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Abstract: - In this paper, the relation between th e Noll fo rmulation of th e principle of material frame 
indifference and the principle of turbulent frame indifference in large eddy simulation, is revised. The principle 
of material frame indifference and the principle of tu rbulent frame indifference proposed b y Hutter and Joenk 
imposes that both constitutive equations and turbulent closure rela tions must respect both the require ment of 
form invariance, and the requirement of frame independence. In this paper, a new rule for the form alization of 
turbulent closure relations, is proposed. The generalized SGS turbulent stress tensor is related exclusively to the 
generalized SGS turbulent kinetic en ergy, which is calculated by means of its balance equation, a nd the 
modified Leonard tensor. 
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1 The formulation of the Principle of 
Material Frame Indifference and the 
Principle of Turbulent Frame 
Indifference 
In the framework of or dinary fluid dynamics, the 
turbulence models could be i nterpreted as 
constitutive equations, which are necessary to close 
the equations of motion. The constitutive equations 
represent, in an idealized form, the behaviour of the 
materials and, consequently, the y must fulfil the 
principle of material frame indifference [1]. 
     In order to make explicit the relation between the 
Noll formulation of the principle of material frame 
indifference and the form ulation of the turbulen t 
closure relations, in t his section: the Noll  
formulation of the principle of material frame 
indifference is shown; the  confusion, produced by 
this formulation, is underlined (it does not 
emphasize the difference between Euclidean form 
invariance and frame independence of an equation); 
the distinction between E uclidean form invariance  
and frame in dependence of a constitutive equation 
or physical law is explained; the Hutter and Joenk  
[2] formulation of t he principle of tur bulent frame 
indifference, that is the eq uivalent in t urbulence of 
the principle of material frame indifference, i s 
expressed. 
     Considering an i nertial frame, in which a  
material point has coordinate ݔ௜ at time ݐ, and a non-
inertial frame, in which the same point has  

coordinate ݔ௜∗ at time ݐ∗, the most general law which 
governs the t ransformations of the coo rdinates and 
the time expressed in the two frames is that given by 
the Euclidean transformations 

௜ݔ ൌ ܳ௜௝ሺݐሻݔ௝∗ ൅ ܾ௜ሺݐሻ	 	 ݐ ൌ ∗ݐ ൅ ܽ (1) 

where ܳ௜௝ሺݐሻ are the co mponents of a tim e-
dependent proper orthogonal tensor, ܾ௜ሺݐሻ is the  
time-dependent distance between the origins of the 
two frames and ܽ is any constant. 
     It is comm on knowledge that tensors of rank ݊ 
ሺ݊ ൌ 0,1,2ሻ are said to be obje ctive, if the 
components transform according to: 
 

ܵ ൌ ܵ∗ objective	scalar 
௜ܸ ൌ ܳ௜௝ ௝ܸ

∗ objective	vector 
௜௝ܣ ൌ ܳ௜௠ܳ௝௡ܣ௠௡∗ 		objective	tensor 

(2) 

 
A constitutive relation can be expressed in the form 

ܶሺ Ԧ߯, ሻݐ ൌ ሺܨ Ԧ߯௧,  ሻݐ
   

(3) 
where 	 Ԧ߯௧ is the history of the motion of the body ܤ 
up to the time ݐ and ܶሺݔԦ, ሻ is the stress tensor. Theݐ  
principle of material frame indifference is based on 
the consideration that the material properties must 
be independent of the choice of frame. In other 
words, this basic working principle of continuum 
mechanics requires the cons titutive equations to be 
the same for observers in  inertial sy stems and in 
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non-inertial ones. Since constitutive equations are 
designed to express idealized material properties, 
the Noll for mulation of the principle of m aterial 
frame indifference requires they shall be fra me 
independent. That is, if the constitutive relation (2)  
is satisfied by the dynamic proces s ሺ Ԧ߯, ܶሻ, it is  
satisfied by every equivalent process ( Ԧ߯∗, ܶ∗) that is 
represented in a non-iner tial frame of reference. 
Formally, the constitutive mapping ܨ in (2) m ust 
satisfy the identity 

ܶሺ Ԧ߯∗, ∗ሻ∗ݐ ൌ 	൫ܨ Ԧ߯∗௧, ൯   (4)∗ݐ

For all ܶ∗, 	 Ԧ߯∗ and ݐ∗ that may be obtained from ܶ, 
Ԧ߯ and ݐ by Euclidean transformations of the frame 
expressed by relations (1) and (2) [1 ]. The 
abovementioned Noll formulation of the principle of 
material frame indifference produces a confusion 
because it does not e mphasize the difference 
between two distinct  requirements on t he 
constitutive equations: form invariance under 
Euclidean transformations of the fr ame; frame 
independence. 
 1) The requirement of Euclidean for m 
invariance implies the f ormal expression of the 
constitutive equations in a non-inertial frame of 
reference be equal to the formal expression of the  
constitutive equation in an inertial fram e of 
reference: that is, a constitutive equation is 
Euclidean form invariant if it does not m odify its 
formal expression under Euclidean transformation 
of the fram e and, co nsequently, it is constructed 
only with objective tenso rs. In other words, each 
observer uses the constitutive equations in the same 
functional form, but the quantities appearing in them 
may have di fferent values due to the  used fram e, 
i.e., the values of the qua ntities appearing in them 
may be frame dependent.  
 2) The requirement of frame independence of 
a constitutive equation i mplies the values of the 
quantities, appearing in it, be i ndependent of 
translational and angular velocity of the frame. It is 
possible to em phasize the difference between the 
Euclidean form invariance and the fra me 
independence by underlining the existence of  
tensors that are objective but  dependent on the 
translational and angular velocity of the frame. 
     For example, let ௜ܹ௝ and ௜ܹ௝

∗  be, respect ively, 
the representations, in an inertial and non-i nertial 
frame, of th e antisymmetric part of the velocity 
gradient. Let ௜ܹ௝

ఆ∗ be the repr esentation, in a non-
inertial frame, of the absolute vorticity tensor, given 
by the following expression: 

௜ܹ௝
ఆ∗ ൌ ௜ܹ௝

∗ ൅ ܳ௞௜ܳ௞௝ (5)

The law of transformation between th e 
representations of this ten sor in the different fra mes 
of reference is given by: 

௜ܹ௝
ఆ∗ ൌ ܳ௜௠ܳ௝௡ ௠ܹ௡

ఆ∗ (6)

The absolute vorticit y tensor ௜ܹ௝
ఆ is an objective 

tensor, since its represen tations in the different 
frames transform according to equation (2), but is 
frame dependent since its representations depend on 
the frame by means of the term ܳ௞௠ ሶܳ௞௡, associated 
with the angular velocit y of the non-i nertial frame 
[2-3]. 
     A constitutive equation, or a phy sical law, in 
order to be form  invariant under the m ost general 
class of transfor mations of the fram e (Euclidean 
transformations), must be expressed i n terms of 
objective tensors. A constitutive equation, or a  
physical law, is able to  fulfil the principle of 
material frame indifference if: it is form invariant 
(under Euclidean transformation of the frame); it is 
frame independent, i.e. it is expressed exclusively in 
terms of objective tensors that are in dependent of 
the translational and angular velocity of the frame. 
     The principle of turbulent frame indifference [2] 
is the equivalent in turbul ence of the principle of 
material frame indifference. The principle of 
turbulent frame indifference imposes that turbulent  
closure relation: must be form  invariant (or rather , 
must be expressed in ter ms of objective tensors); 
must be frame independent (or rath er, must be 
expressed in terms of objective tens ors that are  
independent of the angular and translational velocity 
of the frame). 

 
2 Turbulent Balance Equations in 
Large Eddy Simulation 
It must be emphasized that Euclidean form  
invariance and frame independence are two distinct  
matters.  
     The generalised SGS  turbulent stress tensor  is 
expressed by the equation 

߬௜௝ ൌ ௝ݑ௜ݑ െ ௝ (7)ݑ௜ݑ

where ݑ௜ is the ݅ െ component of the ݄ݐ  
instantaneous velocity and the overbar represents 
the application of spatial filter.  
     Following the procedure shown in [4], in order to 
show the characteristi c of the generalised SGS 
turbulent stress tensor an d in order to define the 
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modalities of form ulation of the turbulent closure  
relations, later on we present: 

 the objectivity and the frame independence of 
the abovementioned tensor; 

 the Euclidean form invariance and frame 
dependence of the generalised SGS turbulent  
stress tensor transport equation; 

 the Euclidean form invariance and frame 
independence of the generalised SGS 
turbulent kinetic energy transport equation. 

 
2.1 The generalized SGS turbulent stress 
tensor 
The time derivative of (1) gives 

௜ݑ ൌ ܳ௜௝ሺݐሻ	ݑ௝
∗ ൅	 ሶܳ ௜௝ሺݐሻݔ௝

∗ ൅ ܾపሶ ሺݐሻ (8)

Applying a spatial filter to (8) gives 

ത௜ݑ ൌ ܳ௜௝ሺݐሻ	ݑത௝
∗ ൅	ܳపఫሶ ሺݐሻݔ௝

∗ ൅ ܾపሶ ሺݐሻ (9)

By introducing (8) and ( 9) into (7), the relation 
between the expressions of the generalised SGS  
turbulent stress tensor  in two Euclidean frames is 
obtained, 

߬௜௝ ൌ ܳ௜௟ܳ௝௠൫ݑ௟
௠∗തതതതതതതݑ∗ െ ത௟ݑ

∗ത௠ݑ∗ ൯ ൌ ܳ௜௟ܳ௝௠߬௟௠
∗  (10)

     Equation (10) shows that the generalised SGS 
turbulent stress tensor i s objective and fra me 
independent. Consequently, all of the turbulen t 
closure relations for t he generalised SGS turbulen t 
stress tensor must be: form invariant under  
Euclidean transformations of the frame; independent 
of the transl ational and angular velocity of t he 
frame. 
 
2.2 Transport equation of the generalised 
SGS turbulent stress tensor 
The transport equation of the generalized SGS 
turbulent stress tensor is: 
 
஽ఛሺ௨ೖ,௨೗ሻ

஽௧
ൌ െ

డఛ൫௨ೖ,௨೗,௨೛൯

డ௫೛
െ ߬൫ݑ௣, ௞൯ݑ

డ௨ഥ೗
డ௫೛

െ

߬൫ݑ௣, ௟൯ݑ
డ௨ഥೖ
డ௫೛

െ ߬ ቀݑ௞,
డ௣

డ௫೗
ቁ െ ߬ ቀݑ௟,

డ௣

డ௫ೖ
ቁ ൅

߬ߥ ൬ݑ௞,
డమ௨೗

డ௫೛డ௫೛
൰ ൅ ,௟ݑሺ߬ߥ	

డమ௨ೖ
డ௫೛డ௫೛

ሻ    

(11)

 
The symbols ߬ሺ݂; 	݃ሻ and ߬ሺ݂; 	݃; 	݄ሻ represent the 
generalized second and thi rd-order central moments 
[5] related to the generic quantities ݂, ݃ and ݄. 
     By following the procedure shown in [4], by 
introducing (1), (8), (9)  and (10) i n (11), t he 
representation in a non-inertial fra me of the  

generalized SGS turbule nt stress tensor transport 
equation is: 
ܳ௞௠ܳ௟௡ ቂ

஽ఛሺ௨೘∗ ,௨೙∗ ሻ

஽௧∗
൅ ܳ௥௡ ሶܳ௥௣߬൫ݑ௣∗ , ∗௠ݑ ൯ ൅

ܳ௥௠ ሶܳ௥௣߬൫ݑ௣∗ , ∗௡ݑ ൯ቃ ൌ

ܳ௞௠ܳ௟௡ ൤െ
డఛ൫௨೛∗ ,௨೘∗ ,௨೙∗ ൯

డ௫∗೛
െ ߬൫ݑ௣∗ , 	௠ݑ

∗ ൯
డ௨ഥ∗೙
డ௫೛

∗ െ

ܳ௥௡ ሶܳ௥௣߬൫ݑ௣∗ , ∗௠ݑ ൯ െ ߬൫ݑ௣∗ , ∗	௡ݑ ൯
డ௨ഥ∗೘
డ௫೛

∗ െ

ܳ௥௠ ሶܳ௥௣߬൫ݑ௣∗ , ∗௡ݑ ൯ െ ߬ ቀݑ௠∗ ,
డ∗௣

డ௫೙
ቁ െ

߬ ቀݑ௡∗ ,
డ∗௣

డ௫೙
ቁ ൅ ߬∗ߥ ൬ݑ௠∗ ,

డమ௨೙∗

డ௫೛
∗డ௫೛

∗൰ ൅

∗௡ݑሺ߬∗ߥ ,
డమ௨೘∗

డ௫೛
∗డ௫೛

∗ሻ൨    

(12)

      
 By using the expression ௜ܹ௝

ఆ∗ of the absolute  
vorticity tensor defined in (6) and the objective time 
derivative introduced by Weis and Hutter [ 3], 
equation (12) reads 
 

஽෩ఛሺ௨೘∗ ,௨೙∗ ሻ

஽௧∗
ൌ െ

డఛ൫௨೛∗ ,௨೘∗ ,௨೙∗ ൯

డ௫೛
∗ െ

߬൫ݑ௠∗ , ∗௣ݑ ൯൫ܵ௣̅௡∗ െ ഥܹ௣௡∗ஐ൯ െ ߬൫ݑ௣∗ , ∗௡ݑ ൯൫ܵ௠̅௣∗ െ
ഥܹ௠௣∗ஐ൯ െ ߬ ቀݑ௠∗ ,

డ௣∗

డ௫೙
ቁ െ ߬ ቀݑ௡∗ ,

డ௣∗

డ௫೙
ቁ ൅

߬∗ߥ ൬ݑ௠∗ ,
డమ௨೙∗

డ௫೛
∗డ௫೛

∗൰ ൅ ∗௡ݑሺ߬∗ߥ ,
డమ௨೘∗

డ௫೛
∗డ௫೛

∗ሻ    

(13)

 
 Since the absolute vortici ty tensor ௜ܹ௝

ఆ∗ and 
the time derivative 	ܦ෩߬ሺݑ௠∗ , ∗௡ݑ ሻ/ݐܦ∗ are both 
objective tensors, equation (13) is expressed 
exclusively in terms of objective tensors. 
     From this consideration and for the  assumption 
that an equation is form  invariant if it is expressed  
only in terms of objective tensors, it results that the  
transport equation of the generalised SGS turbulent 
stress tensor is form  invariant under a Euclidean 
transformation of the fra me but remains fra me 
dependent through the apparition of ௜ܹ௝

ఆ∗. 
     From the previous considerations,  it can be 
deduced that the principle of turbulent fra me 
indifference proposed by Hutter and  Joenk [ 2] 
couldn’t be applied to th e transport equation of the 
generalized SGS turbulent stress tensor. 
 
2.3 Transport equation of the generalised 
SGS turbulent kinetic energy 
The generalized SGS turbulent ki netic energy ܧ is 
defined as half the trace of the SGS turbulent stress  
tensor and is, as can be easily demonstrated, an 
objective scalar. The ge neralized SGS turbulent 
kinetic energy transport equation is [4]: 
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ଵ

ଶ

஽ఛሺ௨ೖ,௨ೖሻ

஽௧
ൌ െ

ଵ

ଶ

డఛ൫௨ೖ,௨ೖ,௨೛൯

డ௫೛
െ

߬ሺݑ௠, ௞ሻݑ
డ௨ഥೖ
డ௫೘

െ ߬ ቀݑ௞,
డ௣

డ௫ೖ
ቁ ൅

,௞ݑሺ߬ߥ
డమ௨ೖ

డ௫೛డ௫೛
ሻ  

(14)

which is equal to 
 
஽ா

஽௧
ൌ െ

ଵ

ଶ

డఛሺ௨ೖ,௨ೖ,௨೘ሻ

డ௫೘
െ ߬ሺݑ௠, ௞ሻݑ

డ௨ഥೖ
డ௫೘

െ
డఛሺ௣,௨೘ሻ

డ௫೘
൅ ߥ

డమா

డ௫೘డ௫೘
െ ሺ߬ߥ

డ௨ೖ
డ௫೘

,
డ௨ೖ
డ௫೘

ሻ  
(15)

 
By introducing (1), (8), (9) and (10)  in (15), the  
representation in a non-inertial fra me of the  
generalized SGS turbulent  kinetic energ y transport 
equation is: 
 
஽ா∗

஽௧∗
ൌ െ

ଵ

ଶ

డఛ൫௨೘∗ ,௨೘∗ ,௨೛∗ ൯

డ௫೛
∗ െ ߬൫ݑ௣∗ , 	௠ݑ

∗ ൯
డ௨ഥ∗	೘
డ௫೛

∗ െ

డఛ൫௣∗,௨ೖ
∗ ൯

డ௫ೖ
∗ ൅ ∗ߥ

డమா∗

డ௫೛
∗డ௫೛

∗ െ ሺ߬∗ߥ
డ௨೛∗

డ௨೙
∗ ,

డ௨೛∗

డ௨೙
∗ ሻ  

(16)

      
From the com parison between equations (15)  and 
(16), it can be deduced that the transport equation of 
the generalized SGS turbulent kinetic energy is form 
invariant and frame independent, in  so much that 
each of th e terms that appear in it are 
representations, in inertial and non-inertial frames, 
of objective tensors that are indepen dent of the  
angular and translational velocity of the frame. 
 
3 A New Rule of Turbulent Closure 
Relations  
In the pre vious section, the Euclidean for m 
invariance and the fra me dependence of the 
generalised SGS turbule nt stress tensor transport 
equation, has been demonstrated. Many  authors 
repute that all of the turbulent closure relations must 
fulfil the principle of turbulent frame indifference in 
the formulation proposed by Hutter and Joenk [2]. A 
contradiction arises from the abo vementioned 
imposition: the generalised SGS tur bulent stress 
tensor transport equation could not be used in the 
turbulent closure relations, since it does n't fulfil the 
principle of turbulent frame indifference. Must all of 
the turbulent closure relations fulfil the principle of 
turbulent frame indifference? In other words, if ݕ	 ൌ
	ܿሺݔሻ is a turbul ent closure relation, does this 
relation have to be frame  independent? No, it does 
not need to. 
     It is usually  assumed t hat material laws do not 
depend on t he rotation of  the sy stem. This means 
that in ever y system the material should show the  
same behaviour. This is quite a good assu mption as 

long as the r elaxation time of the m aterial is large 
compared with the typical time scale of the flow. 
     The turbulent phenomena are not associated to 
the properties of the materials: consequentl y, 
turbulent closure relations do not re present the 
material behaviour. In such flows the c haracteristic 
turbulent time scale can be co mparable with the  
typical time scale of the  flow, i mplying that the 
rotation of the sy stem can influence the turbulent 
closure functionals. This means that objective 
tensors, which depend on the rotation of the 
reference frame, may enter such functional relations. 
Constitutive relations of any turbulence theor y need 
not satisfy the princi ple of turb ulent frame 
indifference.  
     Turbulent closure relations must always be form 
invariant but m ust not necessarily  be frame 
independent. In other wo rds, not all the turbulent  
closure relations m ust fulfil the principle of  
turbulent frame indifference. A new rule of  
turbulent closure relations can be formulated:  
      “In a turbulent closure relation, the modelled 
expressions of an unknown objective tensor must be 
formulated in term s of objective tensors, allowing 
the closure relations to fulfil the requirem ent of 
Euclidean form invariance, and must retain the same 
dependence on the angular  velocity of the frame of 
the unknown tensor”. 
 
4 Closure Relations 
In depth-averaged motion equations models [6-7] 
and in models based on 3D Navier-Stokes equations 
[8-10], the t urbulent stress tensor is r elated to the 
strain rate tensor, which is Reynolds-averaged. In 
the context of LES m odels, the generalized SGS  
turbulent stress tensor, ߬௜௝, is related to th e resolved 
tensors. The generalised SGS turbulent stress tensor, 
߬௜௝, can be split into three tensors: 

߬௜௝ ൌ ఫതതതതതݑపݑ െ ത௝ݑത௜ݑ ൌ ௜௝ܮ
௠ ൅ ௜௝ܥ

௠ ൅ ܴ௜௝
௠ (17)

where ݑ௜ is the ݅-th component of the instantaneous 
velocity, the overbar rep resents the a pplication of 
the grid filter ing operator, ܮ௜௝௠, ܥ௜௝௠ and ܴ௜௝௠ are the 
so-called modified Leonard tensor, th e modified 
cross tensor and t he modified Re ynolds tensor, 
respectively; ݑ௜ᇱ is the ݅-th component of the  
fluctuating velocity, ݑ௜ᇱ ൌ ௜ݑ െ  .ത௜ݑ

Starting from (17), by adopti ng the scale 
similarity assumption, by simple mathematical 
calculations, a closure rel ation is reac hed for the 
generalized SGS turbule nt stress tensor, in whic h 
there are no coefficients to be calibrated or to be  
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calculated dynamically, and which is given by the 
following relation: 

߬௜௝ ൌ ܧ2
௅೔ೕ
೘

௅ೖೖ
೘   (18)

where ܧ ൌ
ఛೖೖ
ଶ

. See [4] for the details. 
     The generalised SGS  turbulent stress tensor  is 
related exclusively to the generalised SGS turbulent 
kinetic energy and the modified Leonard tensor that  
are, respectively, a zero o rder and a second order  
objective tensor that a re independent of the  
translational and angular velocit y of the frame. 
Consequently, the closure relation (18) for the  
generalised SGS turbulent stress tensor : takes into 
account the anisotropy of the turbulence; rem oves 
any balance assumption between the production and 
dissipation of SGS turb ulent kinetic e nergy; does 
not use any closure coefficient calculated by means 
of a dy namic procedure; respect s the new rule of  
turbulent closure relations, proposed in section 3. 

The generalised turbulent  kinetic energ y ܧ is 
calculated by solving its transport equation (15) . 
The proposed modelled form of Equation (15) is: 
 
஽ா

஽௧
ൌ

డ

డ௫ೖ
ቀܧ√ܦ∆ത

డா

డ௫ೖ
ቁ െ ൬ଶா

௅೜೜
೘ ൰ ௠௞ܮ

௠ డ௨ഥೖ
డ௫೘

൅

ߥ
డమா

డ௫೘డ௫೘
െ

஼∗ாయ/మ

୼ഥ
  

(19)

where the 1௦௧ and 3௥ௗ terms on the right-hand side 
of the exact balance equation of (15) ܧ are modelled 
by the 1௦௧ term of equation (19); the last t erm of the 
right-hand side of equation (15), whi ch represents 
the viscous dissipation  of the tur bulent kinetic 
energy, is modelled b y the last term on the right-
hand side of equation (19); the values of the 
coefficients ܥ∗ and ܦ are eval uated by means of a 
dynamic procedure. 
 
5 Results and discussion 
Turbulent channel flows (between two  flat parallel  
plates placed at a distance of 2ܮ) are simulated with 
the model that uses the p resented closure relation, 
hereinafter called TEM model, at friction-velocity-
based Reynolds number ܴ݁∗ equal to 2340. The 
numerical results obtained with the TEM model are 
compared with experimental data [11]. 
     Figure 1a shows the profile of the time-averaged 
streamwise velocity component for a channel flow  
at ܴ݁∗ ൌ 2340 obtained with t he TEM model, 
compared with the profile of the analogous velocity 
component measured experimentally [ 11]. The 
agreement between the t wo velocity profiles is very 
good. 

     Figure 1b compares the profile of the component 
ሼݑଵ

ᇱ ଷݑ
ᇱ ሽ of the Re ynolds stress tensor (where the 

subscripts 1 and 3 denote, respecti vely, the 
streamwise and wall-nor mal directions), calculated  
with the TEM model, with the profile of the similar 
component of the Rey nolds stress ten sor obtained 
from experimental measurements [11], for a channel 
flow at ܴ݁∗ ൌ 2340. Figure 1b shows that at the  
TEM model provides a profile of t he component 
ሼݑଵ

ᇱ ଷݑ
ᇱ ሽ in agreement with the one obtained from the 

experimental measurements. 

 

Figure 1. Comparison between experimental 
measurements and LES r esults obtained with the 
TEM model. Channel flow, ܴ݁∗ ൌ 2340. (a): Time-
averaged streamwise velocities. (b) Reynolds stress 
ሼݑଵ

ᇱ ଷݑ
ᇱ ሽ.  

 
Figure 2. Vortex identification with ߣଶ method, x-z 
plane. 
     In figure 2 the near-wall vortex structures (inside 
the turbulent boundary  layer) are clear ly identified 
by the ߣଶ method of Joeng & Hussain [ 12]: the 
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dimensions of the spatial discretization steps allow  
the optimal simulation of the ab ovementioned 
vortex structures that govern the transport, the  
production and the dissipation of th e turbulent 
kinetic energy. See also [13] and [14]. 

 
 
5 Conclusion 
The relation between Noll’s form ulation of the 
principle of material frame indifference and the 
principle of turbulent frame indifferen ce, has been 
revised. The definition of a new Rule of Turbulent 
Closure Relations has been proposed. The 
aforementioned rule of Tu rbulent Closure Relations 
has been expressed in the following form : “In a 
turbulent closure relation, the modelled expressions 
of an unknown objective tensor must be formulated 
in terms of objective tensors, allowing the closure 
relations to fulfil the requirement of Euclidean form 
invariance, and must retain the same dependence on 
the angular velocity of t he frame of the unk nown 
tensor”. The generalized SGS turbulent stress tensor 
is related exclusively t o the generalized SGS  
turbulent kinetic energy, which has be en calculated 
by means of its balance equation, and the modified 
Leonard tensor. 
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