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Abstract: - An innovative method for the simulation of the hydrodynamics in the swash zone, related to the 

wave run-up phenomenon, is presented. This method applies the exact solution of the Riemann problem over a 

dry bed to correctly evaluate the celerity of water waves propagating over the shore, and so to precisely track 

the coastline location. The simulations of velocity and wave fields outside the surf zone, inside the surf zone 

and in the swash zone, are carried out by means of a numerical model which solves 3D motion equations 

expressed in integral form, with a vertical coordinate that varies in time in order to follow the free surface 

evolution. Several numerical validation tests are carried out, in order to verify the capability of the method to 

track the coastline. 

 

Key-Words: - wave run-up, wet-dry, Riemann problem, time-varying coordinates, free-surface 

 

1 Introduction 
One of the most important hydrodynamics 

phenomena that occurs in coastal regions is the 

wave run-up, that is the phenomenon described by 

the backward and forward motion of the wave front 

that separates the wet zone and the dry zone. A 

proper evaluation of the wave run-up is necessary in 

order to predict the nearshore currents related to 

wave trains.  

In this context, numerical models based on 

depth-averaged motion equations, such as Nonlinear 

Shallow Water Equations or Boussinesq Equations, 

are used extensively [1-6]. In particular, the models 

that solve Boussinesq Equations are capable to 

simulate wave transformation from deep to shallow 

water, unlike models based on Nonlinear Shallow 

Water Equations.  

A number of numerical models in literature 

solves the three-dimensional Navier-Stokes 

Equations, which can be integrated over structured 

[7] or unstructured grids [8,9]. The most immediate 

advantage of this kind of models is that they can 

predict the vertical distribution of the flow variables, 

unlike models that solve depth-averaged equations. 

In the context of models that solve the three-

dimensional Navier-Stokes Equations for free 

surface flows, one of the most challenging issues is 

the free surface tracking. The Volume of Fluid 

(VOF) technique is one of the most employed 

methods to locate free surface [10,11]. The main 

drawback of the VOF technique is the difficulty to 

precisely assign pressure and kinematic boundary 

conditions at the free surface, given the fact that the 

vertical fluxes cross the computational cells 

arbitrarily.  

Many recent 3D models use the so-called  -

coordinate transformation [7,12-14]. By means of 

this transformation, the physical domain, that varies 

over time with the free surface variation, is mapped 

into a fixed rectangular prismatic shape 

computational grid. By means of these models, the 

free surface position is at the upper computational 

boundary, so that kinematic and zero-pressure 

conditions at the free-surface are assigned precisely. 

In the context of nearshore coastal flows, a 

proper numerical simulation of the wave run-up in 

the swash zone is fundamental. The nearshore wave 

currents related to the propagation of waves in the 

swash zone substantially influence the bed erosion e 

the bed and coastline evolution. For this reason, it is 

very important to carefully locate the coastline 

position over time. In order to identify such 

position, an esteem of the celerity of the wave front 

that divides the wet zone and the dry zone, is 

necessary. The proper detection of the coastline in 

the swash zone represents a challenging issue. In 

fact, the celerity of the wet/dry wave front is often 

badly evaluated by the existing methods.  

One of the most used techniques in literature to 

evaluate the advance of the wet/dry wave front, is 

the so-called thin film technique [15]. By means of 

this technique, the zone in which the fluid is absent 
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(the dry zone), is assumed to be covered by a thin 

layer of water. The wet/dry front celerity is 

evaluated by solving a Riemann problem (an initial 

value problem with piecewise constant initial data 

separated by a discontinuity, in the context of a 

systems of hyperbolic equations) whose initial data 

are always defined by wet zones. Unfortunately, 

solving a Riemann problem in wet conditions lead 

to an error in the calculation of the wet-dry wave 

front celerity.  

The WAF (Weighted Average Flux) method is 

applied to the detection of the wet/dry front by [16]. 

By means of this method, the volume of water that 

crosses the interface (which defines the position of 

the coastline) between the last wet calculation cell 

and the first dry calculation cell, is evaluated; when 

this volume exceeds a threshold value a priori 

defined, the dry calculation cell becomes wet and 

the wet/dry front moves to the new interface. This 

method does not evaluate directly the wet/dry wave 

front celerity and the esteem of such celerity 

depends on the threshold value choice. 

In order to overcome the limitations of the 

models presented in literature, in this work we 

present a novel method for the prediction of the 

wave run-up, in the context of a numerical model 

for the free surface flow simulation, which solves an 

integral form of three-dimensional Navier-Stokes 

equations, with a vertical coordinate that varies in 

time in order to follow the free surface evolution 

[17]. The proposed method uses the exact solution 

of the Riemann problem over a dry bed, in order to 

evaluate the wet/dry wave front celerity in a 

physically based way, and an iterative procedure for 

the evaluation of the advance over time of the 

wet/dry front. 

The paper is structured as follows: in Chapter 2, 

we briefly describe the 3D numerical model that we 

used to simulate hydrodynamic fields in the 

coastline zone; in Chapter 3, we describe the exact 

solution of the Riemann problem over dry bed and 

we present an original method for the evaluation of 

the wet/dry wave front celerity; in Chapter 4, we 

present the results of several validation tests for the 

proposed method; in Chapter 5, we present the 

conclusions of the study. 

 

 

2 3D numerical model 
In this section, we briefly describe the numerical 

model that we used to simulate the hydrodinamic 

fields in the different zones domain (outside the surf 

zone, inside the surf zone and in the swash zone). 

The model is based on the solution an integral form 

of the three-dimensional Navier-Stokes equations, 

with a time-varying vertical coordinate. For details 

about the model, see [7]. 

Let us introduce a particular transformation from 

a system of Cartesian coordinates (          ), to 

a system of curvilinear coordinates (          ), in 

which the vertical coordinate vary in time in order 

to follow the free surface movements: 

 

                         
    

 
         (1) 

 

In eqn. (1),   is the total water depth,   is the still 

water depth and   is the free surface elevation. The 

following relation is valid  
 

 (       )   (       )   (       ) (2) 

 

Let (        ) be the Cartesian components of 

the fluid velocity vector  ⃗ , and (        ) be the 

Cartesian components of the velocity vector of the 

control volume surfaces,   . Let     and     (  
     ) be the covariant base vectors and the 

contravariant base vectors, respectively. Let √  be 

the Jacobian of the transformation defined by eqn. 

(1). Further details on definitions can be found in 

[7]. 

Let   ( ) be a volume element defined by 

surface elements bounded by curves lying on the 

coordinate lines. We define the volume element in 

the physical space as: 

 

  ( )            √           (3) 

 

and the volume element in the transformed space as: 

 

              (4) 

 

   ,     and     represent the volume element 

dimensions in the transformed space, in   ,    and 

   coordinates, respectively. Similarly, we define 

the surface element which bounds   , in the 

physical space as   ( )         √        

and in the transformed space as            

(          are cyclic). 

By means of the coordinate transformation 

defined by eqn. (1), the time-varying coordinates of 

the physical domain are basically mapped into a 

fixed coordinate system (        ), where    spans 

from   to  .  

Let us define the cell averaged value, 

respectively of the variable     (       ) and of 
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the variable   (recalling that   does not depend on 

  ): 
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 ∫        
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where       
         is the horizontal surface 

element in the transformed space.  

By using eqn. (5), the integral form of the 

momentum equation over the volume   , expressed 

in the time dependent coordinate system defined in 

(1), can be written as follows (see [7]): 
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(7) 

 

where       and       indicate the boundary 

surfaces of the volume element     on which    is 

constant and which are located at the larger and the 

smaller value of   , respectively. Here the indexes 

    and   are cyclic. In eqn. (7)   is the constant of 

gravity,   is the fluid density,   is the dynamic 

pressure,   is the kinematic viscosity and     is the 

strain rate tensor. 

By using eqn. (6), the integral form of continuity 

equation over the water column, expressed in the 

time dependent coordinate system defined in (1), 

can be written as follows (see [7]): 

 

  ̅

  
 

 

      
 ∫ ∑ [∫      

 

    

 

   

 

 

 

 ∫      
 

    
]       

(8) 

 

in which     and     indicate the boundary lines of 

the surface element     on which    is constant 

and which are located at the larger and the smaller 

value of    respectively. Eqn. (8) represents the 

governing equation that predicts the free surface 

motion.  

Eqns. (7) and (8) represent the expression of the 

three dimensional motion equations as a function of 

the    ̅̅ ̅̅ ̅ and  ̅ variables in the coordinate system 

(          ). Eqns. (7) and (8) are solved by means 

of a numerical model whose details can be found in 

[7]. 

 

 

3 The wet-dry problem 
In the simulation of the wave run-up phenomenon, a 

good prediction of the water wave propagation over 

dry beds, is essential. In particular, the scheme has 

to be able to simulate this propagation both over 

variable bathymetry and over flat beds. In order to 

simulate the run-up and the backwash dynamics of 

the wet and dry front in the swash zone, the 

following original procedure is proposed. 

 

 

3.1 The Riemann problem over a dry bed 
In order to properly represent the celerity by means 

of which the wet/dry wave front propagates, let us 

describe the solution of Riemann problem over a dry 

bed.  

In general, the solution of the Riemann problem 

consists on the solution of a system of partial 

differential hyperbolic equations, piecewise constant 

initial data separated by a discontinuity. For the sake 

of simplicity, let us consider the Riemann problem 

for the one-dimensional homogeneus Shallow Water 

Equations [15]: 

 

{
 
 

 
 
  

  
 
 (  )

  
                             

 (  )

  
 
 (    

 
   

 )

  
  

 (9) 

 

With initial data: 
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 (   )  {
                    
                    

 

 (   )  {
                    
                    

 

(10) 

 

The subscripts   e   indicate the initial data 

value on the left side and on the right side of the 

discontinuity, respectively. In eqn. (9),   is the 

water depth and   is the depth-averaged velocity.  

Let us analyze the Riemann problem over a dry 

bed (see fig. 1), whose initial data are given by a 

wet state on the left side of the discontinuity 

(    ) and by a dry state on the right of the 

discontinuity (       ,        ). 

 

 
Fig. 1. Riemann problem over dry bed. Initial data values. 

 

If the above described Riemann problem over a 

dry bed were solved by applying the general 

solution of the Riemann problem, in which      

and     , there would be an error. In fact, the 

characteristic fan for the solution with initial data 

        is composed by a shock wave. It can 

be demonstrated that in the solution of the Riemann 

problem in the case in which in the initial data there 

is a dry state (     or     ), a shock wave 

cannot be present. This demonstration is shown 

below. 

Let us suppose the two states (     ) and 

(     ) be connected by a shock wave with 

celerity  . Let us introduce the Rankine-Hugoniot 

conditions, which describe the relationship between 

the solution on one side of the shock wave, and the 

solution on the other side, for a one-dimensional 

flow.  

The application of the Rankine-Hugoniot 

conditions leads to the following system of 

equations [15]: 

 

[

    

    
  

 

 
   

 ]  [

    

    
  

 

 
   

 ]   

 ([
  
    

]  [
  
    

]) 

(11) 

 

Eqn. (11), rewritten in an extended form, reads: 

 

           (     ) (12) 

 

    
  

 

 
   

   

    
  

 

 
   

   (         ) 

(13) 

 

By imposing that     , from eqn. (12) we obtain: 

 

           (     ) (14) 

 

         (15) 

 

     (16) 

 

According to eqn. (16), the celerity of the shock 

wave is equal to the velocity of the particles in the 

left state. By imposing that     , from eqn. (13) 

we obtain: 

 

    
  

 

 
   

    

    
  

 

 
   

   (         ) 
(17) 

 

    
  

 

 
   

         (18) 

 

By applying eqn. (16) to eqn. (18), we obtain: 

 

    
  

 

 
   

       
  (19) 

 

      (20) 

 

According to eqn. (20), the initial water depth on 

the left of the discontinuity. This is in contradiction 

with the initial hypothesis according to which 

    . Therefore, it can be assumed that a shock 

wave cannot separate a wet solution state from a dry 

solution state, hence a shock wave cannot represent 

a wet/dry wave front. Thus, a shock wave cannot 

exist in proximity of a dry zone. 

Let us consider the case in which there is a left 

wet state and a right dry state in the initial data (as 

shown in fig. 2): 

 

 (   )  {
                                        
                         

 

 (   )  {
                                        
                         

 

(21) 
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Fig. 2. Riemann problem over dry bed. Exact solution in 

case of: 

-    √      and     √      (a); 

-    √      and     √      (b); 

-    √      and     √      (c). 

 

In this Riemann problem configuration, a left 

rarefaction wave is present, related to the left 

eigenvalue      √   (see [15]). The wave that 

connects the dry solution state to a wet solution 

state, that advances with celerity   
 , is the tail of the 

aforementioned rarefaction wave. Hence, the tail of 

the rarefaction wave defines the wet/dry wave front. 

Let us show the complete exact solution of the 

Riemann problem over a dry bed. Let us consider a 

fluid particle that belongs to the wet/dry front. Let 

   and    be particle water depth and velocity, 

respectively. The wet dry front celerity   
  is given 

by: 

 

  
  

  

  
    √    (22) 

 

Recalling that the tail of the rarefaction wave is the 

wet/dry wave front, we have: 

 

     (23) 

 

By using eqn. (23) into eqn. (22), we have 

 

  
     (24) 

 

Recalling Riemann invariants [15], it can be 

assumed that over the rarefaction wave the 

following relation is valid: 

 

   √        (25) 

 

By applying eqn. (25) to the head and the tail of the 

rarefaction wave, we have: 

 

    √        √    (26) 

 

By using eqn. (23) into eqn. (26), we have 

 

       √    (27) 

 

From eqns. (24) and (27), we have: 

 

  
      √    (28) 

 

By means of eqn. (28), the celerity of the wet/dry 

front can be evaluated. The complete solution of the 

Riemann problem over a dry bed, is (see [15]): 

 

 (   )  
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                 √      
 

 
   

 

                              
 

 
   

 

 

 (   )  
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    √   

               √      
 

 
   

 

                            
 

 
   

 

 

(29) 

 

Where the solution inside the rarefaction fan is 

given by: 
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 (    √    

 

 
) (30) 

 

      
 

 
 (    √    

  

 
) (31) 

 

 

3.2 Evaluation of the advance of the wet/dry 

wave front 
In this subsection, we describe the procedure by 

means of which the wet/dry wave front is advanced. 

For the sake of simplicity, the procedure is 

described for the only    direction, by neglecting 

the    direction. Let be (   ) the two indexes which 

define the center of the calculation cells in the    

and    directions, respectively. Hereinafter, the 

superscript ( ) indicates the time level     of the 

known variables, while the superscript (   ) 
indicates the time level             , of the 

unknown variables (see [7]). 

Let us define the wet column    as the set of 

calculation cells stacked on top of each other, 

characterized by the same   index and by having 

       . A dry column differs from a wet 

column because in a dry column        . A dry 

column can change status to wet only if at least one 

of the adjacent columns is wet. Let be    a dry 

column and      a wet column. The criterion by 

means of which    changes status from dry to wet is 

described as follows. 

Asymmetric WENO reconstructions defined on 

the wet column      lead to the evaluation of the 

point-value variables      ⁄
( ) 

 and       ⁄   

( ) 
 located 

at the cell faces. In the dry column   , 
reconstructions are not carried out, and point-values 

variables      ⁄
( ) 

 and       ⁄   

( ) 
 are set to zero. 

In order to use the solution of the one-

dimensional Riemann problem described in 

subsection 3.1, the depth-averaged velocity value 

has to be evaluated. For this reason, we evaluate the 

average over    of       ⁄   

( ) 
 values at the interface 

between the column      and the column   , to 

obtain the depth-averaged velocity values  ̌     ⁄
( )

: 

 

 ̌     ⁄
( )  ∑      ⁄   

       ⁄   

( ) 

  

   

 (32) 

 

In (32),    is the number of cells in the column and 

      ⁄   
  (     ⁄      ⁄

       ⁄      ⁄
 ).  

By means of eqn. (28), the propagation celerity 

of the wet-dry front  ̆    ⁄
( )

 can be evaluated as the 

celerity of the tail of the rarefaction wave, which 

divides wet status from the dry status: 

 

 ̆    ⁄
( )

  ̆     ⁄
( )   (      ⁄

( ) 
)
  ⁄

 (33) 

 

Let      ⁄
(   ) 

 and      ⁄
(   ) 

 be the solutions of the 

Riemann problem over a dry bed, described in 

subsection 3.1, evaluated over the interface between 

the wet column,     , and the dry column,   . From 

eqn. (29), we can have three cases.  

In the first case, both the celerity of the head of 

the wave rarefaction and the celerity of the tail of 

the wave rarefaction are positive (fig. 2a). From 

eqn. (29), we have: 

 

      ⁄
( ) 

 √      ⁄
( ) 

 

 

     ⁄
(   ) 

      ⁄
( )  

 

      ⁄

(   ) 
       ⁄

( )  

(34) 

 

In the second case, the celerity of the head of the 

wave rarefaction is negative and the celerity of the 

tail of the wave rarefaction is positive (fig. 2b). It 

must be noted that the solution is evaluated at the 

column interface, that is the point in which there is 

the discontinuity in the initial data, hence, in eqns. 

(30) and (31),    . From eqns. (29), (30) and 

(31), we have: 

 

  √      ⁄
( )        ⁄

( )  √      ⁄
( ) 

 

 

     ⁄
(   ) 

 
 

 
{
 

 
[      ⁄

( )   √      ⁄
( ) ]}

  ⁄

 

 

      ⁄

(   ) 
 
 

 
[      ⁄

( )   √      ⁄
( ) ] 

(35) 

 

In the third case, both the celerity of the head of 

the wave rarefaction and the celerity of the tail of 

the wave rarefaction are negative (fig. 2c). From 

eqn. (29), we have: 
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      ⁄
( )    √      ⁄

( ) 
 

 

     ⁄
(   ) 

   

 

      ⁄

(   ) 
   

(36) 

 

Let        ⁄
(   )

 be the distance between the wet-

dry front and the interface between the columns      

and    interface. This distance is given by:  

 

       ⁄
(   )

  ̆    ⁄
( )

            ⁄
( )

 (37) 

 

In eqn. (37),    is the time step             . 

The criterion to decide if the column    changes 

status from dry to wet is: 

 

       ⁄
(   )

     (38) 

 

where          ⁄
       ⁄

  is the distance 

between the wet/dry wave front and the interface 

between the      and    columns.  

The iterative procedure for the evaluation of the 

wet/dry wave front position, is described as follows: 

1. Evaluation of the point-value variables 

     ⁄
( ) 

 and       ⁄   

( ) 
 at the interface 

between the      and    columns, by means 

of asymmetric WENO reconstructions. 

2. Evaluation of the depth-averaged velocity 

value  ̌     ⁄
( )

 from point-value variables 

      ⁄   
( ) 

. 

3. Evaluation of the wet/dry wave front 

celerity  ̆    ⁄
( )

 by means of eqn. (33). 

4. Advancing in time at the interface between 

the      and    columns of the depth-

averaged values, by means of the exact 

solution of the Riemann problem over a dry 

bed, by means of eqns. (34), (35), (36), to 

obtain      ⁄
(   ) 

 and       ⁄

(   ) 
. 

5. Evaluation of the distance between the 

wet/dry wave front and the interface 

between the      and    columns,        ⁄
(   )

, 

by means of eqn. (37). 

6. Update of the cell averaged values  ̅ 
(   ) 

and  ̅(   ) in the whole domain, by means 

of the numerical scheme, proposed by [7]. 

7. Check of the condition (38) for the wetting 

of the column   . If condition (38) is not 

satisfied, return to step 1. If condition (38) 

is satisfied, the column    becomes wet, the 

new wet/dry interface is located between the 

column    and the column     ,        ⁄
(   )

 

  and return to step 1. 

The described criterion is applied analogously to 

direction   .  

 

 

4 Results and discussion 
 

 

4.1 Solitary wave on a slope beach test 
In order to validate the proposed method for the 

evaluation of the wet-dry front position, we present 

the results of the simulation of a solitary wave in a 

channel with a slope beach. Results obtained by the 

proposed numerical model are compared against the 

experimental results obtained by [18]. 

The test consist in the propagation of a solitary 

wave over a slope beach. The still water depth is 

        , the wave amplitude is         , the 

beach slope is      and the wave is generated 

       far from the toe of the beach. For the 

numerical simulation, we adopted a minimum water 

depth             . 

Fig. 3 shows the comparison between numerical 

results obtained by the proposed model and 

experimental measurement obtained by [18]. Results 

are shown in terms of quantities normalized by still 

water depth, at different time instants (normalized 

by √  ). Figs. 3a and 3b show the wave 

transformation and breaking due to the bottom 

change; it can be seen that both wave steepening 

and wave breaking are well simulated by the 

proposed numerical model. In Figs. 3c and 3d, the 

wave front is shown propagating over the beach; it 

can be noted that the proposed numerical wet-dry 

technique is able to well predict the wave front 

celerity over the dry bed and the maximum run-up 

position. From Figs. 3e, 3f and 3g, it can be seen 

that even the wave run-down phenomenon is very 

well predicted by the numerical model. The 

numerical results are generally in a very good 

agreement with the experimental measurements. 
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Fig. 3. Solitary wave on a slope beach. Normalized free 

surface elevation at:  √  ⁄     (a),  √  ⁄     (b), 

 √  ⁄     (c),  √  ⁄     (d),  √  ⁄     (e), 

 √  ⁄     (f),  √  ⁄     (g). Red line: numerical 

results. Blue squares: experimental results by [18].  

4.2 Rip current test 
In order to evaluate the ability to predict run-up in 

the 3D context by means of the proposed method for 

the evaluation of the wet-dry front position, we 

reproduce the laboratory experiment carried out by 

[19].  

The experimental set-up of the test carried out by 

[19] has the following characteristics: a 30x30m 

basin, a plane sloping beach of      with a channel 

located along the centerline. In fig. 4, the still water 

depth is shown. The bathymetry is symmetric with 

respect to the channel axis. At the boundaries that 

are parallel to the x-axis, reflective boundary 

conditions are imposed. In this subsection, we show 

the results obtained by simulating a wave train 

generated in deep water (     ) with the 

following features: wave period         , wave 

height        . 

 

 
Fig. 4. Rip current test. Still water depth [m]. 

 

 
Fig. 4. Rip current test. General 3D view of water depth. 

Orange: dry zone. Blue: wet zone. 

 

In fig. 5, a 3D view of the water depth is shown. 

Fig. 5 shows the complex wave field transformation 
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caused by the spatially variable bathymetry. Is to be 

noted the wave field propagates differently in the 

channel section and outside the channel. From. fig. 

5, it can be seen that the model is able to properly 

predict all the aspects of the wave propagation from 

deep to shallow water, outside the surf zone, into the 

surf zone and into the swash zone (thanks also to the 

proposed wet/dry front detection method). 

Fig. 6 shows several 3D views of the water 

depth, with particular regard to the swash zone. Fig. 

6a shows a wave front at the start of the run-up 

phase in the channel zone. Fig. 6b shows the 

wet/dry wave front advancing over the beach, both 

in the channel and outside the channel. In fig. 6c, 

the wet-dry wave front is shown to have reached the 

maximum run-up in the channel, while yet 

advancing outside the channel. Fig. 6d shows the 

wave run-down at the center of the channel, while 

outside the channel the wet/dry front reaches the 

maximum run-up. Fig. 6e shows that outside the 

channel the wet/dry wave front moves backward, 

while in the channel another wave front is 

advancing. From figs. 6c, 6d and 6e, it can be seen 

that the proposed wet/dry front detection method is 

capable to handle spatially complex problems, in 

which there is a substantial difference, in the run-up 

phenomenon, among different zones of the domain. 

In fig. 6f, a new run-up phase is displayed, showing 

that the proposed model is capable to track the 

wet/dry front position in case of continuous wave 

trains. 

 

 

4 Conclusion 
A study of wave run-up phenomenon in the swash 

zone by means of an innovative method, has been 

presented. The proposed method is based on the 

exact solution of the Riemann problem over dry 

bed, by means of which the celerity of the wave 

wet/dry front is correctly evaluated; this allows the 

method to precisely detect the wet/dry front 

position. The proposed method is applied in the 

context of a numerical model that solves three-

dimensional motion equations, expressed in integral 

form, in which the vertical coordinate varies in time 

in order to follow the free surface movement. The 

validation tests that were carried out showed that the 

proposed method for the detection of the wet/dry 

front, is capable to precisely evaluate the shoreline 

location, allowing the numerical model to correctly 

predict the hydrodynamics phenomena in the swash 

zone. 

 

 

 
Fig. 6. Rip current test. 3D view of water depth in the 

swash zone at:        (a),           (b),           
(c),        (d),           (e),           (f). Orange: 

dry zone. Blue: wet zone. 
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