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Abstract—Kalman filter and Lainiotis filter are well known 

algorithms that solve the filtering problem, producing the state 

estimation as well as the corresponding estimation error 

covariance matrix. Using the Information estimation error 

covariance matrix, which is the inverse of the estimation error 

covariance matrix, the Information filter has been derived 

from Kalman filter. In this paper, using the Information 

estimation error covariance matrix, the Lainiotis Information 

filter is introduced. The Lainiotis filter and the Lainiotis 

Information filter are equivalent with respect to their behavior, 

since they produce the same estimations. The computational 

requirements of the Lainiotis filter and the Lainiotis 

Information filter are determined and a method is proposed to 

a-priori (before the filters’ implementation) decide which filter 

is the faster one. In the time invariant systems case, the 

Lainiotis Information filter provides a faster method than the 

classical one to solve the Riccati equation emanating from 

Lainiotis filter. 

Keywords—Lainiotis filter, Kalman filter, Information 

filter, Riccati equation  

I. INTRODUCTION 

Estimation plays an important role in many fields of 
science: applications to aerospace industry, chemical 
process, communication systems design, control, civil 
engineering, filtering noise from 2-dimensional images, 
pollution prediction and power systems are mentioned in [1]. 
Linear estimation is associated with discrete time systems 
described by the following state space equations: 

 x(k+1) = F(k+1) x(k) + w(k) 

 z(k) = H(k) x(k) + v(k) 

where x(k) is the n-dimensional state vector, z(k) is the m-
dimensional measurement vector, F(k+1) is the nxn 
transition matrix, H(k) is the mxn output matrix, w(k) is the 
state noise v(k) is the measurement noise, at time k≥0. The 
statistical model expresses the nature of the state and the 
measurements. The basic assumption is that the state noise 
and the measurement noise are Gaussian white noises with 
zero means and known covariances Q(k) of dimension nxn 
and R(k) of dimension mxm, respectively.  

The discrete time Kalman filter [1] and Lainiotis filter 
[2] are well known algorithms that solve the filtering 
problem, producing the state estimation x(k/k) as well as the 
corresponding estimation error covariance matrix P(k/k). 
Kalman filter produces the state estimation through the state 
prediction x(k+1/k) as well as the corresponding prediction 
error covariance matrix P(k+1/k). Kalman filter and Lainiotis 
filter are equivalent with respect to their behavior, since they 
produce the same estimations [2].  

For time varying systems, the Time Varying Lainiotis 
filter is derived: 

Time Varying Lainiotis Filter (TVLF) 
 x(k+1/k+1) = Kn(k+1)z(k+1)  (3) 
 +Fn(k+1)[I+P(k/k)On(k+1)]-1[P(k/k)Km(k+1)z(k+1)+x(k/k)] 

 
 P(k+1/k+1) = Pn(k+1)  (4) 

+Fn(k+1)[I+ P(k/k)On(k+1)]-1 P(k/k)Fn
T(k+1) 

for k=0,1,… with initial conditions x(0/0)=x0, P(0/0)=P0 
where 

 A(k+1) = [H(k+1)Q(k)HT(k+1)+R(k+1)] -1 
Kn(k+1) = Q(k)HT(k+1)A(k+1) 
Km(k+1) = FT(k+1)HT(k+1)A(k+1) 

 Pn(k+1) = [IKn(k+1)H(k+1)]Q(k)     
 Fn(k+1) = [IKn(k+1)H(k+1)]F(k+1)  
 On(k+1) = FT(k+1)HT(k+1)A(k+1)H(k+1)F(k+1) 
 

The notation MT is used for the transpose matrix of 
matrix M. 

The notation I is used for the identity matrix. 

For time invariant systems, where the transition matrix 
F(k+1)=F, the output matrix H(k)=H, as well as the plant and 
measurement noise covariance matrices Q=Q(k) and R=R(k) 
are constant matrices, the Time Invariant Lainiotis Filter 
(TILF) is derived. In this case, the constant matrices  

 A = [HQHT+R] -1 
 Kn = QHTA      
 Km = FTHTA 

 Pn = [IKnH]Q     
 Fn = [IKnH]F 
 On = FTHTAHF 
are computed off-line. 

For both Kalman and Lainiotis filters, we assume that: 

 the state noise covariance matrices Q(k) are positive 
definite, denoted by Q(k)>0 

 the measurement noise covariance matrices R(k) are 
positive definite, denoted by R(k)>0 

 the estimation error covariance matrices P(k/k) are 
positive definite, denoted by P(k/k)>0 

Note that the existence of the inverse of the matrices in 
the time varying filters is ensured assuming that every 
covariance matrix R(k) is positive definite; this has the 
significance that no measurement is exact. 

The Information filter [1], [3]-[4] has been derived from 
the Kalman filter equations using the inverse of the 
prediction error covariance matrix. Kalman filter and the 
Information filter are equivalent with respect to their 
behavior, since they produce the same estimations. 
Information filter has been implemented for several 
applications [5]-[8]. Information filter equations are an 
alternative to Kalman filter equations and on occasions may 
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be more efficient [1]. Finally, a method is proposed in [3] to 
a-priori decide which filter among the Kalman filter and the 
Information filter is the faster one. 

In this paper, the Lainiotis Information filter is introduced 
in section II. It is established that the Lainiotis filter and the 
Lainiotis Information filter are equivalent with respect to 
their behavior, since they produce the same estimations. The 
computational requirements of the Lainiotis filter and the 
Lainiotis Information filter are determined in section III. A 
method is proposed to decide which filter is the faster one. In 
section IV it is shown that in the time invariant systems case, 
the Lainiotis Information filter provides a faster method than 
the classical one to solve the Riccati equation emanating 
from Lainiotis filter. Finally, Section VI summarizes the 
conclusions. 

II. LAINIOTIS INFORMATION FILTER DERIVATION 

We are going to introduce the Lainiotis Information 
filter, which – according to the ideas in [1], [3] – uses the 
Information estimation error covariance matrix S(k/k), which 
is the inverse of the estimation error covariance matrix 
P(k/k): 

 S(k/k) P-1(k/k) 

and the Information estimation vector y(k/k), which is 
connected to the estimation vector x(k/k), through the 
Information estimation error covariance matrix: 

 y(k/k) = S(k/k) x(k/k) 

The Lainiotis Information filter can be derived through 
the Lainiotis filter equations using the prediction error 
covariance matrix P(k+1/k) and the Information prediction 
error covariance matrix 

 S(k+1/k)P-1(k+1/k) 

as well as the prediction vector x(k+1/k) and the 
Information prediction vector 

 y(k+1/k) = S(k+1/k) x(k+1/k) 

For the derivation of the Lainiotis Information filter, we 
assume that the inverse of the estimation error covariance 
matrix P(k/k) exists; then we are able to write:         

 [I+P(k/k)On(k+1)]-1P(k/k) = [P-1(k/k)+On(k+1)]-1 

Also, we use the Matrix Inversion Lemma1. 

In particular, concerning the estimation error covariance 
matrix  P(k/k) from the Lainiotis filter equation in (4) and (9) 
arises: 

 P(k+1/k+1) = Pn(k+1)  (10) 
+Fn(k+1)[P-1(k/k)+On(k+1)]-1Fn

T(k+1) 

where the Matrix Inversion Lemma yields: 

1 Let the matrices A,B,C,D with A,C be nonsingular. Then the 

following equation holds: 

[A+BCD]–1 = A–1 – A–1B[C–1+DA–1B]–1DA–1 

 P-1(k+1/k+1)=Pn
-1(k+1)  (11) 

 Pn
-1(k+1) Fn(k+1) 

 [P-1(k/k)+On(k+1)+Fn
T(k+1)Pn

-1(k+1)Fn(k+1)]-1 
Fn

T(k+1)Pn
-1(k+1) 

Remark 1:  

Note that the existence of the inverse matrix Pn
-1(k+1) 

that appears in (11) is guaranteed in the case where the plant 
and measurements noise covariances Q(k) and R(k) are 
positive definite, since then the Matrix Inversion Lemma 
allow us write: 

 Pn
-1(k+1) = [Q-1(k)+HT(k+1)R-1(k+1)H(k+1)] -1 (12)

After some algebra we get the Time Varying Lainiotis 
Information Filter (TVLIF) for time varying systems: 

 P(k/k) = S-1(k/k) (13) 
 x(k/k) = S-1(k/k) y(k/k) (14) 
 S(k+1/k)=Q-1(k) Γ(k+1)[S(k/k)+Ε(k+1)]-1ΓT(k+1) (15) 
 y(k+1/k)=S(k+1/k)F(k+1)S-1(k/k)y(k/k)  (16) 
 S(k+1/k+1)=Β(k+1)Γ(k+1)[ S(k/k)+Ε(k+1)]-1ΓT(k+1) (17) 
 y(k+1/k+1)=y(k+1/k)+HT(k+1)R-1(k+1)z(k+1)  (18) 
 
for k=0,1,… with initial conditions y(0/0)=y0=S0x0, 
S(0/0)=S0=P

 
where 
 Β(k+1)=Pn

-1(k+1)=Q-1(k)+HT(k+1)R-1(k+1)H(k+1) (19) 
 Γ(k+1)=Pn

-1(k+1)Fn(k+1)=Q-1(k)F(k+1) (20) 
 Δ(k+1)=Fn(k+1)Pn

-1(k+1)Fn(k+1) (21) 
 =FT(k+1)[Q-1(k)HT(k+1)A(k+1)H(k+1]F(k+1) 

 Ε(k+1)= On(k+1)Δ(k+1)=FT(k+1)Q-1(k)F(k+1) (22) 

Remark 2 

The existence of the inverse matrices that appear in the 
Lainiotis filter and the Lainiotis Information filter equations 
is guaranteed in the case where  

- the state noise covariance matrices Q(k) are positive 

definite 

- the measurements noise covariance matrices R(k) are 

positive definite; this happens in the case where no 

measurement is exact 

- the estimation error covariance matrices P(k/k) are 

positive definite 

 
Remark 3 

If the initial condition P(0/0)=P0 is singular, then we 
compute P(1/1)=P1 and x(1/1)=x1 from (3) and (4) and we 
implement Lainiotis Information filter for k=1,2,… with 
initial conditions y(1/1)=y1=S1x1, S(1/1)=S1=P1

-1 

 
For time invariant systems, the Time Invariant Lainiotis 

Information Filter (TILIF) is derived. In this case, the 
constant matrices  

Β = Pn
-1 = Q-1+HTR-1H       

Γ = Pn
-1Fn = Q-1F 

Δ = FnPn
-1Fn = FT[Q-1HTAH]F 

Ε = OnΔ = FTQ-1F 
are computed off-line. 
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III. COMPUTATIONAL REQUIREMENTS 

It is then established that the Lainiotis Information filter 
equations are derived by the Lainiotis filter equations. Thus 
the two filters are equivalent with respect to their behavior, 
since they calculate theoretically the same estimates. The two 
filters are iterative algorithms; then, it is reasonable to 
assume that both the Lainiotis filter and the Information filter 
compute the estimation x(k/k) and the estimation error 
covariance P(k/k) executing the same number of iterations. 
Thus, in order to compare the algorithms with respect to their 
computational time, we have to compare their per step 
(iteration) calculation burden (CB) required for the on-line 
calculations; the calculation burden of the off-line 
calculations (initialization process for time invariant filters) 
is not taken into account. 

Scalar operations are involved in matrix manipulation 
operations, which are needed for the implementation of the 
filtering algorithms. Table I summarizes the calculation 
burden of needed matrix operations. Note that the identity 
matrix is denoted by I and a symmetric matrix by S. The 
details are given in [2].  

The per iteration calculation burdens of Lainiotis filter 
and Lainiotis Information filter are calculated using Table I 
and summarized in Table II. 

From Table II, it is clear that the algorithms’ calculation 
burdens depend on the state vector dimension n and the 
measurement vector dimension m.  

From table II we conclude that the selection of the faster 
implementation depends on the relationship between n and 
m. 

TABLE I.  CALCULATION BURDEN OF MATRIX OPERATIONS 

Matrix 

Operation 

Matrix 

Dimensions 

Calculation 

Burden 

C = A + B (nxm)+( nxm) nm 

S = A + B (nxn)+(nxn) (n2+n)/2 

B = I + A (nxn)+(nxn) n 

C = A · B (nxm)·(mxl) 2nml–nl 

S = A · B (nxm)·( mxn) n2m+nm–(n2+n)/2 

B = A-1 nxn (16n3–3n2–n)/6 

 

TABLE II.  PER ITERATION CALCULATION BURDEN OF LAINIOTIS 

FILTER (LF) AND LAINIOTIS INFORMATION FILTER (LIF) 

System Filter Calculation Burden 

Time 

Varying 

LF 

CBTVLF = (41n3–12n2+n)/3 

            +(16m3–3m2–m)/6 

            +15n2m–2nm+3nm2 

LIF 

CBTVLIF = (56n3–6n2–3n)/3 

            +(16m3–3m2–m)/3 

            +13n2m–3nm+5nm2 

Time 

Invariant 

LF CBTILF = (58n3–3n2–n)/6 +2n2m+2n 

LIF CBTILIF = (74n3+12n2–8n)/6 +2nm 

 

 

For time varying systems, we have: 

CBTVLIF–CBTVLF = (15n3+6n2–4n)/3+(16m3–3m2–m)/6 
 –(2n2m+nm–2nm2)  

Then, for time varying systems, the areas (depending on the 
model dimensions) where the Lainiotis Information Filter or 
the traditional Lainiotis Filter is faster, are shown in Fig. 1. 
The following Rule of Thumb is derived: Lainiotis 
Information Filter is faster than Lainiotis Filter, when 
m/n<1.12. 

For time invariant systems, we have 

CBTILIF–CBTILF  = (16n3+15n2–7n)/6 –2n2m 

Then, for time invariant systems, the areas (depending on the 
model dimensions) where the Lainiotis Information Filter or 
the traditional Lainiotis Filter is faster, are shown in Fig. 2. 
The following Rule of Thumb is derived: Lainiotis 
Information Filter is faster than Lainiotis Filter, when 
m/n>1.35. 

Finally, from Table II and Table II in [3] we conclude 
that Lainiotis Information filter may be faster than (Kalman) 
Information filter, depending on the state vector dimension n  
and the measurement vector dimension m. 

 
Fig. 1. The faster time varying filter 

 

Fig. 2. The faster time invariant filter 
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IV. APPLICATION TO RICCATI EQUATION 

We consider the time invariant case. Concerning the 
estimation error covariance matrix, the algebraic Riccati 

equation emanating from the Time Invariant Lainiotis 
Filter becomes: 

 P = Pn + Fn [I+POn] -1PFn
T (23) 

The classical algorithm to solve the algebraic Riccati 
equation emanating from the Time Invariant Lainiotis Filter 
equation [9]-[10] is to implement iteratively the Riccati 

equation emanating from the Time Invariant Lainiotis 
Filter (RETILF): 

 P(k+1/k+1) = Pn + Fn[I+P(k/k)On]-1P(k/k)Fn
T (24)

for k=0,1,… with initial condition P(0/0)=P0 until 
||P(k+1/k+1)-P(k/k)||<ε (convergence criterion). 

The algebraic Riccati equation emanating from the 
Time Invariant Lainiotis Information Filter becomes: 

 S = Β – Γ[S+Ε]-1ΓT  (25) 

The algorithm to solve the Riccati equation emanating 
from the Time Invariant Lainiotis Information Filter equation 
is to implement iteratively the Riccati equation emanating 

from the Time Invariant Information Lainiotis Filter 
(RETILIF): 

 S(k+1/k+1) = Β – Γ[S(k/k)+Ε]-1ΓT  (26) 

for k=0,1,… with initial condition S(0/0)=S0P0
 until 

||S(k+1/k+1)-S(k/k)||<ε (convergence criterion).  

The two algorithms are iterative algorithms; then, it is 
reasonable to assume that the first algorithm computes the 
steady state estimation error covariance P and the second 
algorithm computes the inverse S=P-1 of the steady state 
estimation error covariance, executing the same number of 
iterations. Thus, in order to compare the algorithms with 
respect to their computational time, we have to compare their 
per iteration calculation burden (CB) required for the on-line 
calculations; the calculation burden of the off-line 
calculations is not taken into account. The per iteration 
calculation burdens of the algorithms that solve the Riccati 
equation emanating from Lainiotis filter and Lainiotis 
Information filter are calculated using Table I and 
summarized in Table III. 

From Table III, it is clear that the algorithms’ calculation 
burdens depend on the state vector dimension n. From table 
II we conclude that the Lainiotis Information Filter provides 
a faster method than the classical one to solve the Riccati 
equation emanating from Lainiotis filter, since 

CBRETILF–CBRETILIF  = (2n3–3n2+3n)/6 > 0 

TABLE III.  PER ITERATION CALCULATION BURDEN OF RICCATI 

EQUATION SOLUTION ALGORITHMS 

Filter Calculation Burden 

LF CBRETILF =(52n3–6n2+2n)/6  

LIF CBRETILIF =(50 n3–3n2–n)/6 

V. CONCLUSIONS 

Kalman filter and Lainiotis filter are well known 
algorithms that solve the filtering problem, producing the 
state estimation as well as the corresponding estimation error 
covariance matrix. Kalman filter and Lainiotis filter are 
equivalent with respect to their behavior, since they produce 
the same estimations [2].  

Using the Information estimation error covariance 
matrix, which is the inverse of the estimation error 
covariance matrix, the (Kalman) Information filter has been 
derived from Kalman filter. Also, Kalman filter and 
(Kalman) Information Filter are equivalent [1].  

In this paper, using the Information estimation error 
covariance matrix, the Lainiotis Information filter is 
introduced. The Lainiotis filter and the Lainiotis Information 
filter are equivalent with respect to their behavior, since they 
produce the same estimations.  

The computational requirements of the Lainiotis filter 
and the Lainiotis Information filter are determined and a 
method is proposed to a-priori (before the filters’ 
implementation) decide which filter is the faster one.  

In the time invariant systems case, the Lainiotis 
Information filter provides a faster method than the classical 
one to solve the Riccati equation emanating from Lainiotis 
filter. 
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