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Abstract: - This research presents the development and implementation of an integrated artificial intelligence 
model for electricity theft detection, combining Convolutional Neural Networks (CNN) and Support Vector 
Machines (SVM). The primary objective was to create a more accurate, efficient, and scalable method for 
identifying fraudulent electricity consumption patterns. Our CNN-SVM hybrid model leverages CNNs for 
automatic feature extraction from complex consumption data and SVMs for effective classification. This synergy 
allows for superior performance in detecting subtle anomalies indicative of electricity theft. The methodology 
involved pre-processing a large dataset of electricity consumption records, training the CNN to extract relevant 
features, and optimising the SVM classifier to distinguish between normal and fraudulent patterns. We evaluated 
the model's performance using metrics including accuracy, precision, recall, F1-score, and ROC AUC. Results 
demonstrated that our integrated CNN-SVM model significantly outperformed conventional machine learning 
techniques and standalone models in electricity theft detection. The model achieved an accuracy of 96.6%, with 
a precision of 97.2% and a recall of 96.1%. Comparative analysis against other state-of-the-art algorithms 
revealed consistently superior performance across all evaluation metrics. To enhance practical applicability, we 
developed and deployed a web application that implements the model, allowing for user-friendly interaction and 
real-time theft detection. This addition bridges the gap between research and real-world implementation, 
providing utility companies with an accessible tool for fraud detection. The study also explored the model's 
potential for real-time application and scalability to large-scale utility operations. Our findings suggest that the 
computational efficiency of the CNN-SVM model, coupled with the web application, offers utility companies a 
powerful and accessible tool for rapid response to potential fraud. This research contributes to the field of 
electricity theft detection by introducing a novel, high-performance AI model with a practical web-based 
implementation. The proposed approach not only improves detection accuracy but also offers potential for 
immediate real-world application, paving the way for more effective fraud prevention in the utility sector. 
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1 Introduction 
Electrical energy theft or non-technical loss (NTL) is 
the unlawful usage of energy from the grid and is 
performed without accurate metering and payment, 
[1]. This poses a major problem for electricity 
distribution companies who have significant losses 
and unstable networks, with losses deprioritising 
investments in upgrading the grid infrastructure, [2], 
[3]. According to Onat in 2008, 14.4% of Turkey’s 
electricity was used illegally, costing approximately 
$895.3 million, [4]. The value of electricity stolen 
annually in relatively poorer developing countries 
accounts for billions of dollars in losses annually, [5], 
as said by Messinis and Hatziargyriou. 

Electrical energy theft has a significant effect on 
Nigeria's power sector sustainability as described by 
Tsado and Abel in 2022, and acts as a bottleneck to 
nation building strides in Nigeria, [6]. Now, this 
rampant theft not only robs genuine consumers of 
quality power supply but also disincentivizes capital 
inflows to upgrade and expand the grid, ensuring this 
cycle to go on indefinitely, [7]. 
Manual metre reading and physical inspections are 
the primary ways in which electricity theft is 
traditionally detected. These approaches are slow, 
manpower eating and not always successful in 
finding high-level theft methods implemented by 
thieves. Moreover, some new methods presented for 
bypass detection problems are metre tampering, 
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unauthorised load manipulation and bypass 
connections, [8], [9]. However, that abridgment is too 
good to be true and manual inspections may miss 
important regions throughout a distribution network 
detecting the majority of cases of theft. 
The development of smart grids has allowed utilities 
and customers to communicate in both directions, 
completely changing the way power is distributed. 
Compared to standard metres, smart metres as an 
essential part of Advanced Metering Infrastructure 
(AMI) offer a more precise and detailed picture of 
energy usage by providing real-time data on patterns 
of electricity consumption, [3]. This data can be used 
to train machine learning (ML) and deep learning 
(DL) algorithms to precisely identify electricity theft 
in power grids, [10]. 
The limitations of traditional detection methods 
highlight the critical need for more sophisticated and 
automated approaches to identify electricity theft. In 
this regard, AI algorithms have shown promise as a 
potential remedy. It can analyse vast amounts of data 
from smart metres and identify minute irregularities 
that could be signs of theft [10]. Artificial 
intelligence methods, including deep learning 
algorithms, which have the ability to identify intricate 
patterns in past consumption data and apply them to 
categorise current readings as either normal or 
suspect. When compared to manual procedures, this 
automated approach can greatly increase detection 
efficiency and accuracy. While various ML and DL 
models have been explored for electricity theft 
detection, several limitations remain. Traditional ML 
methods often rely on one-dimensional (1D) 
consumption data, failing to capture the periodicity 
inherent in electricity usage patterns, [11]. 
Additionally, imbalanced datasets, where legitimate 
users significantly outnumber electricity thieves, can 
hinder model performance in accurately classifying 
the minority class (theft), [12]. 
DL algorithms are very good at finding patterns in 
large, complicated data sets, which makes them ideal 
for assessing the vast quantities of data produced by 
smart metres, [8], [12]. By processing consumption 
data across different time intervals, these algorithms 
can capture temporal patterns, consumption spikes, 
and other irregularities indicative of theft activities 
[11]. Also, the requirement for labour-and resource-
intensive human feature engineering is eliminated by 
deep learning models' ability to automatically extract 
relevant features from the data [10]. 
The effective development and deployment of AI-
driven systems for detecting electricity theft present 
various notable advantages for both power 
distribution companies and consumers: 

Decreased Revenue Losses: Through precise 
identification of electricity theft, power distribution 
companies can reduce monetary losses and enhance 
their revenue flow. This financial gain can then be 
channelled into grid enhancements and growth, 
ultimately resulting in a more dependable and 
effective power provision for all consumers [2], [7]. 
Improved Grid Stability: Early detection of theft 
activities can help prevent overloading of the grid and 
ensure stable power supply for legitimate consumers. 
Unaddressed theft can lead to power outages and 
disruptions, impacting businesses, homes, and 
critical infrastructure [6].  
Enhanced Efficiency: AI-based systems can 
automate the detection process, freeing up manpower 
for other critical tasks within the power distribution 
company. Previously, manual metre reading and 
inspection required a significant investment of 
human resources. Automating theft detection allows 
utilities to deploy personnel more effectively for 
maintenance, customer service, and grid 
infrastructure improvement projects [3].  
Data-driven Decision Making: The insights gleaned 
from the model's predictions can inform more 
targeted and effective strategies for curbing 
electricity theft [13]. Utilities can use the data to 
identify areas with high theft prevalence and deploy 
targeted intervention efforts. In addition, the data can 
also be utilised to create consumer education 
programmes that emphasise the negative effects of 
electricity theft to the grid [13]. 
Despite the advancements in AI-based electricity 
theft detection, several challenges remain 
unaddressed; 
Data Availability: Obtaining sufficient labelled data 
for training complex AI models can be a significant 
hurdle. Labelled data refers to data points where the 
consumption pattern has been categorised as either 
normal or indicative of theft. Due to privacy issues, 
utilities might be reluctant to disclose customer data. 
Data augmentation techniques and transfer learning 
can be looked into to overcome this problem, [14]. 
Data Privacy: Data privacy concerns are paramount 
when dealing with customer consumption data. 
Sensitive information about a consumer's daily 
activities can be inferred from their electricity usage 
patterns, [15]. Anonymization and privacy-
preserving strategies must be used to guarantee 
adherence to applicable laws, [11]. 
Class Imbalance: Electricity theft data might be 
imbalanced, with a significant majority of readings 
representing normal consumption patterns and a 
smaller portion reflecting theft activities. This 
imbalance can hinder the training process of AI 
models [12]. This issue could be solved by 
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employing strategies like oversampling or under-
sampling the data. 
Evolving Theft Techniques: As detection methods 
improve, perpetrators may adopt more sophisticated 
theft techniques to circumvent them [11]. The AI 
model needs to be continuously updated and adapted 
to identify new and emerging theft patterns. 
Several machine learning and deep learning 
approaches have been explored for electricity theft 
detection, with varying degrees of success. 
 

 

2 Related Works 
The detection of electricity theft has evolved 
significantly over the past two decades, progressing 
from simple meter-based detection to sophisticated 
AI-driven approaches. Early pioneering work by 
Hernandes Jr et al., in 2001 established the 
foundation for non-invasive theft detection by 
developing an electronic Ah meter device for 
comparing customer consumption patterns, [16]. 
Their comprehensive statistical study, involving over 
80,000 customers in São Paulo, Brazil, demonstrated 
the effectiveness of consumption pattern analysis in 
identifying tampered or defective meters, achieving 
significant improvement in inspection efficiency. 
Building on this statistical approach, Nagi et al., 
introduced one of the first applications of Support 
Vector Machines (SVM) for electricity theft 
detection in 2008. Their work with Tenaga Nasional 
Berhad in Malaysia demonstrated how machine 
learning could effectively analyse customer load 
profiles to expose abnormal behaviour correlated 
with Non-Technical Loss (NTL) activities, [17]. This 
marked a crucial shift towards automated 
classification approaches, achieving superior results 
compared to traditional inspection methods. Stajić et 
al., further contributed to this evolution by 
developing an interoperable smart grid platform in 
Serbia, emphasizing the importance of 
comprehensive monitoring systems in loss detection 
and establishing the groundwork for modern AI-
based approaches, [18]. 
More recent developments have focused on deep 
learning approaches. Zheng et al., introduced a wide 
and deep CNN model for electricity theft detection in 
smart grids, [19]. Their model comprises two 
components: a deep CNN component for capturing 
nonperiodic theft patterns and a wide component for 
extracting global features from electricity 
consumption data. By leveraging 2-D data 
representation, their approach demonstrated superior 
performance in detecting theft activities compared to 
existing methods. Hasan et al., proposed a CNN-
LSTM hybrid model tailored for smart grid data 

classification, [20]. LSTM architecture addresses the 
time-series nature of power consumption data, while 
CNN automates feature extraction and classification 
processes. Their work emphasises the importance of 
data pre-processing, including interpolation and 
outlier handling, to enhance model accuracy. 
Additionally, they employed synthetic data 
generation to mitigate class imbalance issues, 
achieving satisfactory results in identifying theft 
users. However, LSTMs can be computationally 
expensive to train and may require large datasets for 
optimal performance. Fang et al., introduced a LSTM 
and a modified CNN to predict electricity usage 
patterns and detect abnormalities, [21]. The authors 
extract relevant features that affect meter error, such 
as voltage and current readings at different intervals. 
They included polynomial fitting to model the error 
values in electricity measurements. By comparing 
different polynomial degrees, the authors identify the 
best fit for the data, which helps in understanding the 
underlying patterns and trends. An LSTM model with 
40 neurons in the first hidden layer and using the root 
mean square error (RMSE) as the loss function was 
used. The model was trained for 1000 epochs. the 
authors use a sliding window approach to identify 
days with significant deviations between predicted 
and actual values. This method not only helps in 
detecting anomalies but also helps in identifying 
faulty meters that need replacement. The authors also 
compare different models and found that the time 
series recurrence plot CNN (TS-RP CNN) performs 
best in detecting anomalies, achieving an accuracy of 
about 82%. Yao et al., introduced a hybrid method, 
AdaBoost-CNN, combining adaptive boosting 
(AdaBoost) and CNN for electricity theft detection, 
[22]. Multiple CNN-based classifiers were trained to 
extract diverse features from consumption data, 
which were then aggregated by AdaBoost to enhance 
classification performance. Their experimental 
results, based on real smart energy data, 
demonstrated the superiority of the hybrid classifier 
over conventional methods in detecting theft 
activities. Singh and Venkaiah in 2023, addressed the 
challenge of data imbalance in theft detection by 
proposing a multi-layer model classifier, [23]. Their 
approach involves data preparation, including 
interpolation and outlier handling, followed by data 
balancing techniques such as AdaSys. A two-layer 
model, comprising heterogeneous machine learning 
models and an ANN, demonstrated improved 
performance in identifying theft users on real 
consumption datasets. Mazid et al., proposed a hybrid 
approach combining principal component analysis 
(PCA) and CNN for power theft detection, [24]. 
Their method involves feature selection, extraction, 
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and classification stages applied to smart metre data. 
By leveraging optimised hyperparameters and CNN-
PCA methodology, their approach achieved high 
accuracy rates, outperforming previous methods. 
Zhou et al., addressed the challenge of sparse and 
imbalanced data in low-voltage networks by 
proposing a CNN and data augmentation method for 
theft detection, [25]. Their approach utilises kernel 
density estimator (KDE) and Monte Carlo method for 
data expansion, followed by CNN classification. 
Experimental results confirmed the effectiveness of 
their method in achieving high performance metrics. 
Ibrahim et al., presented a CNN-based approach for 
electricity theft detection in smart grids, [26]. Their 
work focused on feature reduction using the Blue 
Monkey (BM) algorithm to enhance classifier 
performance. By designing high-performance signal 
classifiers, their approach demonstrated promising 
results in identifying theft activities. Dimf et al., 
proposed a bi-LSTM and CNN hybrid model for theft 
detection, incorporating various techniques such as 
data pre-processing, synthetic data generation, and 
feature selection, [27]. Their approach achieved high-
quality results comparable to existing methods, 
highlighting the effectiveness of combining CNN and 
bi-LSTM architectures. Khan et al., addressed 
challenges in electricity theft detection using 
supervised learning techniques on smart metre data, 
[15]. Their proposed model combines Adasyn 
algorithm for class imbalance, VGG-16 module for 
feature extraction, and FA-XGBoost for 
classification. Simulation results demonstrated 
superior performance in handling large time series 
data and accurate theft detection. Abel et al., 
proposed a matrix converter-based solution to 
mitigate electricity theft at low distribution voltages, 
[28]. By focusing on frequency variation and Total 
Harmonic Distortion (THD), their approach aimed to 
eliminate metre bypassing theft, presenting a novel 
solution to complement smart metering systems. 
Ullah et al., introduced a hybrid deep neural network 
model combining CNN, particle swarm optimization, 
and gated recurrent unit for electricity theft detection, 
[29]. Their approach addressed issues of overfitting 
and data imbalance, achieving robustness, accuracy, 
and generalisation in theft detection tasks. 
The evolution of electricity theft detection techniques 
reveals a clear trend toward increasingly 
sophisticated machine learning approaches, with 
particular emphasis on improving classification 
accuracy through hybrid models and advanced data 
pre-processing techniques. While early methods 
relied on simple statistical comparisons, modern 
approaches leverage deep learning architectures to 
capture complex patterns in consumption data. 

However, challenges remain in balancing 
computational efficiency with classification 
accuracy, particularly when dealing with imbalanced 
datasets and real-time detection requirements. These 
challenges present opportunities for further research 
in developing more efficient and accurate detection 
methods. 
 

3 Methodology 
This research proposes an integrated AI model that 
combines the strengths of CNNs and SVMs to 
address the limitations of existing techniques. This 
chapter discusses a breakdown of the proposed 
method. The proposed method is divided into three 
phases; (1) data pre-processing, (2) feature 
extraction, and (3) classification phase. Figure 1 
shows the workflow of the proposed method. 
 

 
Fig. 1: Workflow of the proposed method 

 

3.1 Data Pre-processing 
The main aim of pre-processing is to verify the 
quality of the data to be used and to transform the data 
into usable format, [30], [31]. The pre-processing 
steps involve data cleaning (outlier removal, 
duplicate removal and filling of missing values) and 
data normalisation. Outlier removal was done by 
applying the IQR technique. The filling of missing 
values is done using the SimpleImputer method and 
the mean strategy. Oversampling involves replicating 
data points from the minority class (theft) to create a 
more balanced dataset. Data normalisation was done 
by scaling the features of the dataset to a standard 
range using Sklearn’s StandardScaler method to 
ensure uniformity and prevent dominance by certain 
features. Data pre-processing is very important 
because the model’s efficiency is also dependent on 
the quality of the data [32].  
 
3.2 Feature Extraction 
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Extracting relevant features from raw data helps in 
improving the model’s performance and accuracy. In 
this project feature extraction was done using CNN. 
 
3.2.1 Detailed Feature Extraction Architecture of 

CNN  

The feature extraction architecture of a 
Convolutional Neural Network (CNN) comprises 
several key components, including convolutional 
layers, pooling layers, activation functions, and fully 
connected layers. Each component plays a crucial 
role in the network's ability to learn hierarchical 
features from input data. 
 
The convolutional layers consist of filters that 
convolve across the input data to extract features. 
Each filter detects patterns or features in the input 
data through element-wise multiplications followed 
by summation operations. Mathematically, the output 
of a convolutional layer can be expressed as: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝐼𝑛𝑝𝑢𝑡 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟 + 𝑏)                      (1) 

Where * denotes the convolution operation, f is the 
activation function (ReLU), and b represents the bias 
term, [33]. 
Activation functions introduce non-linearity into the 
network, enabling it to learn complex patterns. The 
Rectified Linear Unit (ReLU) is commonly used due 
to its computational efficiency and ability to mitigate 
the vanishing gradient problem: 
 
ReLU(x) = max(0, x)        (2) 
 
Pooling layers down-sample the feature maps 
obtained from the convolutional layers, reducing 
their spatial dimensions while retaining important 
features, [34]. This helps in reducing computational 
complexity, providing a form of translation 
invariance, controlling, and overfitting, [34]. 
Common pooling operations include max pooling 
and average pooling. 
After passing through the convolutional and pooling 
layers, the extracted features reside in a multi-
dimensional format. The flatten layer transforms this 
data into a single 1D vector suitable for feeding into 
the next layer, [35]. 
The fully connected layers connect every neuron in 
one layer to every neuron in the next layer, enabling 
high-level feature learning and classification. The 
output of a fully connected layer can be expressed as: 
 
y = f(Wx + b)                                         (3) 
 

Where W is the weight matrix, x is the input vector, 
b is the bias vector, and f is the activation function, 
[33]. 
 
The output of the last fully connected layer is fed into 
a sigmoid activation function for binary classification 
into different classes, [35]:  
 
𝜎(𝑥) =

1

(1 + 𝑒−𝑥)
                                                   (5) 

 
For multi-class classification, a softmax function 
may be employed, [35]. The overall CNN 
architecture integrates these components in a 
sequential manner, allowing for end-to-end learning 
of features and classification. Figure 2 illustrates a 
typical CNN architecture, showcasing the 
arrangement of these layers. 
 
 

 
Fig. 2: Typical CNN architecture 

 
3.3 Classification 
When presented with a new data point (representing 
an unseen consumption sequence), the CNN extracts 
features and presents them to the SVM as shown in 
figure 3. Based on the hyperplane and the support 
vectors learned during training, the SVM classifies 
the new data point as either normal consumption or 
potential theft. 

 

Fig. 3: Framework of proposed model 
 

3.3.1 Detailed Architecture of SVM 

Support Vector Machines (SVMs) are supervised 
learning models commonly used for classification 
and regression. The primary objective of SVM is to 
find an optimal hyperplane that maximizes the 
margin between two classes in a dataset, [35]. 
In SVM, the goal is to maximize the margin, or 
distance, between the separating hyperplane and the 
closest data points from each class. For linearly 
separable data, this margin maximization is 
formulated as a convex optimization problem, [36]. 
The hyperplane can be defined as: 
 
f(x)=w⋅x+b                                                   (4) 
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where w is the weight vector, and b is the bias term. 
The optimization goal for a hard-margin SVM is to 
minimize the norm ∥w∥2, which directly maximizes 
the margin. This leads to the primal optimization 
problem: 
 

min
𝜔,𝑏,𝜀

1

2
||𝜔||2  +  𝐶 ∑ 𝜀

𝑁

𝑖=1

                                   (5) 

 
Solving SVMs in their dual formulation often 
simplifies computations, especially with high-
dimensional data. The dual formulation uses 
Lagrange multipliers 𝛼𝑖 to reformulate the objective 
in terms of dot products between input vectors, which 
enables the kernel trick. The kernel trick allows 
SVMs to implicitly compute the dot product in the 
higher-dimensional feature space without explicitly 
transforming the data, [37]. This makes SVMs 
computationally efficient for high-dimensional data. 
The dual problem is given by: 
 

max
𝛼

∑ 𝛼𝑖

𝑁

𝑖=1

 −  
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

                                   (6) 

 
subject to: 
 

0 ≤ 𝛼𝑖 ≤ 𝐶, = ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0                       (7) 

This dual form allows us to apply kernel functions, 
which compute dot products in a high-dimensional 
feature space without explicitly transforming the 
data, reducing computational complexity. 
Kernel functions are used by SVMs to transform 
input data into higher-dimensional feature spaces, 
where linear separation becomes possible [35]. 
Common kernel functions include: 
 Linear kernels: Suitable for linearly separable 

data and high-dimensional spaces. 
 Polynomial kernels: Useful for data with 

complex relationships. 
 Radial basis function (RBF) kernels: Effective 

for non-linearly separable data. 
 Sigmoid kernels: It is used as an alternative to the 

RBF kernel, often used in neural networks; less 
commonly applied in SVMs. 

To handle complex data distributions, SVM employs 
a non-linear mapping that transforms the input data 
into a high-dimensional feature space. In this feature 
space, a linear decision boundary can be identified, 

which corresponds to a non-linear boundary in the 
original input space, [37]. By using kernel functions, 
SVM avoids the computational cost of explicitly 
mapping data, making it both efficient and powerful 
for non-linear data [35]. 
In summary, SVMs are effective in high-dimensional 
and non-linear settings due to the combination of 
kernel functions, dual formulation, and support 
vector optimization, providing an adaptable solution 
for tasks like electricity theft detection. This 
adaptability enables SVMs to classify data accurately 
by maximizing the margin between classes, thus 
ensuring robust performance across various 
applications. Figure 4 presents the SVM 
classification architecture. 
 

 
Fig. 4: SVM classification architecture 

 
3.4 Model Evaluation  
After training, the integrated model underwent 
evaluation to assess its performance in detecting 
electricity theft. 
Various performance metrics such as accuracy, 
precision, recall, F1-score, and ROC-AUC were used 
to measure the model's effectiveness in 
distinguishing between normal and theft activities. 
The equation of accuracy, precision, recall and f1-
score are given below. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
            (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                     (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                           (5) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
      (6) 

 
A confusion matrix was generated to visualise the 
model's classification results and identify any 
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misclassifications or errors. Confusion matrix 
divides the dataset into four basic segments: true 
positive (TP), false positive (FP), true negative (TN) 
and false negative (FN), [38]. TP and TN show the 
correctly predicted positive and negative samples 
whilst FP and FN show the falsely classified negative 
samples as positive and positive samples as negative, 
respectively, [38]. ROC curve which analyses the 
trade-off between true positive rate and false positive 
rate was also plotted. The true positive rate and false 
positive rate are expressed below. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (7) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
    (8) 

 
3.5 Deployment  
The model was deployed to the cloud using a Python 
web framework, Streamlit, after satisfactory 
evaluation and hyperparameter tuning. Streamlit is an 
open source Python for building interactive web 
applications and for easy deployment of machine 
learning models. 
 
4 Result 
The model's performance is demonstrated by the 
experimental results. We evaluated the performance 
with different performance metrics. The model’s 
performance was compared to the performance of 
other machine learning models using the same 
dataset. 
 
4.1 Experimental Results  
Using evaluation measures like accuracy, recall, 
precision, F1-score, and ROC AUC score, we 
assessed the effectiveness of the proposed approach. 
The percentage of all subjects that were correctly 
classified is referred to as accuracy. Recall is the 
percentage of those who test positive and actually 
have the condition. The number of the subjects 
accurately classified as positive out of all those 
classified as positive is known as precision. A 
harmonic mean of recall and precision is the F1-
score. ROC AUC score shows how well the classifier 
distinguishes positive and negative classes. Table 1 
shows the performance score of the model for 
different metrics.  
 
Table 1. Performance of Proposed model 
 

 
 
Table 1 shows the performance score of our proposed 
model for different metrics. As shown, the model 
achieves high scores across all metrics, with an 
accuracy of 0.966 and a ROC-AUC of 0.976, 
indicating strong overall performance and 
discriminative ability. 

 
Fig. 5: Confusion Matrix of test set prediction result 
of proposed model 
 
The classification results of the model proposed from 
the figure 5, which is the confusion matrix are as 
follows: the number of TPs, FNs, FPs, and TNs is 
9679, 283, 394, and 9644, respectively. Figure 6 
shows the roc curve. 

 
Fig. 6: ROC curve of proposed model 

Metric Score 

Accuracy 0.966 

Recall 0.961 

Precision 0.972 

F1 0.966 

ROC AUC 0.976 
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4.2 Comparative Analysis  
To evaluate the effectiveness of our proposed hybrid 
CNN-SVM model, we conducted a comprehensive 
comparative analysis against several state-of-the-art 
machine learning and deep learning models. Table 2 
presents the ROC AUC scores for different methods, 
while Figure 7 illustrates the performance metrics 
across all comparative experiments. 
 
Table 2. Performance comparison with other models 
 
 
 
 
 
 
 
 
 
 
 
 
 
As evident from Table 2, our proposed CNN-SVM 
model achieves the highest ROC AUC score of 
0.976, outperforming all other models. The next best 
performer is XGB (Extreme Gradient Boosting) with 
a ROC-AUC of 0.964, followed closely by LR 
(Logistic Regression) at 0.963 and RF (Random 
Forest) at 0.962. The standalone CNN and SVM 
models show lower performance with ROC AUC 
scores of 0.94 and 0.89, respectively. 
Figure 7 provides a more detailed comparison across 
multiple performance metrics 
 

 
Fig. 7: Comparison with other models 

 
The superior performance of the proposed CNN-
SVM model is evident across all metrics. It achieves 
the highest scores in accuracy (0.966), precision 
(0.972), F1 score (0.966), and ROC AUC (0.976). 
The model's recall (0.961) is slightly lower than the 
standalone CNN (0.98), but this is compensated by 

its significantly higher precision, resulting in a better 
overall F1 score. 
The effectiveness of our hybrid approach is further 
emphasised when comparing it to the standalone 
CNN and SVM models. The CNN-SVM model 
outperforms both in all metrics except recall, where 
the standalone CNN shows a marginally higher score. 
This suggests that the hybrid model successfully 
leverages the strengths of both techniques while 
mitigating their individual weaknesses. 
Among the traditional machine learning models, 
XGB and LR show competitive performance, 
particularly in terms of accuracy and ROC AUC. 
However, they fall short of the CNN-SVM model 
across all metrics. The Decision Tree (DT) model 
shows the lowest performance among the compared 
models, indicating its limitations in capturing the 
complex patterns inherent in electricity theft data. 
 
4.3 Web Application  
An intuitive interface for non-technical users in 
utility companies was developed to allow them to 
easily interpret and act on the model's outputs. Figure 
8, shows the home page which contains the fields 
where the user is expected to input. After the user 
puts in the relevant inputs and clicks the predict 
button the result is shown which is either figure 9, for 
theft detected, and figure 10, for a normal user. 
 

 
Fig. 8: Home page 

 

 
Fig. 9: Theft Detected 

 

Model ROC AUC 

score 

CNN-SVM 0.976  

CNN 0.94 
SVM 0.89 
XGB 0.964 
RF 0.962 
DT 0.951 
LR 0.963 
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Fig. 10: Normal user 

 
4.4 Discussion  
Accuracy, recall, precision, f1-score, ROC-AUC 
score, and confusion matrix, which summarise the 
prediction outcomes on the test data, were used to 
assess the performance of the proposed model. On 
the test data, the suggested model outperformed other 
machine learning models like CNN-SVM, CNN, 
SVM, XGB, RF, DT, and LR, achieving an accuracy 
of 0.966. In comparison to these models, the 
proposed model had higher recall, precision, f1-
score, and ROC-AUC score.  
The results of this study indicate that the proposed 
CNN-SVM hybrid model is an efficient approach for 
electricity theft detection, offering improvements in 
both accuracy and reliability. 
The web application’s interface makes it easy for 
non-technical users in utility companies to easily 
interpret and act on the model's outputs. 
 

5 Conclusion and Future Work 
The proposed CNN-SVM hybrid model addresses the 
significant energy and financial losses caused by 
electricity theft and consumer misuse. This approach 
not only promises to reduce non-technical losses for 
utility companies but also encourages more efficient 
electricity usage among consumers. 
 
Our integrated CNN-SVM model demonstrated 
superior performance compared to traditional 
machine learning approaches in detecting electricity 
theft. By synergizing the feature extraction 
capabilities of CNNs with the robust classification 
strength of SVMs, we achieved higher accuracy, 
precision, and recall. The CNN component proved 
particularly effective in automatically extracting 
relevant features from raw consumption data, while 
the SVM classifier excelled in discriminating 
between legitimate consumption patterns and 
fraudulent activities. This resulted in a lower false 
positive rate, crucial for practical implementation in 
real-world scenarios. 
 
The model can be integrated into smart grid systems 
for real-time monitoring and detection of anomalies 

in electricity consumption patterns. Utility 
companies can use this system to identify potential 
theft cases, thereby protecting their revenue streams. 
The model's insights can help in understanding and 
predicting consumer behaviour, leading to improved 
energy management strategies. The system can assist 
in ensuring compliance with energy regulations by 
detecting unusual consumption patterns that may 
indicate non-compliance. 
 
This research demonstrates the effectiveness of 
combining deep learning (CNN) with traditional 
machine learning (SVM) for complex pattern 
recognition tasks. The success of our model in 
extracting features from electricity consumption data 
advances the field of automated feature learning in 
time series analysis. Our approach shows how AI can 
be scaled to handle large-scale, real-world problems 
in the energy sector. 
 
The CNN-SVM model can be further enhanced by 
integrating it with other AI technologies. 
Incorporating Reinforcement Learning algorithms 
could allow the model to adapt and improve its 
detection capabilities over time based on feedback 
from real-world implementations. Implementing 
explainable AI techniques could make the model's 
decisions more interpretable, increasing trust and 
adoption among stakeholders. Also, federated 
Learning could enable multiple utility companies to 
collaboratively train the model without sharing 
sensitive data, enhancing its generalisation 
capabilities. 
 
Future research directions for this project are varied 
and promising. To further enhance the model's 
capabilities, incorporating data from smart metres, 
weather patterns, and socio-economic indicators 
could provide valuable contextual insights, leading to 
improved detection accuracy. Another critical area of 
focus is ensuring the model's resilience against 
adversarial attacks, which is crucial for high-stakes 
applications where reliability is paramount. 
Additionally, exploring the model's adaptability to 
different geographical regions and energy 
consumption patterns through transfer learning 
techniques could significantly broaden its 
applicability. Investigating the feasibility of 
deploying lightweight versions of the model on edge 
devices would enable real-time, on-site detection, 
making the system even more efficient. Lastly, 
addressing potential biases in the model and ensuring 
fair treatment across different consumer 
demographics is essential for maintaining a just and 
equitable solution. By pursuing these research 
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directions, the model can become even more 
effective, robust, and widely applicable, ultimately 
driving progress in electricity theft detection and 
contributing to a more sustainable energy future. 
 
In conclusion, while our CNN-SVM hybrid model 
shows significant promise in addressing the critical 
challenge of electricity theft, continued research and 
development are necessary. Future work should 
focus on enhancing the model's adaptability, 
interpretability, and ethical implementation. As we 
advance, the integration of this technology with 
broader smart grid initiatives and energy 
management systems could lead to more efficient, 
secure, and sustainable energy ecosystems. The 
potential impact extends beyond theft detection, 
potentially revolutionising how we understand and 
manage energy consumption in an increasingly 
connected world. 
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