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Abstract: - In this work, we consider a steady flow of an incompressible fluid over a cylinder which is
semi-infinite. The cylinder is embedded in a porous medium and is considered to move vertically with
nonlinear velocity. A system of ordinary differential equations is obtained from the partial differential
equations governing the motion using a self-similarity transformation. Such system of ordinary differential
equations is solved numerically after obtaining the missed initial conditions. The problem has been solved
analytically for the linear velocity case. Numerical and analytical results for such case are given to validate
the numerical method used.
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1 Introduction
Many applications in industry and engineering
arise from the flow of Newtonian and Non-
Newtonian fluids. Authors have been interested in
such fields for the last few decades. The problem
of boundary layer flow over a cylinder, which is our
concern in this work, has many applications such
as glass fiber production, the drawing of wires, as
well as plastic and metallurgy industries. Sakiadis
[1] was the first to study boundary layer flow be-
havior on a cylinder moving in a Newtonian fluid.
He obtained a numerical solution using a similar-
ity transformation. Rotte and Beek have given
Some models for the calculation of heat trans-
fer coefficients to a moving continuous cylinder[2].
Ganesan and Loganathan [3] have introduced the
problem of radiation and mass transfer effects on
flow of an incompressible viscous fluid past a mov-
ing vertical cylinder. Recently Ado-Eldahab and
Salem [4] have studied the flow and heat trans-
fer of non-Newtonian powerlaw fluid with diffu-
sion and chemical reaction on a moving cylinder.
Amkadni and Azzouzi [5] have analyzed the steady
flow of an incompressible electrically conducting
fluid over a semi-infinite moving vertical cylinder

in the presence of a uniform transverse magnetic
field. The Study of hydrodynamic flow and the
transfer of heat in a porous medium is very inter-
esting for its wide range of applications on the pro-
cess of controlling boundary layer flow such as the
removal of heat from nuclear debris. Elbashbeshy
et al [6] have analyzed the problem of boundary
layer flow over a stretching horizontal cylinder em-
bedded in a porous medium. They have consid-
ered the effects of thermal radiation, heat trans-
fer, and suction/injection. Abdul Rehman et al
[7] have given an analytic solution to the problem
of, axisymmetric Stagnation Flow of a Micropolar
Fluid in a Moving Cylinder. Haroon et al [8] have
presented an investigation provides an view in the
steady, incompressible and electrically conduct-
ing boundary layer flow of viscoelastic nanofluid
flowing due to a moving, linearly stretched sur-
face. More recent works discussing the bound-
ary layer flow over a cylinder can be found in the
references[9]-[14] In this paper we present a solu-
tion to the problem of a vertically moving cylinder
with nonlinear velocity. Analytic solution is given
for the case of linear velocity and a comparison
between analytic and numerical solutions is given
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in some cases to validate the numerical method
used in this paper. Considering nonlinear form of
the cylinder velocity enables us to be closer to the
real problem of boundary layer flow over a mov-
ing cylinder and suggests new problems such as
the study of heat transfer over a moving cylinder
with nonlinear velocity.

2 Problem Formulation
Consider a steady incompressible laminar flow
past a moving cylinder. The cylinder is assumed to
be semi-infinite and vertical with radius R. A uni-
form transverse magnetic filed with strength B0 is
applied. We also assume that the fluid properties
are constant. The induced magnetic field is ne-
glected since we consider that the Reynolds num-
ber is very small. Along the axis of the cylinder
we measure the axial coordinate x while the radial
coordinate r is measured normal to the axis of the
cylinder. The external velocity is taken in the form
ue(x) = u∞(x

l )n, where u∞ > 0. Such assump-
tions along with the boundary layer approxima-
tion results in the following governing equations:

∂ru

∂x
+ ∂rv

∂r
= 0 (1)

u
∂u

∂x
+v∂u

∂r
= ν

r

∂

∂r
(r∂u
∂r

)+ue
due

dx
+ ν

κp
(ue−u) (2)

subject to the conditions:

u(R, x) = uw(x
l
)n, v(R, x) = 0,

lim
r→∞

u(r, x) = ue(
x

l
) (3)

where u and v are the velocity components along
the directions of x and r respectively, ν is the kine-
matic viscosity, ρ is the fluid density, and σ is the
electrical conductivity of the fluid, l is the charac-
teristic length
and κp is the porosity of the medium. We define
the stream function ψ as

ru = ∂ψ

∂r
, rv = −∂ψ

∂x
(4)

Substituting from equation (4) into equations (1)
and (2) we find that equation (1) is satisfied iden-
tically and equation (2) takes the form:
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and the conditions (3) are transformed into the
form:

∂ψ(R, x)
∂r

= Ruw(x
l
)n,

∂ψ(R, x)
∂x

= 0,

lim
r→∞

(1
r

∂ψ(r, x)
∂r

) = u∞(x
l
)n (6)

we look for a solution in the form

ψ(r, x) =

√
νu∞R(n+ 1)

2
(x
l
)n+1Rf(η),

η =
√

u∞

2ν(n+ 1)R
(x
l
)n−1 1

R
(r2 −R2) (7)

where f is the dimensionless stream function and
η is the similarity variable. Upon substituting in
equations (5) and (6), we get:

2
n + 1

(ηK + 1)f ′′′(η) + (
2K

n + 1
+

ϵ(n + 1)
2

f(η))f ′′(η)

+ nϵ(1 − f ′2(η)) − κ(f ′(η) − 1) = 0, (8)

f(0) = 0, f ′(0) = uw

u∞
= a, f ′(∞) = 1 (9)

where K =
√

ν(n+1)
u∞R ( l

x)n−1, ϵ = R
l , and the per-

meability parameter is κ = Rν
κpu∞

( l
x)n−1.

The system (8) − (9) is transformed into a system
of first order differential equations through assum-
ing that: y1 = f , y2 = f ′, y3 = f ′′ to get

y′
1(η) = y2(η) (10)

y′
2(η) = y3(η) (11)

y′
3(η) = y2(η) (12)

2
n + 1

(Kη + R)y′′
3 (η) = −(

2K

n + 1
+

ϵ(n + 1)
2

y1(η))

× y2(η) − nϵ(1 − (y2
2(η)) + κ(y2(η) − 1) (13)

subject to the initial conditions:
y1(0) = 0, y2(0) = a, y3(0) = s (14)

Suitable numerical values are given for a, n, κ, ϵ,
and K. the value of s is priori unknown that
is determined as part of the solution. We
use Mathematica to define a function F [s] =
NDSolve[(10) − (14)]. The value of s is obtained
through solving the equation y1(ηmax) = 1. A
suitable start value of η is taken and then in-
creased to reach ηmax for which the difference be-
tween two successive values of s is less than 10−7.
So the problem now is an initial value problem
which is then solved using NDSolve, see refer-
ences[6] and [15].
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3 Problem Solution
In this section, solutions of the problem are intro-
duced. An analytic solution is given in the special
case n = 1, where the cylinder velocity is consid-
ered to be linear. Numerical solutions are given
for the case n ̸= 1.

3.1 Special Case: n = 1
Here we consider the case n = 1 which means that
the cylinder moves with linear velocity. Equation
(8) takes the form

(ηK + 1)f ′′′(η) + (K + ϵf(η))f ′′(η)
+ϵ(1 − f ′2(η)) − κ(f ′(η) − 1) = 0 (15)

subject to the conditions:

f(0) = 0, f ′(0) = uw

u∞
= a, f ′(∞) = 1 (16)

where K =
√

2ν
u∞R , and κ = RσB2

0
ρu∞

.
We seek for an exact solution to the linear case in
the form

f(η) = η + p+ qe−µη (17)
where p, q, µ are constants and µ > 0. So

f ′(η) = 1 − qµe−µη (18)
Applying the conditions f(0) = 0, f ′(0) = a we
find that

f(η) = η + a− 1
µ

(1 − e−µη) (19)

the condition f ′(∞) = 1 is satisfied identically
which can be observed from equation (18).
Substituting equation (19) into equation (15) we
get the following:

((ηK+1)µ2−µK−ηϵµ−2ϵ−κ)(a−1)−ϵ(a−1)2 = 0
(20)

Using the fact that a ̸= 1 and equating the coeffi-
cients of η and η0, we get

µ = ϵ

√
u∞R

2ν
= ϵ

K
(21)

and

κ = ( ϵ
K

)2 − ϵ(a+ 2) (22)

hence the exact solution of equation (15) is

f(η) = η + (a− 1)k
ϵ

(1 − e− ϵ
K

η) (23)

where κ is given by equation (22)

n = -0.3, -0.1, 0.1, 0.3

2 4
Η

1.1

1.3

1.5

f ¢HΗL

Figure 1: Variation of the fluid velocity with the
nonlinearity parameter n, where K = 2, a = 1.5,
ϵ = 1, and κ = 1.

3.2 Validation of the numerical method
To validate the numerical method used in this
paper we compare the numerical solution with
the exact one for the case n = 1. Table 1 gives
a comparison between the values of f ′′(0) for
K = 2, ϵ = 1 and different values of a
Table 1:Values of f ′′(0), where K = 0.2, ϵ = 1

a Exact Soln. Num. Soln. Error: |f ′(ηmax) − 1|
1.2 -1 -1 9.77 × 10−10

1.5 -2.5 -2.5 2.45 × 10−9

2 -5 -5 2.38 × 10−11

3 -10 -10 4.32 × 10−8

The fourth column of Table 1 gives the nu-
merical calculated values of |f ′(ηmax) − 1|. Exact
values should be zeros if ηmax → ∞. The results
shown in table 1 ensures that the numerical
method used in this paper is valid.

3.3 Case: n ̸= 1
Numerical solutions where n ̸= 1 are obtained us-
ing the method described at the end of section 2.
The variations of the velocity f ′(η) with the simi-
larity variable η are plotted for different values of
the considered parameters. Figures (1)-(4) show
that the fluid velocity f ′(η) decreases with the in-
crease of η till it reaches the ambient fluid veloc-
ity that is f ′(η) = 1. Figure 1 shows the varia-
tion of f ′(η) for different values of the parameter
n where the other fluid parameters are kept con-
stant. From the figure one can observe that as n
elevates the value of f ′(η) increases. The physical
justification of this behaviour is that since as n
increases the cylinder velocity increases which en-
forces the fluid velocity to increase which is clearly
shown in the figure. The variation of the fluid ve-
locity f ′(η) with the permeability parameter κ is
shown in figure 2. To interpret the results shown
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Κ = 0, 1, 2, 3

2 4
Η

1.1

1.3

1.5

f ¢HΗL

Figure 2: Variation of the fluid velocity with the
permeability parameter κ, where K = 2, a = 1.5,
ϵ = 1, and n = 0.5.

in figure we know that κ plays a considerable role
in controlling the fluid velocity, since the value of
κp is a measure of how it is easy to penetrate the
porous medium. κ is the reciprocal of κp so the
increase of the permeability parameter κ increases
the resistance to the fluid motion and consequently
the fluid velocity f ′(η) decreases which coincides
with the results shown in figure 2.
The parameter ϵ has a considerable effect on the
fluid velocity as depicted in figure 3. One can no-
tice that the decrease of ϵ = R

l increases the fluid
velocity. A reasonable explanation of this is that
the decrease of R results in decreasing the cylin-
der surface area, so the cylinder shrinks and as a
result the space provided for the fluid free stream
velocity increases. Thus the tendency of the fluid
velocity to be a free stream is enhanced. Figure 4
ensures the fact that as the fluid velocity increases
as the initial velocity increases.

4 Conclusion
An investigation of the problem of a boundary
layer flow over a vertical cylinder moving with
nonlinear velocity is given. An exact solution has
been found for some special cases. Similarity solu-
tion of the problem has been given and the profiles
of the fluid velocity have been plotted to show the
variation of the fluid velocity with the considered
parameters. The following results have been ob-
tained:

• The fluid velocity increases as n, the param-
eter of nonlinearity increases and as the fluid
initial velocity increases also.

• The fluid velocity decreases with the increase
of the permeability parameter as well as the
cylinder radius.

Ε =0.5,1,1.5,2

2 4
Η

1.1

1.3

1.5

f ¢HΗL

Figure 3: Variation of the fluid velocity with the
parameter ϵ, where K = 2, a = 1.5, n = 0.3, and
κ = 1.

a = 1.2, 1.5, 1.7, 2

2 4
Η

1.2

1.5

1.8

2

f ¢HΗL

Figure 4: Variation of the fluid velocity with the
initial velocity parameter, where K = 0.2, n =
0.3, ϵ = 1, and κ = 1.
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