 

MATLAB, with the scenario of extensive monitoring of 

regional ocean. WSN nodes were not deployed one by one, but 

randomly distributed. The environmental factors for the 

simulation were configured as follows: 400 nodes were 

deployed at the most, and were randomly distributed in a square 

of 1000m*1000m. There were 100 anchor nodes. The 

transmission radius was 100m for all nodes. The GBDT model 

parameters were optimized and the modified gradient was 

initialized: the maximum number of iterations Tmax was set to 

100, learning rate 0.1, leaf node depth 3. The loss function was 

defined by polynomial abnormal loss function.  

The impact of the communicating node on the surrounding 

nodes was first simulated. Fig. 2 shows the comparison of the 

impact of the communicating node on the surrounding nodes 

without power control under original topological structure and 

with power control under GG topology. Under the latter 

situation, power control effectively reduced the distance and 

scope of signal interference, thereby reducing the impact of 

communication on the surrounding nodes. This was much better 

than without power control under original topological structure. 

Obviously, power control based on GG could optimize 

topological control and signal interference control. The 

feasibility of this technology was also verified by comparing 

against the experimental results.  

 

Fig. 2. Comparison of impact of the communicating node on the 

surrounding nodes 

Fig. 3 shows the influence curves of number of unknown 

nodes on the node communication distance and link loss product 

using different algorithms. It was assumed that the 

communication radius was equal for all nodes (100m) and that 

the number of nodes varied from 75 to 280. It could be observed 

that as the number of nodes increased rapidly, the product of 

error and energy consumption increased for both algorithms. 

The increase was more significantly for DV-HOP algorithm. 

One standard for a good balance between positioning accuracy 

and energy consumption was the small increase, and our 

proposed algorithm had a very small increase.  

 

Fig. 3. Influence curves of number of unknown nodes on node 

communication distance and link loss product using different 

algorithms. 
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The connectivity degree of network is mainly influenced by 

node density. Therefore, it is necessary to examine the impact of 

node density on algorithm performance. Suppose that the 

ranging error was 0.05 and that the proportion of anchor nodes 

was 25%. Fig. 4 shows the relationship between Positioning 

error distance and node density. It can be seen that as the node 

density increased, the Positioning error distance first decreased 

and then increased. When the node density was below 9, the 

positioning error in the network decreased slowly; when the 

node density was 9-15, Positioning error distance increased; 

when the node density was above 15, Positioning error distance 

increased rapidly. Therefore, by setting node density as 9 we 

could obtain the lowest  Positioning error distance and the 

optimal algorithm performance.  

 

Fig. 4 Influence of node density on Positioning error distance 

After several simulations, the Positioning error distance of 

our algorithm and DV-HOP were calculated, as shown in Fig. 5. 

Our algorithm outperformed DV-HOP not only in accuracy, but 

also in convergence property. In Fig. 5, the average Positioning 

error distance of the two methods was 4.5m and 9m, 

respectively. The positioning accuracy of our method improved 

by 50% as compared with DV-HOP. Moreover, the fluctuation 

of accuracy was much smaller with our method. Therefore, our 

method had higher positioning accuracy and convergence 

property than DV-HOP.  

 

Fig. 5. Comparison of Positioning error distance using two 

algorithms 

V. CONCLUSION 

To solve the problem of low positioning accuracy of ocean 

WSNs, a new positioning method based on GBDT is proposed. 

Firstly, the average positioning error relative to the actual 

position of the unknown node is estimated according to the hop 

count of the unknown node to the anchor node and the distance 

between these two nodes. Next, the network topology is 

optimized by GG to reduce topological complexity. The 

communication distance is reduced in this way. The free-space 

broadcasting model is used for power control, and as a result the 

signal interference and energy consumption are reduced. 

Finally, the node mobility is learned by using GBDT. The 

hidden connections in node mobility are learnt from data and the 

high-accuracy node position is recommended. To verify this 

algorithm, simulation experiment was carried out with ocean 

WSN in MATLAB, and a comparison was made with DV-HOP 

algorithm in the following aspects: influence of the 

communicating node on the surrounding nodes, influence of 

number of unknown nodes on the node communication distance 

and link loss product, and influence of node density on 

positioning error. The results showed that our method 

outperformed the DV-HOP algorithm. For future studies, 

integration of other positioning methods may be considered, so 

as to further improve the positioning accuracy and reduce the 

computational time of the system. 
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