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Abstract: - An original integral formulation of the three-dimensional contravariant Navier-Stokes equations, 
devoid of the Christoffel symbols, in general time-dependent curvilinear coordinates is presented. The proposed 
integral form is obtained from the time derivative of the momentum of a material fluid volume and from the 
Leibniz rule of integration applied to a control volume that moves with a velocity which is different from the 
fluid velocity. The proposed integral formulation has general validity and makes it possible to obtain, with 
simple passages, the complete differential form of the contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system. The integral form, devoid of the Christoffel symbols, proposed in this 
work is used in order to realise a three-dimensional non-hydrostatic numerical model for free surface flows, 
which is able to simulate the discontinuities in the solution related to the wave breaking on domains that 
reproduce the complex geometries of the coastal regions. The proposed model is validated by reproducing 
experimental test cases on time dependent curvilinear grids. 
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1 Introduction 
The study of the fluid motion in three-dimensional 
form on domains characterised by complex 
geometries can be carried out by using boundary 
conforming curvilinear coordinate systems and by 
expressing the governing equations in contravariant 
formulation. In literature, several authors have used 
the contravariant formulation of the Navier-Stokes 
equations in fixed curvilinear coordinates in order to 
study flows in complex geometries [1,2]. When 
dealing with complex geometries which vary in 
time, some authors have used systems of moving 
curvilinear coordinates (which are time dependent): 
in this approach, the irregular time varying physical 
domain, whose boundaries are represented by time 
dependent curvilinear surfaces, is transformed into a 
uniform fixed computational domain [3,4]. The 
simulation of three-dimensional flow fields and free 
surface elevation in coastal regions characterized by 
complex morphology requires numerical models 
that make use of unstructured grid [5-6]. Rosenfeld 
and Kwak [7] used a contravariant form of the 
Navier-Stokes equations in moving curvilinear 
coordinates for the simulation of flows in cavities 
with variable geometry. A complete differential 
contravariant formulation of the Navier-Stokes 
equations in time dependent curvilinear coordinates 

was obtained by Luo and Bewley [8], who used a 
tensorial approach. The latter have obtained the 
differential form of the contravariant Navier-Stokes 
equations in a time dependent curvilinear coordinate 
system, starting from the intrinsic derivative of 
contravariant vectors in a moving frame. Recently, 
several authors have used the tensorial approach of 
Luo and Bewley [8] in order to express the 
differential motion equations in covariant form and 
contravariant form in time dependent curvilinear 
coordinate systems. The differential form of the 
contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system obtained 
by Luo and Bewley [8] includes the covariant 
derivatives of contravariant vectors. Such covariant 
derivatives imply the presence of the Christoffel 
symbols. These terms are extra source terms that 
prevent the convective terms of the motion 
equations from being expressed in conservative 
form. In order to obtain a numerical model for the 
solution of conservation laws which is able to 
converge to the weak solution, it is necessary to 
express the convective terms of the differential 
motion equations in conservative form or express 
the motion equations directly in integral form [9].  

In this work we propose an alternative approach 
to that proposed by Luo and Bewley [8], whereby it 
is possible to express the momentum equation in an 
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integral contravariant form, in which the Christoffel 
terms are absent, in a time dependent curvilinear 
coordinate system [10]. This approach is based on 
the definition of the momentum time derivative of a 
fluid material volume and on the Leibniz rule of 
integration for a volume which moves with a 
velocity that is different from the fluid velocity. The 
resulting equation represents the general integral 
contravariant formulation of the momentum 
equation in a time dependent curvilinear coordinate 
system. Indeed, taking the limit as the volume 
approaches zero, with simple passages we obtain the 
complete differential formulation of the 
contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system, which is 
the same as the one obtained by Luo and Bewley 
[8].  

The proposed integral contravariant momentum 
equation, devoid of the Christoffel symbols, is used 
to realise a three-dimensional non-hydrostatic 
numerical model for free surface flows, which is 
able to simulate the wave motion and the 
discontinuities in the solution, related to the wave 
breaking, on domains that reproduce the complex 
geometries of the coastal regions. The physical 
domain, which reproduce the geometry of the 
coastal region and the free surface variations along 
the vertical direction, is described by curvilinear 
boundary conforming time dependent coordinates.  

In the proposed model, the integral contravariant 
form of the momentum and continuity equations are 
solved by a finite volume shock capturing scheme, 
which uses an HLL approximate Riemann solver 
[11] which is proven to be effective to simulate 
shocks both in depth-averaged [12-17] and in fully 
three-dimensional free surface flows [10,18-21].  

The paper is organised as follows. In Section 2, 
the integral and contravariant formulation of the 
motion equations in a system of time varying 
curvilinear coordinates, devoid of the Christoffel 
symbols is presented. In Section 3 the procedure is 
shown by which, starting from the proposed integral 
formulation, the differential form of the 
contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system is 
achieved.  

In Section 4, we propose an original 
contravariant integral formulation of the three-
dimensional motion equations for non-hydrostatic 
free surface flows in a time dependent curvilinear 
coordinate system. In Section 5 the results are 
shown and discussed. Conclusions are drawn in 
Section 6. 

 
 

 
 
2 Derivation of the contravariant 
Navier-Stokes equations in a time 
dependent curvilinear coordinate 
system 
We consider a time-dependent transformation, 
𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏), 𝑡𝑡 = 𝜏𝜏, from the Cartesian 
coordinate system (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3, 𝑡𝑡) to the curvilinear 
coordinate system, (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏), and the inverse 
transformation, 𝜉𝜉𝑖𝑖 = 𝜉𝜉𝑖𝑖(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, 𝑡𝑡), 𝜏𝜏 = 𝑡𝑡. Let 
�⃗�𝑔(𝑙𝑙) = 𝜕𝜕�⃗�𝑥 𝜕𝜕𝜉𝜉𝑙𝑙⁄  be the covariant base vectors and 
�⃗�𝑔(𝑙𝑙) = 𝜕𝜕𝜉𝜉𝑙𝑙 𝜕𝜕�⃗�𝑥⁄  the contravariant base vectors and let 
us indicate by the point “∙” the scalar product 
between vectors defined in the Cartesian coordinate 
system. The metric tensor and its inverse are 
defined, respectively, by 𝑔𝑔𝑙𝑙𝑙𝑙 = �⃗�𝑔(𝑙𝑙) ∙ �⃗�𝑔(𝑙𝑙) and 
𝑔𝑔𝑙𝑙𝑙𝑙 = �⃗�𝑔(𝑙𝑙) ∙ �⃗�𝑔(𝑙𝑙) (𝑙𝑙,𝑙𝑙 = 1,3). The Jacobian of the 
transformation is given by �𝑔𝑔 = �|𝑔𝑔𝑙𝑙𝑙𝑙 |. The 
transformation relationships between the 
components of the generic vector 𝑏𝑏�⃗  in the Cartesian 
coordinate system and its contravariant and 
covariant components, 𝑏𝑏𝑙𝑙  and 𝑏𝑏𝑙𝑙 , in the curvilinear 
coordinate system are given by 
 

𝑏𝑏𝑙𝑙 = �⃗�𝑔(𝑙𝑙) ∙ 𝑏𝑏�⃗           ;          𝑏𝑏�⃗ = 𝑏𝑏𝑙𝑙�⃗�𝑔(𝑙𝑙)  

𝑏𝑏𝑙𝑙 = �⃗�𝑔(𝑙𝑙) ∙ 𝑏𝑏�⃗           ;          𝑏𝑏�⃗ = 𝑏𝑏𝑙𝑙�⃗�𝑔(𝑙𝑙) (1) 

In order to express the integral formulation of the 
contravariant momentum equation in a time 
dependent coordinate system, let us start from the 
contravariant expression of the three-dimensional 
Leibniz integral rule. Let 𝜌𝜌 and 𝑢𝑢𝑙𝑙  be, respectively, 
the density and the 𝑙𝑙𝑡𝑡ℎ  (𝑙𝑙 = 1,3) contravariant 
component of the fluid velocity vector. Let ∆𝑉𝑉1(𝜏𝜏) 
be a time-varying control volume bounded by a 
surface, of area ∆𝐴𝐴1(𝜏𝜏), every point of which moves 
with a velocity that is different from the fluid 
velocity. By using the three-dimensional Leibniz 
integral rule, the time derivative of the integral of 
𝜌𝜌𝑢𝑢𝑙𝑙  over the volume ∆𝑉𝑉1(𝜏𝜏), in contravariant form, 
can be expressed as 

 
𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉1∆𝑉𝑉1(𝜏𝜏) = ∫ 𝜕𝜕𝜌𝜌𝑢𝑢 𝑙𝑙

𝜕𝜕𝜏𝜏
𝑑𝑑𝑉𝑉1∆𝑉𝑉1(𝜏𝜏) +  

∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑣𝑣𝑙𝑙𝑛𝑛�𝑙𝑙∆𝐴𝐴1(𝜏𝜏) 𝑑𝑑𝐴𝐴1  (2) 
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where 𝑛𝑛�𝑙𝑙 (𝑙𝑙 = 1,3) is the outward unit vector 
normal to the surface of area ∆𝐴𝐴1(𝜏𝜏) and 𝑣𝑣𝑙𝑙  is the 
𝑙𝑙𝑡𝑡ℎ  (𝑙𝑙 = 1,3) contravariant component of the 
velocity vector with which the points belonging to 
the surface of area ∆𝐴𝐴1(𝜏𝜏) move. 

 Let us consider a fluid material volume, i.e. a 
time-varying volume which moves with the fluid 
and always encloses the same fluid particles. Let 𝑢𝑢𝑙𝑙  
(𝑙𝑙 = 1,3) be the contravariant components of the 
velocity vector with which the above particles 
move. Let ∆𝑉𝑉(𝜏𝜏) be a time-varying control volume 
that at instant 𝜏𝜏 coincides with the above material 
volume and that is delimited by a surface of area 
∆𝐴𝐴(𝜏𝜏) every point of which moves with the same 
velocity of the fluid. It is known that the time 
derivative of the integral of 𝜌𝜌𝑢𝑢𝑙𝑙  over the above fluid 
material volume (material derivative), 
 𝐷𝐷
𝐷𝐷𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) , in contravariant form, is expressed 
as 
 

𝐷𝐷
𝐷𝐷𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) = ∫ 𝜕𝜕𝜌𝜌𝑢𝑢𝑙𝑙

𝜕𝜕𝜏𝜏
𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +   

∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑢𝑢𝑙𝑙𝑛𝑛𝑙𝑙∆𝐴𝐴(𝜏𝜏) 𝑑𝑑𝐴𝐴  (3) 

where 𝑛𝑛𝑙𝑙 (𝑙𝑙 = 1,3) is the outward unit vector 
normal to the surface of area ∆𝐴𝐴(𝜏𝜏); 𝑢𝑢𝑙𝑙  is the 𝑙𝑙𝑡𝑡ℎ  
(𝑙𝑙 = 1,3) contravariant component of the velocity 
vector with which the points belonging to the 
surface of area ∆𝐴𝐴(𝜏𝜏) move and that coincides with 
the contravariant component of the fluid velocity 
vector. It is assumed that at instant 𝜏𝜏, ∆𝑉𝑉1(𝜏𝜏) =
∆𝑉𝑉(𝜏𝜏). By replacing the first term on the right-hand 

side of Eq. 3 by the term ∫ 𝜕𝜕𝜌𝜌𝑢𝑢 𝑙𝑙

𝜕𝜕𝜏𝜏
𝑑𝑑𝑉𝑉1∆𝑉𝑉1(𝜏𝜏)  extracted 

from the right-hand side of Eq. 2, Eq. 3 becomes 
 

𝐷𝐷
𝐷𝐷𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) = 𝑑𝑑

𝑑𝑑𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +   

∫ 𝜌𝜌𝑢𝑢𝑙𝑙(𝑢𝑢𝑙𝑙 − 𝑣𝑣𝑙𝑙 )𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)    (4) 

The right-hand side of Eq. 4 represents, in 
contravariant form, the expression of the time 
derivative of the integral of 𝜌𝜌𝑢𝑢𝑙𝑙  over a material 
volume (material derivative), which is valid in the 
case of a control volume whose boundary surface 
points move with a velocity, 𝑣𝑣𝑙𝑙 , that is different 
from the fluid velocity, 𝑢𝑢𝑙𝑙 . By adopting the same 
control volume, ∆𝑉𝑉(𝜏𝜏), the expression, in 
contravariant form, of the time derivative of the 
integral of 𝜌𝜌 over the fluid material volume reads 
 

𝐷𝐷
𝐷𝐷𝜏𝜏 ∫ 𝜌𝜌𝑑𝑑𝑉𝑉 =∆𝑉𝑉(𝜏𝜏)

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝜌𝜌𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏)    

+∫ 𝜌𝜌(𝑢𝑢𝑙𝑙 − 𝑣𝑣𝑙𝑙)𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)   (5) 

In this work, Eqs. 4 and 5 are used to deduce 
the integral form of the contravariant Navier-Stokes 
equations in a time dependent coordinate system. By 
equating to zero the right-hand side of Eq. 5, the 
following integral contravariant form of the 
continuity equation is obtained 

 
𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝜌𝜌𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +   

 
∫ 𝜌𝜌(𝑢𝑢𝑙𝑙 − 𝑣𝑣𝑙𝑙)𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴 =∆𝐴𝐴(𝜏𝜏)  0  (6) 

From a general point of view, in order to express 
the momentum conservation law in integral form, 
the rate of change of the momentum of a material 
volume and the total net force must be projected in a 
physical direction. The direction in space of a given 
curvilinear coordinate line changes, in contrast with 
the Cartesian case. Thus, the volume integral of the 
projection of the momentum equation onto a 
curvilinear coordinate line has no physical meaning, 
since it does not represent the volume integral of the 
projection of the aforementioned equation in a 
physical direction. We take a constant parallel 
vector field 𝜆𝜆𝑙𝑙  and equate the rate of change of the 
momentum of a material volume, expressed by the 
right-hand side of Eq. 4, to the total net force in this 
direction 
 

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝜌𝜌𝑢𝑢𝑙𝑙𝜆𝜆𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +   

 
∫ 𝜌𝜌𝑢𝑢𝑙𝑙(𝑢𝑢𝑙𝑙 − 𝑣𝑣𝑙𝑙 )𝜆𝜆𝑙𝑙𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)    

= ∫ 𝜌𝜌𝑓𝑓𝑙𝑙𝜆𝜆𝑙𝑙𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) + ∫ 𝑇𝑇𝑙𝑙𝑙𝑙𝜆𝜆𝑙𝑙𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)   (7) 

where 𝑓𝑓𝑙𝑙  (𝑙𝑙 = 1,3) represents the external body 
forces per unit mass vector and 𝑇𝑇𝑙𝑙𝑙𝑙  is the stress 
tensor. As a parallel vector field, we choose the one 
which is normal to the coordinate line on which the 
𝜉𝜉𝑙𝑙  coordinate is constant at point 𝑃𝑃0 ∈ ∆𝑉𝑉. We 
indicate by 𝜉𝜉0

1, 𝜉𝜉0
2 and 𝜉𝜉0

3 the coordinates of 𝑃𝑃0. The 
contravariant base vector at point 𝑃𝑃0, indicated by 
�⃗�𝑔(𝑙𝑙)(𝜉𝜉0

1, 𝜉𝜉0
2, 𝜉𝜉0

3), is, by definition, normal to the 
coordinate line on which 𝜉𝜉𝑙𝑙  is constant and is used 
in this work to identify the constant parallel vector 
field. Let 𝜆𝜆𝑘𝑘(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3) be the covariant component 
of �⃗�𝑔(𝑙𝑙)(𝜉𝜉0

1, 𝜉𝜉0
2, 𝜉𝜉0

3), given by 
 

𝜆𝜆𝑘𝑘(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3) = �⃗�𝑔(𝑙𝑙)(𝜉𝜉0
1, 𝜉𝜉0

2, 𝜉𝜉0
3)

∙ �⃗�𝑔(𝑘𝑘)(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3) 
 

(8) 
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For the sake of brevity, we indicate 𝑔𝑔�⃗(𝑙𝑙) =
�⃗�𝑔(𝑙𝑙)(𝜉𝜉0

1, 𝜉𝜉0
2, 𝜉𝜉0

3) and �⃗�𝑔(𝑘𝑘) = �⃗�𝑔(𝑘𝑘)(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3). By 
introducing Eq. 8 into Eq. 7 we obtain 

 
𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +  

 

∫ 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝑙𝑙 − 𝑣𝑣𝑙𝑙 )𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏) =   

∫ 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑓𝑓𝑘𝑘𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) +   

∫ 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝑇𝑇𝑘𝑘𝑙𝑙𝑛𝑛𝑙𝑙𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)   (9) 

Let us introduce a restrictive condition on the 
control volume ∆𝑉𝑉(𝜏𝜏): in the following, ∆𝑉𝑉(𝜏𝜏) must 
be considered as the volume of a physical space that 
is bounded by surfaces lying on the curvilinear 
coordinate surfaces. In the curvilinear coordinate 
system, the aforementioned volume is, ∆𝑉𝑉(𝜏𝜏) =
 ∫ �𝑔𝑔𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉0

, where ∆𝑉𝑉0 indicates the 
corresponding volume in the transformed space, 
which is defined as ∆𝑉𝑉0 = ∆𝜉𝜉1∆𝜉𝜉2∆𝜉𝜉3.  

Analogously, in the curvilinear coordinate 
system, the area of a surface of the physical space 
that lies on the coordinate surface in which 𝜉𝜉𝛼𝛼  is 
constant is, ∆𝐴𝐴𝛼𝛼(𝜏𝜏) = ∫ ��⃗�𝑔(𝛽𝛽)⋀�⃗�𝑔(𝛾𝛾)�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0

𝛼𝛼 , 
where  ∆𝐴𝐴0

𝛼𝛼  indicates the corresponding area in the 
transformed space which is defined as, ∆𝐴𝐴0

𝛼𝛼 =
∆𝜉𝜉𝛽𝛽∆𝜉𝜉𝛾𝛾 . It must be noted that the volume ∆𝑉𝑉(𝜏𝜏) 
and the surfaces ∆𝐴𝐴𝛼𝛼(𝜏𝜏) are functions of time, 
because they are expressed as functions of the base 
vectors, �⃗�𝑔(𝑙𝑙), and the Jacobian of the transformation, 
�𝑔𝑔, whose values change over time as the 
curvilinear coordinates follow the displacements of 
the free surface. Conversely, the volume ∆𝑉𝑉0 and 
the areas ∆𝐴𝐴0

𝛼𝛼  are not time dependent. By adopting 
the volume ∆𝑉𝑉(𝜏𝜏) (defined above) as control 
volume, in the transformed space, the integral Eq. 9 
reads 
 

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘�𝑔𝑔�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉0
 +   

 
∑ �∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 −∆𝐴𝐴0

𝛼𝛼+
3
𝛼𝛼=1

𝑣𝑣𝛼𝛼)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 � −  

 

�∫ �𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴0
𝛼𝛼−

�⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾� =  

 

 ∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑓𝑓𝑘𝑘�𝑔𝑔�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉0

+  

∑ �∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝑇𝑇𝑘𝑘𝛼𝛼�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0
𝛼𝛼+ −3

𝛼𝛼=1

�∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝑇𝑇𝑘𝑘𝛼𝛼�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0
𝛼𝛼− ��  

 
 

(10) 

where ∆𝐴𝐴0
𝛼𝛼+ and ∆𝐴𝐴0

𝛼𝛼− indicate the contour surfaces 
of the volume ∆𝑉𝑉0 on which 𝜉𝜉𝛼𝛼  is constant and 
which are located at the larger and at the smaller 
value of 𝜉𝜉𝛼𝛼  respectively. Here the indexes 𝛼𝛼, 𝛽𝛽 and 
𝛾𝛾 are cyclic. By adopting the same control volume, 
∆𝑉𝑉(𝜏𝜏), the integral contravariant continuity Eq. 6 
reads 
 

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ �𝜌𝜌�𝑔𝑔�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉0
+  

 
∑ �∫ �𝜌𝜌(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0

𝛼𝛼+
�3

𝛼𝛼=1 −   

�∫ �𝜌𝜌(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0
𝛼𝛼− � = 0   

(11) 

Eqs. 10 and 11 represent an integral form of the 
contravariant Navier-Stokes equations in a time-
dependent curvilinear coordinate system in which 
the Christoffel symbols are absent.  
 
3 Derivation of the differential form 
of the contravariant Navier-Stokes 
equations in a time dependent 
curvilinear coordinate system 
The equation system 10 and 11 represents the 
general integral form of the Navier-Stokes equations 
expressed in a time dependent curvilinear coordinate 
system. Indeed, in this Section it is shown that, by 
simple passages, from the integral Eqs. 10 and 11 
can be directly deduced the differential form of the 
contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system, that is 
equal to the one obtained by Luo and Bewley [8].  

The derivative with respect to time in the first 
term of the left-hand side of Eq. 10 can be carried 
under the integral sign (since, in the transformed 
space described by the curvilinear coordinates, the 
volume ∆𝑉𝑉0 over which the integral is calculated is 
not dependent on time) and the first term of Eq. 10 
can be written as 
 

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘�𝑔𝑔�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉0
=    

 

∫
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉0
    

(12) 
By introducing Eq. 12 into Eq. 10, by dividing 

both sides of Eq. 10 by the volume ∆𝑉𝑉(𝜏𝜏) and 
taking the limit as the volume ∆𝑉𝑉(𝜏𝜏)  approaches 
zero, we obtain the following differential 
formulation of the contravariant momentum balance 
equation in a time-dependent curvilinear coordinate 
system 
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1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
+     

 

 1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
=    

 

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝑓𝑓𝑘𝑘 + 1

√𝑔𝑔
1
𝜌𝜌
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)𝑔𝑔�⃗ (𝑘𝑘)𝑇𝑇𝑘𝑘𝛼𝛼 √𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
  (13) 

It must be underlined that Eq. 13 is written in a 
differential conservative form in which the 
Christoffel symbols are not present. This differential 
formulation is general and can be further developed 
to derive the differential form obtained by Luo and 
Bewley [8]. By expanding the time derivative, the 
left-hand side of Eq. 13 reads 

 
1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
=  𝜌𝜌𝑢𝑢𝑘𝑘𝑔𝑔�⃗(𝑙𝑙) ∙ 𝜕𝜕  𝑔𝑔�⃗ (𝑘𝑘)

𝜕𝜕𝜏𝜏
+  

 

 
 

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘) �
1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜏𝜏

𝜌𝜌𝑢𝑢𝑘𝑘 + 𝜕𝜕𝜌𝜌𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
�     

(14) 

By using the definition of the covariant base 
vector, �⃗�𝑔(𝑘𝑘) = 𝜕𝜕�⃗�𝑥 𝜕𝜕𝜉𝜉𝑘𝑘⁄ , and the properties of the 

partial derivatives, the term 𝜕𝜕  𝑔𝑔�⃗ (𝑘𝑘)

𝜕𝜕𝜏𝜏
 on the right-hand 

side of Eq. 14 becomes 
 

𝜕𝜕  𝑔𝑔�⃗ (𝑘𝑘)

𝜕𝜕𝜏𝜏
=  𝜕𝜕

𝜕𝜕𝜏𝜏
 𝜕𝜕𝑥𝑥
𝜕𝜕𝜉𝜉𝑘𝑘

= 𝜕𝜕
𝜕𝜕𝜉𝜉𝑘𝑘

 𝜕𝜕𝑥𝑥
𝜕𝜕𝜏𝜏

= 𝜕𝜕𝑣𝑣�⃗ 𝐺𝐺
𝜕𝜕𝜉𝜉𝑘𝑘

=  
𝜕𝜕𝑣𝑣𝑗𝑗  𝑔𝑔�⃗ (𝑗𝑗)

𝜕𝜕𝜉𝜉𝑘𝑘
=   

 

 
 

𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕𝜉𝜉𝑘𝑘
 �⃗�𝑔(𝑗𝑗 ) + 𝑣𝑣𝑗𝑗

𝜕𝜕𝑔𝑔�⃗ (𝑗𝑗)

𝜕𝜕𝜉𝜉𝑘𝑘
   

(15) 

In Eq. 20 the definition of the velocity vector of 
the moving curvilinear coordinates, 𝜕𝜕𝑥𝑥

𝜕𝜕𝜏𝜏
= �⃗�𝑣𝐺𝐺  , and its 

expression in contravariant components, �⃗�𝑣𝐺𝐺 =
𝑣𝑣𝑗𝑗  �⃗�𝑔(𝑗𝑗 ), has been used. By recalling that the 
derivative of the covariant base vector on the right-
hand side of Eq. 15 involves the Christoffel 

symbols, 
𝜕𝜕𝑔𝑔�⃗ (𝑗𝑗)

𝜕𝜕𝜉𝜉𝑘𝑘
= Γ𝑗𝑗𝑘𝑘𝑟𝑟  �⃗�𝑔(𝑟𝑟) and by using the 

expression 𝑢𝑢,𝑘𝑘
𝑗𝑗 = 𝜕𝜕𝑢𝑢𝑗𝑗

𝜕𝜕𝜉𝜉𝑘𝑘
+ 𝑢𝑢𝑟𝑟Γ𝑟𝑟𝑘𝑘

𝑗𝑗 , the right-hand side of 
Eq. 15 can be written in the form 

 
𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕𝜉𝜉𝑘𝑘
 �⃗�𝑔(𝑗𝑗 ) + 𝑣𝑣𝑗𝑗

𝜕𝜕𝑔𝑔�⃗ (𝑗𝑗)

𝜕𝜕𝜉𝜉𝑘𝑘
=   

 

 
 

𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕𝜉𝜉𝑘𝑘
 �⃗�𝑔(𝑗𝑗 ) + 𝑣𝑣𝑗𝑗Γ𝑗𝑗𝑘𝑘𝑟𝑟  �⃗�𝑔(𝑟𝑟) =    

�𝜕𝜕𝑣𝑣
𝑗𝑗

𝜕𝜕𝜉𝜉𝑘𝑘
 + 𝑣𝑣𝑟𝑟Γ𝑟𝑟𝑘𝑘

𝑗𝑗 � �⃗�𝑔(𝑗𝑗 ) = 𝑣𝑣,𝑘𝑘
𝑗𝑗  �⃗�𝑔(𝑗𝑗 )   

 
(16) 

By using Eqs. 15 and 16, and changing the 
dummy indexes, the first term on the left-hand side 
of Eq. 13 reads 

 
1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
=  𝑔𝑔�⃗(𝑙𝑙) �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 +    
 

 
 

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘) �𝜌𝜌𝑢𝑢𝑘𝑘
1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜏𝜏

+ 𝜕𝜕𝜌𝜌𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
� =    

𝜆𝜆𝑘𝑘 �𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼
𝑘𝑘 + 𝜌𝜌𝑢𝑢𝑘𝑘 1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜏𝜏

+ 𝜕𝜕𝜌𝜌𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
�   

(17) 

The further development of this term can be 
made by using the geometric identity [8] that 
imposes the conservation of a generic volume 
whose boundary surfaces move with velocity �⃗�𝑣𝐺𝐺 , 

 
𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ 𝑑𝑑𝑉𝑉∆𝑉𝑉(𝜏𝜏) = ∫ �⃗�𝑣𝐺𝐺 ⋅ 𝑛𝑛�⃗ 𝑑𝑑𝐴𝐴∆𝐴𝐴(𝜏𝜏)     

(18) 

In fact, in the time dependent curvilinear 
coordinate system, the integral Eq. 18 reads 
 

𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ �𝑔𝑔𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2

∆𝑉𝑉0
𝑑𝑑𝜉𝜉3 =    

 

 
 

∑ �∫ 𝑣𝑣𝛼𝛼�𝑔𝑔𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0
𝛼𝛼+ −3

𝛼𝛼=1

�∫ 𝑣𝑣𝛼𝛼�𝑔𝑔𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆𝐴𝐴0
𝛼𝛼− ��   

 
 

(19) 

By carrying the temporal derivative on the left 
hand side of Eq. 19 under the integral over the 
volume ∆𝑉𝑉0 (that is independent of time), by 
dividing both sides of Eq. 18 by the volume ∆𝑉𝑉(𝜏𝜏) 
and taking the limit as ∆𝑉𝑉(𝜏𝜏) approaches zero, we 
obtain the differential expression of the metric 
identity that holds in the time dependent curvilinear 
coordinate systems 

1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜏𝜏

=  1

√𝑔𝑔
𝜕𝜕𝑣𝑣𝛼𝛼√𝑔𝑔
𝜕𝜕𝜉𝜉𝛼𝛼

   
(20) 

By expanding the derivative on the right-hand 
side of Eq. 20, 1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜉𝜉𝛼𝛼

= Γ𝑖𝑖𝛼𝛼𝑖𝑖 , and by using the 
definition of covariant derivative, Eq. 20 can be 
written in the form 

 
1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜏𝜏

= 1

√𝑔𝑔
𝜕𝜕𝑣𝑣𝛼𝛼√𝑔𝑔
𝜕𝜕𝜉𝜉𝛼𝛼

= 𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝜉𝜉𝛼𝛼
+ 𝑣𝑣𝛼𝛼 1

√𝑔𝑔
𝜕𝜕√𝑔𝑔
𝜕𝜕𝜉𝜉𝛼𝛼

=   
 

                  𝜕𝜕𝑣𝑣
𝛼𝛼

𝜕𝜕𝜉𝜉𝛼𝛼
+ 𝑣𝑣𝛼𝛼Γ𝑖𝑖𝛼𝛼𝑖𝑖 = 𝑣𝑣,𝛼𝛼

𝛼𝛼   

   

 
(21) 

By introducing Eq. 21 into Eq. 17, the left-hand 
side of Eq. 13 can be thus written in the form 
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1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
=    

 

𝜆𝜆𝑘𝑘 �
𝜕𝜕𝜌𝜌𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
+ 𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 + 𝜌𝜌𝑢𝑢𝑘𝑘𝑣𝑣,𝛼𝛼
𝛼𝛼 �     

(22) 

In order to complete the derivation, it is 
sufficient to express the second term on the left-
hand side of Eq. 13 and the last term on the right-
hand side of Eq. 13 in non-conservative form. The 
second term on the left-hand side of Eq. 13 is thus 
rewritten by expanding the derivative with respect 
to the curvilinear coordinates and by using the 
definition of covariant derivative recalled above 
 

1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
= 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)   

 

1

√𝑔𝑔
𝜕𝜕�𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
+  

𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)𝑔𝑔�⃗(𝑙𝑙) ∙ 𝜕𝜕𝑔𝑔�⃗ (𝑘𝑘)

𝜕𝜕𝜉𝜉𝛼𝛼
 = 

   

 
 

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)
1

√𝑔𝑔
𝜕𝜕�𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
+  

 

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝜌𝜌𝑢𝑢𝑟𝑟(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)Γ𝑟𝑟𝛼𝛼𝑘𝑘  = 
 

𝜆𝜆𝑘𝑘 [𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)],𝛼𝛼  = 
 

𝜆𝜆𝑘𝑘  �(𝜌𝜌𝑢𝑢),𝛼𝛼
𝑘𝑘 (𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) + 𝜌𝜌𝑢𝑢𝑘𝑘𝑢𝑢,𝛼𝛼

𝛼𝛼 −𝜌𝜌𝑢𝑢𝑘𝑘𝑣𝑣,𝛼𝛼
𝛼𝛼 � 

  

 
(23) 

By using Eqs. 22 and 23 the left-hand side of Eq. 
18 becomes 

 
1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢 𝑘𝑘√𝑔𝑔�

𝜕𝜕𝜏𝜏
+   

 
1

√𝑔𝑔
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)∙𝑔𝑔�⃗ (𝑘𝑘)𝜌𝜌𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
=       

 

𝜆𝜆𝑘𝑘 �
𝜕𝜕𝜌𝜌𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
+ 𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 + 𝜌𝜌𝑢𝑢𝑘𝑘𝑣𝑣,𝛼𝛼
𝛼𝛼 +

 (𝜌𝜌𝑢𝑢),𝛼𝛼
𝑘𝑘 (𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) + 𝜌𝜌𝑢𝑢𝑘𝑘𝑢𝑢,𝛼𝛼

𝛼𝛼 − 𝜌𝜌𝑢𝑢𝑘𝑘𝑣𝑣,𝛼𝛼
𝛼𝛼 � =  

 

𝜆𝜆𝑘𝑘 �
𝜕𝜕𝜌𝜌𝑢𝑢 𝑘𝑘

𝜕𝜕𝜏𝜏
+ 𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 + 𝜌𝜌𝑢𝑢𝑘𝑘𝑢𝑢,𝛼𝛼
𝛼𝛼 +

 (𝜌𝜌𝑢𝑢),𝛼𝛼
𝑘𝑘 (𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) �  

 
 
 

(24) 
 

Analogously, the last term on the right-hand side 
of Eq. 13 is rewritten by expanding the derivative 
and using the definition of covariant derivative 

 
1

√𝑔𝑔
1
𝜌𝜌
𝜕𝜕�𝑔𝑔��⃗ (𝑙𝑙)⋅𝑔𝑔�⃗ (𝑘𝑘)𝑇𝑇𝑘𝑘𝛼𝛼 √𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
=    

 

     1

√𝑔𝑔
𝑔𝑔�⃗(𝑙𝑙) ⋅ �⃗�𝑔(𝑘𝑘)

1
𝜌𝜌
𝜕𝜕�𝑇𝑇𝑘𝑘𝛼𝛼 √𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
+      

 

1
𝜌𝜌
𝑇𝑇𝑘𝑘𝛼𝛼𝑔𝑔�⃗(𝑙𝑙) ⋅ 𝜕𝜕�𝑔𝑔�⃗ (𝑘𝑘)�

𝜕𝜕𝜉𝜉𝛼𝛼
=    

 

𝑔𝑔�⃗(𝑙𝑙) ⋅ �⃗�𝑔(𝑘𝑘)
1

√𝑔𝑔
1
𝜌𝜌
𝜕𝜕�𝑇𝑇𝑘𝑘𝛼𝛼 √𝑔𝑔�

𝜕𝜕𝜉𝜉𝛼𝛼
+ 𝑔𝑔�⃗(𝑙𝑙) ⋅

�⃗�𝑔(𝑘𝑘)
1
𝜌𝜌
𝑇𝑇𝑟𝑟𝛼𝛼 Γ𝑟𝑟𝛼𝛼𝑘𝑘 = 𝜆𝜆𝑘𝑘

1
𝜌𝜌
𝑇𝑇,𝛼𝛼
𝑘𝑘𝛼𝛼    

 
 
 

(25) 

By replacing Eqs. 24 and 25, respectively, on the 
left hand and right-hand side of Eq. 13, and by 
dividing by 𝜆𝜆𝑘𝑘 , the differential contravariant 
momentum equation expressed by Eq. 13 can be 
written in the form 

 
𝜕𝜕𝜌𝜌𝑢𝑢 𝑘𝑘

𝜕𝜕𝜏𝜏
+ 𝜌𝜌𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 +  𝜌𝜌𝑢𝑢𝑘𝑘𝑢𝑢,𝛼𝛼
𝛼𝛼 +   

 
(𝜌𝜌𝑢𝑢),𝛼𝛼

𝑘𝑘 (𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) = 𝜌𝜌𝑓𝑓𝑘𝑘 +  𝑇𝑇,𝛼𝛼
𝑘𝑘𝛼𝛼       

(26) 

By the same procedure, the integral continuity 
Eq. 11 can be expressed in the following differential 
form 

 

 
 
𝑑𝑑
𝑑𝑑𝜏𝜏 ∫ �𝜌𝜌�𝑔𝑔�𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3

∆𝑉𝑉0
+   

 

∑ �∫ �ρ(𝑢𝑢α − 𝑣𝑣α)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆A0
α+

�3
α=1 −     

 
  

�∫ �𝜌𝜌(𝑢𝑢α − 𝑣𝑣α)�𝑔𝑔�𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾∆A0
α− � =  

 

               1

√𝑔𝑔
𝜕𝜕(𝜌𝜌√𝑔𝑔)
𝜕𝜕𝜏𝜏

+ 1

√𝑔𝑔
𝜕𝜕(𝜌𝜌(𝑢𝑢𝛼𝛼−𝑣𝑣𝛼𝛼 )√𝑔𝑔)

𝜕𝜕𝜉𝜉𝛼𝛼
=  

 
 

 

             𝜕𝜕𝜌𝜌
𝜕𝜕𝜏𝜏

+ 𝜌𝜌𝑣𝑣,𝛼𝛼
𝛼𝛼 + [𝜌𝜌(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼)],𝛼𝛼 = 0  

 
(27) 

which, by expanding the covariant derivative, 
becomes 
 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜏𝜏
−  𝜕𝜕𝜌𝜌

𝜕𝜕𝜉𝜉𝛼𝛼
𝑣𝑣𝛼𝛼 +  (𝜌𝜌𝑢𝑢𝛼𝛼),𝛼𝛼 = 0   

(28) 
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Eq. 28 is equal to the differential contravariant 
continuity equation obtained by Luo and Bewley [8] 
and can be used to further simplify the above 
momentum balance Eq. 26. In fact, by expanding 
the derivative on the left-hand side of Eq. 26 and by 
using Eq. 28, the momentum balance equation 
becomes 

 
𝜕𝜕𝑢𝑢𝑘𝑘

𝜕𝜕𝜏𝜏
+ 𝑢𝑢𝛼𝛼𝑣𝑣,𝛼𝛼

𝑘𝑘 +  𝑢𝑢,𝛼𝛼
𝑘𝑘 (𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) = 𝑓𝑓𝑘𝑘 +  1

𝜌𝜌𝑇𝑇,𝛼𝛼
𝑘𝑘𝛼𝛼    

(29) 

Eqs. 28 and 29 are equal, respectively, to the 
continuity and momentum balance equations 
obtained by Luo and Bewley [8] and represent the 
differential non-conservative form of the 
contravariant Navier-Stokes equations in a time 
dependent curvilinear coordinate system. 
 
4 Integral contravariant motion 
equations for three-dimensional non-
hydrostatic free surface flows in a time 
dependent curvilinear coordinate 
system 
In the differential Eqs. 27 and 28 the Christoffel 
symbols are present 𝑢𝑢,𝛼𝛼

𝑘𝑘  , 𝑣𝑣,𝛼𝛼
𝑘𝑘  and 𝑇𝑇,𝛼𝛼

𝑘𝑘𝛼𝛼 . The presence 
of the Christoffel symbols does not allow the 
numerical scheme to converge to the weak solution. 
In this work, we propose an original integral 
contravariant formulation of the three-dimensional 
motion equations, devoid of the Christoffel symbols, 
in order to produce a finite volume shock-capturing 
scheme. In order to simulate the fully dispersive 
wave processes Eq. 10 can be transformed in the 
following way.  

Let 𝐻𝐻(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) = ℎ(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) + 𝜂𝜂(𝑥𝑥1,𝑥𝑥2, 𝑡𝑡) be 
the water depth, where ℎ is the undisturbed water 
depth and 𝜂𝜂 is the free surface elevation with respect 
to the undisturbed water level. The gravity 
acceleration is represented by 𝐺𝐺, the pressure 𝑝𝑝 is 
divided into a hydrostatic part, 𝜌𝜌𝐺𝐺(𝜂𝜂 − 𝑥𝑥3), and a 
dynamic one, 𝑞𝑞. We consider the following 
transformation from the Cartesian system of 
coordinates, (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3, 𝑡𝑡), to the curvilinear one, 
(𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏), in order to accurately represent the 
bottom and surface geometry 

 
   𝜉𝜉1 = 𝜉𝜉1(𝑥𝑥1,𝑥𝑥2)      ;      𝜉𝜉2 =  𝜉𝜉2(𝑥𝑥1,𝑥𝑥2)    

 

       𝜉𝜉3 = 𝑥𝑥3+ℎ(𝑥𝑥1,𝑥𝑥2)
𝐻𝐻(𝑥𝑥1,𝑥𝑥2,𝑡𝑡)

      ;      𝜏𝜏 = 𝑡𝑡   
(30) 

in which the horizontal curvilinear coordinates 𝜉𝜉1 
and  𝜉𝜉2 conform to the horizontal boundaries of the 

physical domain and the vertical coordinate  𝜉𝜉3 
varies in time in order to adjust to the free surface 
movements. The contravariant components of the 
velocity vector of the moving coordinates are 
 

   𝑣𝑣1 = 0 ; 𝑣𝑣2 = 0 ;

 𝑣𝑣3 = 𝜉𝜉3

𝐻𝐻
� 𝜕𝜕𝐻𝐻(𝑥𝑥1,𝑥𝑥2,𝑡𝑡)

𝜕𝜕𝑡𝑡
�
𝑥𝑥=𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡

 

 
 

(31) 
 
The proposed coordinate transformation 

basically maps the irregular, varying domain in the 
physical space to a regular, fixed domain in the 
transformed space, where 𝜉𝜉3 spans from 0 to 1. Let 
�𝑔𝑔0 = 𝑘𝑘�⃗ ∙ ��⃗�𝑔(1)⋀�⃗�𝑔(2)�, where ⋀ indicates the vector 
product. The Jacobian of the transformation 
becomes �𝑔𝑔 = 𝐻𝐻�𝑔𝑔0. Let us define the conserved 
variables that are given by the cell averaged product 
between the water depth 𝐻𝐻 and the three 
contravariant components of the punctual velocity 
𝑢𝑢𝑙𝑙  with 𝑙𝑙 = 1,3 
 

𝐻𝐻� = 1
∆𝐴𝐴0

3�𝑔𝑔0
∫ 𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2
∆𝐴𝐴𝑐𝑐3

   
 

𝐻𝐻𝑢𝑢𝑙𝑙����� =
1

∆𝑉𝑉0�𝑔𝑔0
∫ 𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝑢𝑢𝑘𝑘𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3
∆𝑉𝑉0

  

 
 

(32) 

With simple passages it is possible to 
demonstrate that for the control volume  ∆𝑉𝑉(𝜏𝜏), by 
using the definition of cell averaged given by Eq. 
(32), in the transformed space, the integral Eq. (10) 
reads 
 

𝜕𝜕𝐻𝐻𝑢𝑢𝑙𝑙������

𝜕𝜕𝜏𝜏
= − 1

∆𝑉𝑉0�𝑔𝑔0
∑ �∫ �𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴𝑐𝑐𝛼𝛼+

3
𝛼𝛼=1

�⃗�𝑔(𝑘𝑘)𝐻𝐻𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) + 𝑔𝑔�⃗(𝑙𝑙) ∙
�⃗�𝑔(𝛼𝛼)𝐺𝐺𝐻𝐻2��𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 � −  

 
 

�∫ �𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝑘𝑘)𝐻𝐻𝑢𝑢𝑘𝑘(𝑢𝑢𝛼𝛼 − 𝑣𝑣𝛼𝛼) +∆𝐴𝐴𝑐𝑐𝛼𝛼−

𝑔𝑔�⃗(𝑙𝑙) ∙ �⃗�𝑔(𝛼𝛼)𝐺𝐺𝐻𝐻2��𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾�+  

 
 

1
∆𝑉𝑉0�𝑔𝑔0

∑ �∫ 𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴𝑐𝑐𝛼𝛼+
3
𝛼𝛼=1

�⃗�𝑔(𝛼𝛼)𝐺𝐺ℎ𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 − �∫ 𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴𝑐𝑐𝛼𝛼−

�⃗�𝑔(𝛼𝛼)𝐺𝐺ℎ𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾��+  

 

1
∆𝑉𝑉0�𝑔𝑔0

∑ �∫ 𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴𝑐𝑐𝛼𝛼+
3
𝛼𝛼=1

�⃗�𝑔(𝑘𝑘)
𝑇𝑇𝑘𝑘𝛼𝛼

𝜌𝜌
𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾 − �∫ 𝑔𝑔�⃗(𝑙𝑙) ∙∆𝐴𝐴𝑐𝑐𝛼𝛼−

�⃗�𝑔(𝑘𝑘)
𝑇𝑇𝑘𝑘𝛼𝛼

𝜌𝜌
𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉𝛾𝛾�� −  
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1
∆𝑉𝑉0�𝑔𝑔0

∫ 𝑔𝑔�⃗(𝑙𝑙) ∙∆𝑉𝑉0

�⃗�𝑔(𝑙𝑙) 𝜕𝜕𝑞𝑞
𝜕𝜕𝜉𝜉𝑙𝑙

𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2𝑑𝑑𝜉𝜉3  

 
 
 

(33) 

in which 𝐻𝐻� represents a two-dimensional quantity 
given by the averaged value of the water depth  𝐻𝐻 
on the base area of a water column, ∆𝐴𝐴3 = ∆𝐴𝐴0

3�𝑔𝑔0. 
𝑇𝑇𝑘𝑘𝛼𝛼  is now the stress tensor in which the pressure is 
omitted, the gradient of the hydrostatic pressure is 
split into two parts by using 𝜂𝜂 = 𝐻𝐻 − ℎ and the last 
integral on the right-hand side of Eq. 33 is related to 
the gradient of the dynamic pressure, 𝑞𝑞. It is also 
possible to demonstrate that, by integrating the 
continuity Eq. 11 over a vertical water column 
(between the bottom and the free surface) which is 
bounded by coordinate surfaces, we obtained the 
governing equation for the free surface movement 
 

𝜕𝜕𝐻𝐻�
𝜕𝜕𝜏𝜏

=
1

∆𝐴𝐴𝑐𝑐3�𝑔𝑔0
∑ �∫ ∫ 𝑢𝑢𝛼𝛼𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉3

∆𝜉𝜉𝑐𝑐𝛼𝛼+
1

0 −2
𝛼𝛼=1

∫ ∫ 𝑢𝑢𝛼𝛼𝐻𝐻�𝑔𝑔0𝑑𝑑𝜉𝜉𝛽𝛽𝑑𝑑𝜉𝜉3
∆𝜉𝜉𝑐𝑐𝛼𝛼−

1
0 �  

 
 
 
 

(34) 

Eqs. 33 and 34 represent the expressions of the 
three-dimensional motion equations as a function of 
the new conserved variables, given by the two-
dimensional cell averaged values of the water depth, 
𝐻𝐻�, and by the three-dimensional cell averaged 
values, 𝐻𝐻𝑢𝑢𝑙𝑙�����, in the time dependent coordinate 
system, (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, 𝜏𝜏). 
 
5 Results 
5.1 Propagation of monochromatic waves on a 
varying depth 
In order to check the ability of the proposed model 
to simulate the shoaling and breaking wave 
processes, the experimental test performed by Steve 
[22] is here numerically reproduced. In this test, an 
incoming wave train of height 0.156m and period 
1.79s is simulated, which propagates in a 55m long 
wave flume characterised by an initial constant 
depth of 0.85m, followed by a plane sloping beach 
of 1:40 (Figure 1). 

 

Figure 1 Topography of the bottom. 

Aiming to demonstrate the independency of the 
results from the grid distortion, the numerical 
simulation is conducted both by using a Cartesian 
computational grid and a highly distorted curvilinear 
computational grid.  

Figures 2 show a plan view of the distorted grid 
(Fig.2a) and a detailed view of the computational 
domain (Fig.2b). In both figures are represent one 
coordinate line out of every two.  

 

a) 

 
b) 

Figure 2 a) Plane view and b) detailed plane view 
of the highly distorted curvilinear computational 
grid. Only one coordinate line out of every two is 
shown. 
 

The root mean square error, 𝜎𝜎𝑣𝑣𝑦𝑦 , of the 
difference between the numerical values and the 
expected values of the 𝑣𝑣𝑦𝑦  velocity component 
(which are null since the direction of motion is 
parallel to the 𝑥𝑥-axis) is used as comparison 
parameter for the results obtained with the two 
different grids (see Table 1).    
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As it can be deduced from Table 1, the 𝜎𝜎𝑣𝑣𝑦𝑦  error 
calculated for the computational highly distorted 
grid case differs by less than 1 per cent from the 
corresponding Cartesian grid error.  

In Table 1, the root mean square error, 𝜎𝜎𝑤𝑤ℎ , of 
the difference between the time averaged 
numerically computed wave height and the 
corresponding experimental data, and the root mean 
square error, 𝜎𝜎𝑙𝑙𝑤𝑤𝑙𝑙 , of the difference between the 
numerically computed mean water level and the 
experimental data are shown. 

 

RMS error σvy σwh σmwl 

Cartesian Grid 2.95E-05 0.1198 0.1206 

Distorted Grid 2.978E-05 0.1209 0.1218 

Table 1 Numerical root mean square error of the 
velocity component (𝜎𝜎𝑣𝑣𝑦𝑦 ), of average wave height 
(𝜎𝜎𝑤𝑤ℎ ) and of still water level (𝜎𝜎𝑙𝑙𝑤𝑤𝑙𝑙 ) 
 

In Figure 3 an instantaneous wave field obtained 
with the curvilinear highly distorted computational 
grid is shown. Figure 4 shows a plane view detail of 
such instantaneous field in the area where the grid 
distortion is maximum. By observing these figures, 
it is possible to deduce that, despite the grid 
distortion, the wave train maintains even wave 
fronts as the wave propagates from deep water up to 
the shoreline and does not show spurious 
oscillations. Thus, it can be concluded that the grid 
distortion does not affect the ability of the proposed 
model to simulate the shoaling and breaking wave 
processes. 

 

 

Figure 3 Instantaneous wave field obtained with the 
highly distorted curvilinear computational grid. 

 

Figure 4 Detailed plane view of the instantaneous 
wave field obtained with the highly distorted 
curvilinear computational grid. Only one coordinate 
line out of every two is shown. 

In Figures 5 comparison between the 
experimental data and the numerical results obtained 
with the distorted curvilinear grid is shown in terms 
of time averaged wave height (Fig. 5a) and mean 
water level (Fig. 5b).  
 
5.2 Rip current test in a curved shaped coastal 
area 
In this section, we verify the ability of the proposed 
model to numerically reproduce wave propagation, 
wave breaking and induced nearshore circulation 
due to the variable bathymetry in a curved shaped 
coastal area. To this end we reproduce a laboratory 
experiment carried out by Hamm [23]. These 
experiments were conducted in a 30x30 m wave 
tank. The geometry of the bottom consisted of a 
horizontal region of water depth 0.5m followed by a 
planar slope of 1:30 with a rip channel excavated 
along the centreline (see Fig. 6).  The bottom 
variation is given by 
 

    
         𝑧𝑧(𝑥𝑥,𝑦𝑦) = 0.5          

 
𝑥𝑥 ≤ 7 

𝑧𝑧(𝑥𝑥, 𝑦𝑦) =  0.1 − 18−𝑥𝑥
30

�1 +

3𝑒𝑒𝑥𝑥𝑝𝑝 �− 18−𝑥𝑥
30

� 𝑐𝑐𝑐𝑐𝑐𝑐10 �𝜋𝜋(15−𝑦𝑦)
30

��   

 
 

7 < 𝑥𝑥 < 25 

𝑧𝑧(𝑥𝑥, 𝑦𝑦) =  0.1 + 18−𝑥𝑥
30

   
𝑥𝑥 ≤ 25 

 (41) 

Because of the presence of an axis of 
symmetry perpendicular to the wave 
propagation direction, only half of the 
experimental domain has been reproduced. A to 
this end, we use a curvilinear boundary 
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conforming grid which, in the horizontal 
directions reproduce the curved shaped 
coastline. Figure 6(a) shows a plan view of the 
curvilinear computational grid and bottom 
variation, in which only one out of every five 
coordinate lines is shown. Figures 6(b) and 6(c) 
show the beach profile at two significant cross 
sections, one inside the rip channel - 𝑦𝑦A 
=14.9625m - and one at the plane beach - 𝑦𝑦B 

=1.9875m - where the experimental data 
reported by Hamm [23] are available. The 
experiments considered a number of different 
incident wave conditions. Here the 
monochromatic, regular, incident waves are 
considered with a period of 𝑇𝑇 = 1.25s and wave 
height of 𝐻𝐻 = 0.07m.

 a) 

  
                                                                             b)                                                                          c) 
Section A-A’: bottom profile along the rip channel       Section B-B’: bottom profile along the plane beach 

Figure 6 Bathymetry (Only one out of every five coordinate lines is shown). (b-c): bottom profiles in section 
A-A’ and B-B’. 
 
In Figure 7, the wave heights computed with the 
proposed model are compared with the wave heights 
measured by Hamm [23] along the two above 
mentioned cross sections and reported by Sørensen 
et al. [24].  
 
 

 
It can be noticed that the numerical results in terms 
of wave height are in good agreement with the 
laboratory measurement. In particular, the wave 
height evolution and breaking point are well 
predicted in the rip channel section and in the plane 
beach section.
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(a) Along the rip channel section (A-A’) 

 
(b) Along the plane beach section (B-B’)

Figure 7 Comparison between the computed (solid line) and measured cross-shore variation of the wave height 
(crosses and circle). 
 

Figure 8 shows a plane view detail of the time 
averaged velocity field near the bottom (in which 
only one out of every four vectors are shown). As it 
can be seen in Figure 8, the differences in the wave 
elevation between the plane beach and rip channel 

drives an alongshore current that turns offshore 
producing the rip current at the rip channel position. 
From this Figure it is easy to deduce that this 
circulation pattern represents an erosive condition.  

 
Figure 8 Plane view detail of the time averaged velocity field. Only one out of every four vectors are shown 
 
5 Conclusion 
In this work, an original integral formulation of the 
three-dimensional contravariant Navier-Stokes 
equations, devoid of the Christoffel symbols, in 
general time-dependent curvilinear coordinates has 
been presented. The proposed integral formulation 
has been obtained from the time derivative of the 
momentum of a fluid material volume and from the 
Leibniz rule of integration applied to a control 

volume that moves with a velocity which is different 
from the fluid velocity. In order to avoid the 
presence of the Christoffel symbols, the integral 
contravariant formulation of the momentum 
equation is solved in the direction identified by a 
constant parallel vector field. It has been 
demonstrated that, starting from the proposed 
integral formulation, with simple passages the 
complete differential form of the contravariant 
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Navier-Stokes equations in a time dependent 
curvilinear coordinate system can be deduced.  The 
proposed integral formulation, devoid of the 
Christoffel symbols, is used in order to realise a 
three-dimensional non-hydrostatic numerical model 
for free surface flows, which is able to simulate the 
wave motion and the discontinuities in the solution 
related to the wave breaking on domains that 

reproduce the complex geometries of the coastal 
regions.  

In the proposed model, the integral contravariant 
form of the momentum and continuity equations are 
solved by a finite volume shock capturing scheme, 
which uses an HLL approximate Riemann solver. 
The proposed model has been validated by 
reproducing experimental test cases on time 
dependent curvilinear grids.

 
 

a) 

b) 
 
Figure 5 Comparison between the experimental data (diamond) and the numerical results (solid line) obtained 
with the highly distorted curvilinear computational grid in terms of time averaged wave height and mean water 
level. 
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