
Pair Programming – Cubic Prediction Model Results for Random Pairs

and Individual Junior Programmers
1MARY ADEBOLA AJIBOYE, 2MATTHEW SUNDAY ABOLARIN,

3JOHNSON ADEGBENGA AJIBOYE, 4ABRAHAM USMAN USMAN, 5SANJAY MISRA

1Abuja Electricity Distribution Company (AEDC), ICT Department, Niger Regional Office,
Minna, NIGERIA

2Department of Mechanical Engineering, Federal University of Technology, P.M.B 65,
Minna, NIGERIA

3Department of Electrical and Electronics Engineering, Federal University of Technology, P.M.B 65, Minna,
NIGERIA

4Department of Telecommunication Engineering, Federal University of Technology, P.M.B 65,
Minna, NIGERIA

5Department of Applied Data Science, Institute for Energy Technology, Halden, NORWAY

Abstract: Due to the rapidly evolving technology in the dynamic world, there is a growing desire among software clients for
swift delivery of high-quality software. Agile software development satisfies this need and has been widely and appropriately
accepted by software professionals. The maintainability of such software, however, has a significant impact on its quality.
Unfortunately, existing works neglected to consider timely delivery and instead concentrated primarily on the flexibility
component of maintainability. This research looked at maintainability as a function of time to rectify codes among Individual
Junior and Random pair software developers. Data was acquired from an experiment performed on software developers in the
agile environment and analyzed to develop the quality model metrics for maintainability which was used for prediction. One
hundred programmers each received a set of agile codes created in the Python programming language, with deliberate bugs
ranging from one to ten. The cubic regression model was used for predicting time spent on debugging errors above ten bugs.
Results show that the random pair programmers spent an average time of 21.88 min/error while the individual programmers
spent a lesser time of 16.57 min/error.

Keywords: Agile

Received: June 21, 2022. Revised: August 22, 2023. Accepted: October 5, 2023. Published: November 6, 2023.

1. Introduction

Software engineering circles have talked about how software
development should be structured to provide faster, better,
and less expensive solutions. Numerous recommendations
for improvement have been made. This includes a wide range
of practical tools, techniques, and practices, as well as the
standardization and measurement of the software process [1].
The majority of the recommendations for improvement have
been made by skilled software professionals who have each
established their own strategies and techniques to address the
anticipated change.

The agile manifesto was created in February 2001 in Utah by
a group of seventeen software engineers who met to discuss
the issues facing the software industry. The term "Agile
methods" refers to a group of several methods and practices
that share the same ideals and fundamental tenets. These
rapid development techniques are actually a response to the
conventional plan-based approach, which primarily
emphasizes an organized, effective, and reasonable
engineering-based strategy [2]. According [3] agile processes
promote sustainable development. Agile, as it is commonly
known, is a point-in-time iterative methodology that
promotes a quick and adaptable response to change by
anticipating interactions throughout the development cycle.
[4].

 In the traditional approach to software development,
problems can be fully specified. Optimum and predictable
solutions are proffered to every problem which involves
rigorous planning, codified processes, very thorough and

meticulous reuse of codes thereby making the development
activity efficient. The agile software development process, on
the other hand, approaches the problem of an unpredictable
world by putting more of an emphasis on people and their
ingenuity than on processes [5]. According to [6] Agile
focuses on delivering individual parts of the software.

The pairing of the pair programmers has a significant impact
on pair programming's overall success [7]. Based on the
programmers' experience, some studies have discussed the
effectiveness of pair programming. Only a few of the research
on pair programming that discussed the impact of
programmer expertise provided precise metrics for the
concept used. [7] used two indicators for categorizing
programmer expertise. These indicators are assessment by
the project managers and the results of a pretest programming
task. [8] decided on programmer’s expertise by computing
the student’s weighted Grade Point Average (GPA) in
programming courses taken at the university. [9] discovered
that, the performance of programs increases with the number
of programmers' years of experience, and decreases with the
number of years of experience.

According to [10], Despite the success of the agile approach
in smaller projects, there haven't been many thorough
analyses of its application to the development of large-scale

Engineering World
DOI:10.37394/232025.2023.5.18

Mary Adebola Ajiboye, Matthew Sunday Abolarin,
Johnson Adegbenga Ajiboye,

Abraham Usman Usman, Sanjay Misra

E-ISSN: 2692-5079 163 Volume 5, 2023

software. Although [11] conducted an experiment on the cost
of developing software with input primarily consisting of the
working time spent on development, the work did not
consider the time spent on debugging of codes. Therefore,
this work seeks to fill in the research gap.

2. Methodology

In this work, the basis of pair composition is programmer
expertise which is based on previous experience of pair
programming. The term Random pair and Individual Junior
were used in this study to produce a binary representation for
the levels of programming expertise in a project. A junior
programmer is a person with less than five years of project-
related experience. This is in line with common practice in
Software Engineering research [12].

They were further grouped to work as pairs, where two
programmers work together on a task and individuals.
According to [13], the pairing was based on their knowledge
and experience of pair programming. The grouping is as
shown in Table 1:

TABLE 1. GROUPING OF SOFTWARE PROGRAMMERS

Grouping Remark
Random pairs Regardless of how long they have been

working as pair programmers.
Individual
Junior

Agile approach experience of fewer
than five years.

The codes were extracted from an existing development
project; Smart Revenue System. The forked link is
https://github.com/ajiboyemary/phd2/blob/master/controller
s/api.py
Errors from one to ten were introduced into the python codes
as and these were given to one hundred individual junior
programmers and same set of codes were also given to one
hundred pair programmers randomly (years of experience not
considered) and time taken to debug various number of errors
was acquired as recorded in a log file.

2.1 Statistical Tools
Different types of variance analysis are provided by the
Analysis of Variance (ANOVA). Analysis of variance on
parametric data taken from a known population for three or
more samples can be achieved. In this work, ANOVA was
used to compare the average time spent on an error and the
time spent on each of the project containing different number
of bugs between the different pair programmers and the
different individual programmer. Significant means were
separated using the Duncan Multiple Range Test (DMRT).
DMRT is sensitive and used for separation of means within
the range of 3 and 10 samples.

Duncan created the multiple range test in 1955, which is a
widely used method for comparing all pairs of means. The
computation of numerical bounds that enable the assessment
of the difference between any two treatment means as
significant or non-significant is required for the use of
Duncan's Multiple Range Test (DMRT). The computation of
a number of values, each of which corresponds to a particular
set of pair comparisons, is necessary for DMRT. The mean

difference's standard error is what matters most. Using the
estimated variance of an estimated elementary treatment
contrast from the design, this is simply to be calculated.
According to the preferences of the character being studied,
rank all the treatment options for DMRT application in either
descending or ascending order.

2.2 Correlation Coefficient
The correlation coefficient measures how much two
measurements X and Y, differ from one another. Each set of
measurements is examined via correlation analysis to see
whether there is any tendency for them to move in tandem.
Between -1 and +1, the correlation coefficient can take on any
value. When big values of one variable tend to be correlated
with large values of the other, a positive correlation is
obtained. When small values of one variable tend to correlate
negatively with big values of the other, and when the values
of both variables tend to be unrelated, the correlation is close
to zero (zero). Bivariate correlation given in Equation 1, was
used to check the relationships between the number of bugs
in projects and the time spent to correct the errors. Bivariate
shows relationship between two variables x and y.

(1)

2.3 Regression Models
The Regression analysis analyzes how the values of one or
more independent variables affect the value of a single
dependent variable. The outcomes can be used to forecast
how a brand-new, untested data collection will perform.
Bivariate analysis, where exactly two measurements are
made on each observation was used.
The cubic regression model for the Random pair and
individual junior programmers are shown in Table 2.

TABLE 2. CUBIC REGRESSION MODEL OF THE NUMBER OF BUGS DEBUGGED
IN A PROJECT AND THE TIME TAKEN FOR THE DEBUGGING

Pair type R R2 Significance
of the

relationship

Random 0.859 0.738 *

Individual (Junior)
0.661 0.437 *

Y (Dependent variable): Time spent on debugging (min)
 X (Independent variable): Number of bugs in a project
 * Significant at 5% level
NS: Not significant at 5% level

Cubic regression model was used to generate metrics with
time spent on error as dependent variable EY(t) and number
of bugs as independent variable t for each of the pair of
random programmers and individual junior programmers as
shown in Equation 2.

3
3

2
210)(ttttEY   (2)

  

    







22
),(

yyxx

yyxx
YXCorrel

Engineering World
DOI:10.37394/232025.2023.5.18

Mary Adebola Ajiboye, Matthew Sunday Abolarin,
Johnson Adegbenga Ajiboye,

Abraham Usman Usman, Sanjay Misra

E-ISSN: 2692-5079 164 Volume 5, 2023

https://github.com/ajiboyemary/phd2/blob/master/controllers/api.py
https://github.com/ajiboyemary/phd2/blob/master/controllers/api.py

According to [14], the equation for the best fit model (cubic
model) is shown in Table 3 revealing the model metric
equations. The point at which a change in the time spent on
error was experienced based on cubic regression model for
both groups.

TABLE 3. CUBIC REGRESSION MODEL EQUATIONS

 Equation

Random Y = 0.461 x3 – 7.262 x2 + 47.868x – 40.528

Individual
(Junior)

Y = 0.346 x3 – 5.904 x2 + 45.182x –13.166

R-square (R2): is a metric that expresses how well the
anticipated values match the collection of measured data. The
correlation between the actual response and the projected
response is measured by R-square. It is also known as the
coefficient of multiple determinations and the square of the
multiple correlation coefficients given in Equation 3.

 












N

i

ii

N

i

ii

yy

yy

R

1

2

1

2

2

)(

)ˆ(
1

 (3)

where, iy is the measured data, iŷ is the predicted data and
iy is the data's mean as measured. For models without a

constant, R2 can take on any value between 0 and 1, but it can
also be negative, which shows that the model is inapplicable
to the data. A value that is nearer 1 means that more of the
variance is explained by the model. On the average, cubic
model gave the highest R2 value of 0.644 in comparison to
other models. Therefore, the patterns of the relationship
between the dependent and independent variable were
obtained by calculation using the best fit model.

3. Results of Debugging Time

Results for the cubic prediction model for Random pair
and individual junior programmers is hereby presented. Figure
1 compares the time taken by a Random pair of junior
programmers and an individual junior programmer to correct
errors ranging from 1 to 10. The outcome demonstrates that,
despite following a similar pattern, the time spent by each
junior programmer was consistently higher than that of the
random pair programmers.

Figure 1 Comparison of Random pair and Individual-
Junior for 1-10 bugs

However, in Figure 2 and after the eleventh bug, the pattern
altered, and the random programmer's debugging time began
to exceed that of the individual junior programmers.

Figure 2 Comparison of Random pair and Individual

Junior for 1-20 bugs

This trend continued for up to 100 bugs as shown in Figure 3
and Figure 4. For random pair, the time spent on debugging
10, 20, 30 and 100 errors are 173mins, 1700mins and
7307mins and 393196mins respectively while those of the
individual junior are 194mins, 1297mins, 5371mins and
291465mins respectively. The bugs were divided into groups
of 10, and the averages of each group for several
programmers were acquired to determine how long it took to
fix each bug.

Figure 3. Comparison of Random pair and Individual

Junior for 1-30 bugs

Figure 4. Comparison of Random pair and Individual-

Junior for 1-100 bugs

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

M
in

u
te

s

Number of bugs

Random Individual (Junior)

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
in

u
te

s

Number of bugs

Random Individual (Junior)

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

M
in

u
te

s

Number of bugs

Random Individual (Junior)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 5 9

13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

M
in

u
te

s

Number of bugs

Individual (Junior) Random

Engineering World
DOI:10.37394/232025.2023.5.18

Mary Adebola Ajiboye, Matthew Sunday Abolarin,
Johnson Adegbenga Ajiboye,

Abraham Usman Usman, Sanjay Misra

E-ISSN: 2692-5079 165 Volume 5, 2023

The average time spent in correcting an error in a system
software by both programmer expertise is shown in Table 4.

Table 4. Average time spent on debugging system software

error
Pair group Average time

spent on error
(min / error)

RANDOM PAIRS 21.88 ± 7.37a
INDIVIDUAL JUNIOR 16.57 ± 3.36b

± Means standard deviation on the same column with
different superscript are significantly different (p < 0.05).

4. Conclusion

The average time spent by the programmers on an error
showed some level of significant difference (p < 0.05). The
randomly paired programmers spent the highest average time
(21.88 min) on correcting an error which was significantly
higher than individual junior programmers. The Individual
Junior spent statistically comparable average time on
correcting a system software error. While, between 1 and 50
bugs, younger programmers' average debugging time is
higher than that of a random pair, while between 50 and 100
bugs, the situation is reversed.

References

[1] P. Kaushal, S. Anju “Review of Agile Software
Development Methodologies” International Journal of
Advanced Research in Computer Science and Software
Engineering, vol. 3 issue 2, pp. 123-133, 2013.

[2] S. Nerur, R.. Mahapatra, G. Mangalaraj “Challenges of
Migrating to Agile Methodologies” Communications of
the ACM, vol. 48 issue, pp. 72–78, 2005.

[3] R. Healy, T. Dey, K. Conboy, B. Fitgerald “A Novel
Technique to Assess Agile Systems for Stability” 24th
Intrnational Conference on Agile Software Develoment,
XP 2023, Amsterdam, the Netherlands, proceedings. pp.
30-43, June 13-16, 2023.

[4] L. Gonçalves, S. de Oliveira., J. Pacheco, P. Salume
“Competências requeridas em equipes de projetos ágeis:
um estudo de caso em uma Edtech” Revista de Gestão e
Projetos, vol. 11, issue 3, pp. 72-93, 2020.

[5] T. Dyba “Improvisation in Small Software
Organizations” IEEE Computer Society, vol. 17, issue 5,
pp. 82–87, 2000.

[6] A. Gheorghe, I. Gheorghe, I. Iatan “Agile Software
Development” Informatica Economică vol. 24, issue. 2,
2020.

[7] O. Demir, S. Seferoglu “he Effect of Determining Pair
Programming Groups According to Various Individual
Difference Variables on Group Compatibility, Flow, and
Coding Performance” Journal of Educational Computing
Research, vol. 59, issue 1, 20 August, 2020.

[8] V. Balijepally, R. Mahapatra, S. Nerur, K. Price “Are
Two Heads Better than One for Software Development?
The Productivity Paradox of Pair Programming” MIS
Quarterly, vol. 3 issue 1, pp. 91-118. 2009.

[9] J. Nosek, “The Case for Collaborative Programming.
Communication of the ACM”, vol. 41 issue 3, pp. 105-
108. 1998.

[10] Edison, H.; Wang, X.; Conboy, K. Comparing Methods
for Large-Scale Agile Software Development: A
Systematic Literature Review. IEEE Trans. Softw. Eng.
48, pp. 2709–2731, 2022.

[11] M. Sallin, M.Kropp, C. Anslow, R. Biddle “A Novel
Technique to Assess Agile Systems for Stability” 24th

Intrnational Conference on Agile Software Develoment,
XP 2023, Amsterdam, the Netherlands, proceedings. pp.
50-66, June 13-16, 2023.

[12] E. Herel, E. McLean “Effects of using Non Procedural
Computer Language on Programmer Productivity” MIS
Quarterly, pp. 109-120, 1985.

[13] S. Misra “Pair Programing: Empirical Investigation in an
Agile Development Environment, Springer Nature
Switzerland AG, pp. 195-1999, 2021.

[14] M. Ajiboye “Development of Quality Model Metrics for
Agile Software Engineering” PhD Thesis, Federal
University of Technology, Minna, Nigeria, 2016.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present

research, at all stages from the formulation of the

problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

Engineering World
DOI:10.37394/232025.2023.5.18

Mary Adebola Ajiboye, Matthew Sunday Abolarin,
Johnson Adegbenga Ajiboye,

Abraham Usman Usman, Sanjay Misra

E-ISSN: 2692-5079 166 Volume 5, 2023

