
 

 

 

Abstract: A perturbed dynamical system involving two ordinary differential equations is under review. Whereupon, 

the differential equation for determining the fast phase contains the ratio of the two frequencies. When these 

frequencies coincide for a long time, a resonance is implemented in this system. The aim of this paper is to obtain the 

conditions of monotonic external stability and instability of this resonance. The sufficient conditions for the external 

stability and instability of the resonance defined in this paper assume that the signs of the analyzed derivatives remain 

unchanged in the non-resonant section of the change in the independent variable. This paper gives a new 

classification of the phenomenon of external stability of resonance, which includes weak, linear, and strong stability. 

It should be noted that the conditions of monotonic external stability and instability of the resonance presented in this 

paper can be used in various scientific and technological problems, in which resonances are observed. Particularly, 

the concluding part of the paper considers the application of the results obtained within the framework of the problem 

of the perturbed motion of a rigid body relative to a fixed point. 
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1. Introduction 

 

 he modern theory of differential equations traditionally 

uses the concepts of strong and weak stability of solutions. 

Particularly, publications [1-2] investigate the strong and 

weak-strong stability of solutions in various systems of 

equations describing the cross-diffusion phenomenon. 

Moreover, when solving the equations of mathematical 

physics, the concepts of strong and weak resonances are used. 

Thus, the papers [3-4] study strong and weak resonances 

obtained from delay-induced double Hopf  bifurcations in 

systems of differential equations with delay. Let us note that 

the traditional aspect of studying the behavior of boundary 

cycles is the study of their stability.  

The papers [5-8] describe methods for analyzing the stability 

and instability of boundary cycles in various nonlinear systems 

of differential equations. Similar to boundary cycles, 

resonances also include stability or instability properties in 

nonlinear systems of equations. In this case, the external and 

internal stability of the resonances are separated. The internal 

stability of resonances is considered, for example, in papers 

[9-11]. Typically, the stability of oscillations in mechanical 

coupled oscillators is analyzed in this case. The concept of 

external stability of resonances with regard to differential 

systems with fast and slow variables was first described by 

Yu.A. Sadovy [12-13]. At the same time, it was assumed that 

the external stability of resonances should be understood as 

such behavior of the slow variables of the system beyond the 

asymptotically small resonance zone, in which the resonance is 

an attractor. Later, the paper [14] defines a more strict concept 

of the external stability of the resonance for a nonlinear system 

of equations of motion with slow and fast variables. Moreover, 

the use of the second Lyapunov method allowed obtaining the 

conditions for the external stability of the resonance [14].  The 

papers [15-16] present the results of the application of this 

method in the study of the external stability of the resonance in 

various problems of space flight dynamics. 

It is important to note that the method for studying the 

external stability of the resonance is based on the analysis of 

the sign of the first derivative of the Lyapunov function.  

This method does not allow analyzing the convexity of the 

function of the resonant frequency ratio as a function of the 

motion time. This paper proposes to analyze the monotonic 

external stability of the resonance, taking into account the 

signs of the first and second derivatives of the resonant 
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frequency ratio. This result was achieved under the assumption 

that the right-hand sides are sign-constant, continuous and 

differentiable functions over the entire non-resonance time 

interval of motion. The aim of the paper is to obtain the 

conditions of monotonic external stability and instability of the 

resonance under consideration in a nonlinear perturbed two-

frequency system of differential equations. Moreover, a joint 

analysis of the signs of the first and second derivatives of the 

resonant frequency ratio will allow categorizing three types of 

monotonic external stability of the resonance, i.e. "strong," 

"weak," and "linear." The concluding part of the paper 

contains an example of the application of this method within 

the framework of the problem of the perturbed motion of a 

rigid body relative to a fixed point. 

2. MATH Mathematical Model  

2.1 Perturbed dynamical system  

Let us consider a system of differential equations:  

                                 
)(

)(











f

dt

d
,                                 (1) 

)(



dt

d
.                                      (2) 

Here,  µ is a small parameter that characterizes the value of 

the perturbing function, )(f ; ω and θ are slow and fast 

variables, respectively; )(),(  f  are known functions.  

Let us call the function )(  the resonant ratio of two 

frequencies )(1  , )(2  . The equality 

),()()( 21 с   will be true. Here, c is a positive 

parameter. When an equality 0))(),(( 21    is satisfied 

in the system of equations (1)-(2), a resonance may occur. The 

size of the resonant range of values )( , is characterized by 

size of the order  . Let us reduce our attention to the study 

of non-resonant areas of frequency ratio variation )( . 

Remark: It should be noted here that from the point of view 

of mathematics, the equation (1) should be considered 

independently of the equation (2). In what follows, the 

equations (1) and (2) are referred to as a system, assuming that 

equation (1) should be considered independently of the 

equation (2). 

The functions ))(()),(( ttf    will be sign-constant, 

continuous, and differentiable on the non-resonant segment 

tϵ[to,tr) under consideration. Here, to is the initial value of the 

time t, and tr is the value of the time when the value   reaches 

the resonant area 0)(   . Moreover, the derivatives 
dt

d
 

and 
2

2

dt

d 
 are also sign-constant on the non-resonant segment 

tϵ[to, tr) under consideration. 

2.2 Strong, weak, and linear external stability of 

the resonance 

First of all, let us introduce several concepts.  

Definition 1. The linear monotonic external stability of an 

individual resonance, 0  , is understood as a monotonous 

convergence  , to a small resonant area that occurs in a given 

non-resonant area, which is adjacent to the resonance by 

means of linear dependence )(t . 

Definition 2. The weak nonlinear or simple-weak monotonic 

external stability of an individual resonance, 0  , is 

understood as a monotonous convergence   to a small 

resonant area that occurs in a given non-resonant area, which 

is adjacent to the resonance for a longer time interval than with 

linear external stability. 

Definition 3. The strong nonlinear or simple-strong monotonic 

external stability of an individual resonance 0   is 

understood as a monotonous convergence   to a small 

resonant area that occurs in a given non-resonant area, which 

is adjacent to the resonance for a shorter time interval than 

with linear external stability. 

Remark: The initial values )(t , 
d

dt


, and 

2

2

d

dt


 (whereupon, 

2

2

d
0

dt


 ) at t=0, as described in definitions 1-3, are assumed 

to be coincident. 

Depending on the sign of the second derivative, 
2

2

dt

d 
, on 

each of the two non-resonant sections, which are adjacent to 

this resonance 0 ,  three cases of external stability of this 

resonance can be distinguished.  

Let us consider the evolution of )(t  in the positive non-

resonant range of values  >0 at an externally stable 

resonance. If the condition 0


dt

d
 is met, it is possible here 

to distinguish three stable cases of the system behavior (1)-(2):  

Case 1: 0
2

2




dt

d
 is the case of weak nonlinear external 

stability (Fig. 1, curve 1). 

Case 2: 0
2

2




dt

d
 is the case of linear external stability (Fig. 

1, line 2). 

Case 3: 0
2

2




dt

d
 is the case of strong nonlinear external 

stability (Fig. 1, curve 3). 

Let us consider the evolution of )(t  in the negative non-

resonant range of values   at an externally stable resonance. 

If the condition 0


dt

d
 is met, it is also possible here to 

distinguish three stable cases of the system behavior (1)-(2):  
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Case 4: 0
2

2




dt

d
  is the case of weak nonlinear external 

stability (Fig. 2, curve 1). 

Case 5: 0
2

2




dt

d
 is the case of linear external stability (Fig. 

2, line 2). 

Case 3: 0
2

2




dt

d
 is the case of strong nonlinear external 

stability (Fig. 2, curve 3). 

 
Fig. 1. Change )(t >0 at an externally stable resonance 

 

 
Fig. 2. Change )(t <0 at an externally stable resonance 

2.3 Strong, weak, and linear external resonance 

instability 

Similarly, let us introduce some concepts.  

Definition 4. The linear monotonic external instability of an 

individual resonance 0   is understood as a monotonous 

convergence   from a small resonant area that occurs in a 

given non-resonant area, which is adjacent to the resonance by 

means of linear dependence )(t . 

Definition 5. The weak nonlinear or simple-weak monotonic 

external instability of an individual resonance 0   is 

understood as a monotonous increase  , occurring in a given 

non-resonant area that is adjacent to the resonance, which 

ensures the achievement of a specific value (t) (0)    for a 

longer time interval than with linear external instability.  

Definition 6. The strong nonlinear or simple-strong monotonic 

external instability of an individual resonance 0   is 

understood as a monotonous increase   occurring in a given 

non-resonant area that is adjacent to the resonance, which 

ensures the achievement of a specific value (t) (0)    for a 

longer time interval than with linear external instability.  

Similarly, depending on the sign of the second derivative 

2

2

dt

d 
 on each of the two non-resonant sections, which are 

adjacent to this resonance 0 , three cases of external 

instability of the resonance under consideration can be 

distinguished.  

Let us consider the evolution of )(t  in the positive non-

resonant range of values   at an externally instable resonance. 

If the condition 0


dt

d
 is met, it is possible here to 

distinguish three instable cases of the system behavior (1)-(2):  

Case 7: 0
2

2




dt

d
 is the case of weak nonlinear external 

instability (Fig. 3, curve 1). 

Case 8: 0
2

2




dt

d
 is the case of linear external instability (Fig. 

3, line 2). 

Case 9: 0
2

2




dt

d
 is the case of strong nonlinear external 

instability (Fig. 3, curve 3). 

Further, let us consider the evolution of )(t  in the negative 

non-resonant range of values,  , at an externally instable 

resonance. If the condition 0


dt

d
 is met, it is also possible 

here to distinguish three instable cases of the system behavior 

(1)-(2):  

Case 10: 0
2

2




dt

d
 is the case of weak nonlinear external 

instability (Fig. 4, curve 1). 

Case 11: 0
2

2




dt

d
 is the case of linear external instability 

(Fig. 4, line 2). 
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Fig. 3. Change )(t >0 at an externally unstable resonance 

 

Case 12: 0
2

2




dt

d
 is the case of strong nonlinear external 

instability (Fig. 4, curve 3). 

Fig.1-4 show the thick horizontal lines limiting the values 

of small resonant values  , which have an order 

)( o  in the general case. Fig. 1-4 assume that 

2.0 . 

 

.  

Fig. 4. Change )(t <0 at an externally unstable resonance 

3. Conditions of Monotonic External 

Stability and Instability of the Resonance 

3.1 Conditions of monotonic external stability of 

the resonance  

First, let us consider the conditions of strong external 

stability of the resonance 0)(   . 

The following theorem holds. 

Theorem 1 (a necessary condition for strong monotonic 

external stability of the resonance). In order for the resonance 

0)(    in the system (1)-(2) to be a strong externally stable 

one, the following condition should be met:  

                          0
2

2







dt

d

dt

d
.                                         (3) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to,tr), when the 

positive values )(t  change with strong external stability of 

the resonance. Hence, the condition 0
2

2







dt

d

dt

d
 is valid. 

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to, tr), when the 

negative values )(t  change with strong external stability of 

the resonance. Hence, in this case, the condition 0
2

2







dt

d

dt

d
 

is also satisfied. The theorem is proved. 

Thus, condition (3) is necessary for strong external stability 

of the resonance when )(t  changes on two non-resonant 

intervals, tϵ[to, tr), which are adjacent to a given resonance 

0 . Therefore, condition (3) is a property that characterizes 

the strong external stability of a given resonance.  

Let us note that the converse statement of this theorem is not 

true in the general case. Genuinely, for example, if condition 

(3) is satisfied, both the stable case ( 0


dt

d
, 0

2

2




dt

d
) and 

the unstable case ( 0


dt

d
, 0

2

2




dt

d
) can be observed at 

0)(  t . 

Let us define the necessary and sufficient conditions for the 

strong external stability of this resonance. 

To this end, let us introduce the following diagonal 

derivative matrix: 

                           

























2

2

0

0

dt

d

dt

d

D .                                (4) 

The following theorem holds. 

Theorem 2 (a necessary and sufficient condition for strong 

monotonic external stability of the resonance). In order for the 

resonance 0)(    in the system (1)-(2) to be a strong 

externally stable resonance, it is necessary and sufficient that 

the principal diagonal minors of the diagonal matrix (4) have 

the following signs: 

i if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
,     (5) 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2021.16.17 Vladislav V. Lyubimov

E-ISSN: 2224-347X 183 Volume 16, 2021



 

 

ii if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
.    (6) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to,tr), when the 

positive values )(t , change with strong external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

 The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to,tr), when the 

negative values )(t , change with strong external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

The necessity of the theorem is proved. 

Proof of sufficiency: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t . 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tr), 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
, 0

2

2




dt

d
. In this case, the resonance 0  is a 

strong externally stable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met, the 

monotonous convergence   to a small resonant area occurring 

in a given, adjacent to the resonance non-resonant area 

0)(  t , occurs for a shorter time interval than with linear 

external stability, when the conditions 0)(  t , 0


dt

d
, and 

0
2

2




dt

d
 are met. 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tr), 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
 and 0

2

2




dt

d
. In this case, the resonance 0  is 

also a strong externally stable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met the 

monotonous convergence   to a small resonant area occurring 

in a given, adjacent to the resonance non-resonant area 

0)(  t , occurs for a shorter time interval than with linear 

external stability, when the conditions 0)(  t , 0


dt

d
, and 

0
2

2




dt

d
 are met.  

The sufficiency of the theorem is proved. 

Second, let us consider the conditions of weak external 

stability of the resonance, 0)(   . 

The following theorem also holds. 

Theorem 3 (a necessary condition for weak monotonic 

external stability of the resonance). In order for the resonance 

0)(    in the system (1)-(2) to be a weak externally stable 

one, the following condition should be met:  

                          0
2

2







dt

d

dt

d
.                                         (7) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to,tr), when the 

positive values )(t  , change with weak external stability of 

the resonance. Hence, the condition 0
2

2







dt

d

dt

d
 is valid. 

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to, tr), when the 

negative values )(t , change with strong external stability of 

the resonance. Hence, in this case, the condition 0
2

2







dt

d

dt

d
 

is also satisfied. The theorem is proved. 

Thus, condition (4) is necessary for strong external stability 

of the resonance when )(t  changes on two non-resonant 

intervals tϵ[to, tr), which are adjacent to a given resonance 

0 . Therefore, condition (4) is a property that characterizes 

the weak external stability of a given resonance in the system 
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(1)-(2).  

Let us note that the converse statement of theorem 2 is not 

true in the general case. Genuinely, for example, if condition 

(4) is satisfied, both the stable case ( 0


dt

d
, 0

2

2




dt

d
) and 

the unstable case ( 0


dt

d
, 0

2

2




dt

d
) can be observed at 

0)(  t . 

Let us define the necessary and sufficient conditions for the 

weak external stability of this resonance. 

The following theorem also holds. 

Theorem 4 (a necessary and sufficient condition for weak 

monotonic external stability of the resonance). 

In order for the resonance 0)(    in the system (1)-(2) to 

be a weak externally stable resonance, it is necessary and 

sufficient that the principal diagonal minors of the diagonal 

matrix (4) have the following signs: 

i if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
,     (8) 

ii if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
.    (9) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval tϵ[to,tr), when the 

positive values )(t , change with weak external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

 The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval, tϵ[to,tr), when the 

negative values )(t , change with strong external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

The necessity of the theorem is proved. 

Proof of sufficiency: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t . 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tr), 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
, 0

2

2




dt

d
. In this case, the resonance, 0 , is a 

weak externally stable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met, the 

monotonous convergence   to a small resonant area occurring 

in a given, adjacent to the resonance non-resonant area 

0)(  t occurs for a longer time interval than with linear 

external stability, when the conditions 0)(  t , 0


dt

d
, and 

0
2

2




dt

d
 are met. 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tr), 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
 and 0

2

2




dt

d
. In this case, the resonance 0  is 

also a weak externally stable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
, are met, the 

monotonous convergence   to a small resonant area occurring 

in a given, adjacent to the resonance, non-resonant area 

0)(  t  occurs for a longer time interval than with linear 

external stability, when the conditions 0)(  t , 0


dt

d
, and 

0
2

2




dt

d
 are met.  

The sufficiency of the theorem is proved. 

3.2 Conditions of  monotonic external instability 

of the resonance  

Similarly to the stability analysis, let us first consider the 

conditions of strong instability of the resonance 0)(   . 

The following theorem on strong external instability holds. 

Theorem 5 (a necessary condition for strong monotonic 

external instability of the resonance). In order for the 

resonance 0)(    in the system (1)-(2) to be a strong 

externally instable one, the following condition should be met:  

                          0
2

2







dt

d

dt

d
.                                       (10) 

Proof of necessity: 
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Let us consider separately the cases of changes )(t  at 

0)(  t  and at 0)(  t .  

The simultaneous satisfaction of equalities 0


dt

d
 and 

0
2

2




dt

d
 is observed on the non-resonant segment tϵ[to,tk], 

where tk is the final time value for this interval, when the 

positive values )(t  change with strong external instability of 

the resonance. Hence, the condition 0
2

2







dt

d

dt

d
 is valid. 

The simultaneous satisfaction of equalities 0


dt

d
 and 

0
2

2




dt

d
 is observed on the non-resonant segment, tϵ[to,tk], 

when the negative values )(t  change with strong external 

stability of the resonance. Hence, in this case, the condition 

0
2

2







dt

d

dt

d
 is also satisfied. The theorem is proved. 

Here, it should also be noted that the converse statement of 

this theorem is not true in the general case. Genuinely, for 

example, if condition (10) is satisfied, both the stable case 

( 0


dt

d
, 0

2

2




dt

d
) and the unstable case ( 0



dt

d
, 

0
2

2




dt

d
) can be observed at 0)(  t . 

Let us define the necessary and sufficient conditions for the 

strong external instability of this resonance. 

The following theorem holds. 

Theorem 6 (a necessary and sufficient condition for strong 

monotonic external instability of the resonance). In order for 

the resonance 0)(    in the system (1)-(2) to be a strong 

externally instable resonance, it is necessary and sufficient that 

the principal diagonal minors of the diagonal matrix (4) have 

the following signs: 

i if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
,       (11) 

ii if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
.      (12) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval tϵ[to,tk], when the 

positive values )(t  change with strong external instability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

 The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval tϵ[to,tk], when the 

negative values )(t  change with strong external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

The necessity of the theorem is proved. 

 

Proof of sufficiency: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t . 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tk], 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
, 0

2

2




dt

d
. In this case, the resonance, 0 , is a 

strong externally instable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
, are met, the 

monotonic increase   occurs in a given, adjacent to the 

resonance non-resonant area 0)(  t , and ensures the 

achievement of a specific value (t) (0)    for a shorter 

time interval than with the linear external instability observed 

when the conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met. 

The minors of the diagonal matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tk], 

when the negative values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
 and 0

2

2




dt

d
. In this case, the resonance 0  is 

also a strong externally instable resonance. Genuinely, when 

the conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
, are met, the 

monotonic increase   occurs in a given, adjacent to the 
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resonance non-resonant area 0)(  t , and ensures the 

achievement of a specific value (t) (0)    for a shorter 

time interval than with the linear external instability observed 

when the conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met.  

The theorem is proved. 

Further, let us define the conditions for weak external 

instability of the resonance 0)(   . 

The theorem holds. 

Theorem 7 (a necessary condition for weak monotonic 

external instability of the resonance). In order for the 

resonance 0)(    in the system (1)-(2) to be a weak 

externally instable one, the following condition should be met:  

                         0
2

2







dt

d

dt

d
.                                     (13) 

Proof of necessity: 

Let us consider separately the cases of changes )(t  at 

0)(  t  and at 0)(  t .  

The simultaneous satisfaction of equalities 0


dt

d
 and 

2

2

d
0

dt


  is observed on the non-resonant segment tϵ[to,tk], 

where tk is the final time value for this interval, when the 

positive values )(t  change with weak external instability of 

the resonance. Hence, the condition 0
2

2







dt

d

dt

d
 is valid. 

The simultaneous satisfaction of equalities 0


dt

d
 and 

2

2

d
0

dt


  is observed on the non-resonant segment tϵ[to,tk], 

when the negative values )(t  change with weak external 

stability of the resonance. Hence, in this case, the condition 

0
2

2







dt

d

dt

d
 is also satisfied. The theorem is proved. 

The converse statement of this theorem is not true in the 

general case. Genuinely, for example, if condition (6) is 

satisfied, both the stable case ( 0


dt

d
, 

2

2

d
0

dt


 ) and the 

unstable case ( 0


dt

d
, 

2

2

d
0

dt


 ) can be observed at 

0)(  t . 

Let us define the necessary and sufficient conditions for the 

weak external instability of this resonance.  

The following theorem holds. 

Theorem 8 (a necessary and sufficient condition for weak 

monotonic external instability of the resonance). In order for 

the resonance 0)(    in the system (1)-(2) to be a weak 

externally instable resonance, it is necessary and sufficient that 

the principal diagonal minors of the diagonal matrix (4) have 

the following signs: 

i if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
,       (14) 

ii if 0)(  t , then the minors 0


dt

d
, 0

2

2







dt

d

dt

d
.      (15) 

Proof of necessity: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t .  

The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval tϵ[to,tk], when the 

positive values )(t  change with weak external instability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

 The satisfaction of equalities 0


dt

d
 and 0

2

2




dt

d
 is 

observed on the non-resonant interval tϵ[to,tk], when the 

negative values )(t  change with weak external stability of 

the resonance. Hence, the principal diagonal minors of the 

diagonal matrix (4) at 0)(  t  have signs 0


dt

d
, 

0
2

2







dt

d

dt

d
. 

The necessity of the theorem is proved. 

Proof of sufficiency: 

It is necessary to consider separately the cases of changes 

)(t  at 0)(  t  and at 0)(  t . 

The principal diagonal minors of the matrix (4) will have 

signs 0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval 

tϵ[to,tk], when the positive values of )(t  change. Therefore, 

on this interval, the first and second derivatives will have the 

signs 0


dt

d
, 0

2

2




dt

d
. In this case, the resonance 0  is a 

weak externally instable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met, the 

monotonic increase   occurs in a given, adjacent to the 

resonance non-resonant area 0)(  t , and ensures the 

achievement of a specific value (t) (0)    for a longer 

time interval than with the linear external instability observed 
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when the conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met. 

The main diagonal minors of the matrix (4) will have signs 

0


dt

d
, 0

2

2







dt

d

dt

d
 on the non-resonant interval tϵ[to,tk], 

when the positive values of )(t  change. Therefore, on this 

interval, the first and second derivatives will have the signs 

0


dt

d
 and 0

2

2




dt

d
. In this case, the resonance 0  is 

also a weak externally instable resonance. Genuinely, when the 

conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met, the 

monotonic increase   occurs in a given, adjacent to the 

resonance non-resonant area 0)(  t , and ensures the 

achievement of a specific value (t) (0)   , for a longer 

time interval than with the linear external instability observed 

when the conditions 0)(  t , 0


dt

d
, and 0

2

2




dt

d
 are met.  

The theorem is proved. 

4. Analysis of Monotonic External 

Stability in the Motion of an Asymmetric 

Lagrange Top  

Let us consider the analysis of the weak and strong 

monotonic stability of the resonance on the example of the 

problem of the motion of an asymmetric rigid body (RB) 

relative to a fixed point.  Let a heavy rigid body with small 

mass asymmetry move relative to a fixed point in the vicinity 

of a statically stable equilibrium position. It is assumed that a 

RB is affected by a considerable nonlinear restoring moment 

and a small perturbing moment, the vector of which is 

motionless in the frame references, associated this RB. As a 

result of the approximation of the restoring moment by a 

polynomial of the third degree in the nutation angle and the 

subsequent averaging of the system of equations of motion of 

the rigid body, it is possible to obtain a complete picture of the 

evolutionary motion of the RB. The decisive influence on the 

motion of the RB is exerted by a lower-order resonance, called 

the principal resonance. 

The evolutionary resonance effects in the rotation of the 

heavy rigid body with small asymmetry relative to a fixed 

point in this problem in the case of small nutation angles were 

considered in the paper [17]. However, this work did not 

investigate the monotonic linear, weak and strong external 

stability of resonances. 

After the nutation angle linearization of the equations for the 

motion of a rigid body, which are averaged over fast variables, 

a subsystem of equations is obtained: 

     

,
2

cos 02











II

yMG

dt

d

z

pz

               

(16) 

       
dt

d .                        (17) 

where ε is a small parameter; z >0 is the angular velocity of 

the RB relative to the main central coupled longitudinal axis; 

  is a fast variable; G is the RB gravity; y  is a small 

displacement of the center of mass relative to the z-axis; pM  

is a small perturbing moment; 

22 )()( yxp MMyGM  , yx MM  ,  are small 

sign-constant moments relative to the main central coupled x- 

and y-axes, respectively; py MM /cos 0  , zI , and 

yx III   are the main axial moments of inertia of the RB 

relative to the corresponding axes;   
zz II 1

1 5.0 , 

2
0

22225.0   
zz II , and 0  are the frequency of 

vibrations of the RB at 0z ; and 1  z  is the 

resonant ratio of two frequencies. 

When implementing the resonance in the system under 

consideration (16)-(17), the equality )(1  Oz   is 

satisfied. 

Let us perform an analysis of the signs of the derivatives 

dt

d
 and 

2

2

dt

d 
 in the system of equations (16)-(17). As a 

result of differentiating the function )(t  taking into account 

(16)-(17), the following will be obtained: 

  
dt

d

d

d

dt

d z

z









,                               (18) 

 
dt

d

dt

d

d

d

dt

d z

z











 




2

2

,                      (19) 

where ),(11 z
z

fС
d

d






,

2

cos 0
1

II

yMG
С

z

p 


),25.05.01(25.0)( 122121131
1

    zzzzzz IIIIIIf  

















 

dt

d
f

d

d
С

dt

d

d

d z
z

zz





)(11 . 

 Let us analyze the external stability of the resonance in the 

system (16)-(17). For this purpose, let us use the expressions 

(18)-(19).  A few special cases should be considered. 

Case 1. Equation (18) provides that if the conditions 

01 С , z >0, and )25.05.01( 1221   zzz IIII  >0 are 

are met simultaneously, 

  ,)25.05.01(25.0 122121131     zzzzz IIIIII  

the derivative 0


zd

d


 on each of the two non-resonant areas 

01 z  and 01 z  under consideration. Let the 

conditions 0
2

2




dt

d
 and 0



zd

d


 be satisfied on the section 
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01 z , according to theorem 6, we obtain that the 

resonance 0  is a strong externally instable resonance. If 

the conditions 0


zd

d


 and 0

2

2




dt

d
 are met simultaneously 

on the case 01 z , according to theorem 2, we obtain 

that the resonance 0  is a strong externally stable 

resonance.  

Case 2. Equation (18) provides that if the conditions 

01 С , z >0, and )25.05.01( 1221   zzz IIII  >0 are 

are met simultaneously, 

  ,)25.05.01(25.0 122121131     zzzzz IIIIII  

the derivative 0


zd

d


 in the non-resonant area 01 z ; 

in the area 01 z , the given derivative 0


zd

d


. Let the 

conditions 0


zd

d


 and 0



zd

d


 be simultaneously satisfied 

on the case 01 z , according to theorem 4, we obtain 

that the resonance 0  is a weak externally stable resonance. 

If the conditions 0


zd

d


 and 0

2

2




dt

d
 are met 

simultaneously on the case 01 z , according to theorem 

4, we obtain that the resonance 0  is also a strong 

externally stable resonance. 

   Case 3. Equation (18) provides that if the conditions 

01 С , z >0, and )25.05.01( 1221   zzz IIII  >0 are 

are met simultaneously, 

  ,)25.05.01(25.0 122121131     zzzzz IIIIII  

the derivative 0


zd

d


 in the non-resonant area 01 z ; 

in the area 01 z , the given derivative 0


zd

d


. Let the 

conditions 0


zd

d


 and 0

2

2




dt

d
 be simultaneously satisfied 

on the section 01 z , according to theorem 8, we obtain 

that the resonance 0  is a weak externally instable 

resonance. If the conditions 0


zd

d


 and 0

2

2




dt

d
 are met 

simultaneously on the case 01 z , according to theorem 

8, we obtain that the resonance 0  is also a strong 

externally stable resonance. 

The analysis of the monotonic external stability of the 

resonance 0  in the system (16)-(17) shows that the 

application of the above theorems in the case of positive non-

resonant values z  allows studying only 16 such frequent 

cases. By analogy, with negative non-resonant values of z , 

let us also obtain the other 16 special cases. 

Thus, the application of the conditions presented here makes 

it possible to analyze the monotonic external linear, weak and 

strong stability of the principal resonance under the perturbed 

motion of the heavy rigid body relative to a fixed point. At the 

same time, the mechanical reason for the realization of these 

types of external stability of resonance is the effect of 

perturbations on the RB. These are disturbances caused by a 

small moment with a constant modulus, as well as a small 

moment from the displacement of the center of mass relative to 

the longitudinal axis of the rigid body. Note that, in contrast to 

work [17], in this problem, after non-resonant averaging on the 

right-hand side of the equation (16), the second approximation 

should be a continuous differentiable function of constant sign. 

5. Discussion 

It is known [12-14] that when obtaining ordinary differential 

equations for slow variables, in the second approximation with 

non-resonant averaging, terms with a resonant frequency ratio 

in the denominator are obtained. Suppose the first 

approximation of the averaging method in the equation for 

slow variables is equal to zero, and the evolution of these 

variables is determined by the terms of the second 

approximation.  

The paper deals with a perturbed dynamical system 

consisting of two ordinary differential equations. This system 

of equations is close to the system of averaged equations of 

motion of a rigid body relative to a fixed point [14], obtained 

taking into account the first two approximations. Indeed, the 

first equation for the slow variable contains the resonance 

frequency ratio in the denominator of the right-hand side. 

Consequently, the conditions presented in the paper can find 

application in the analysis of the phenomena of strong and 

weak external stability of resonances in various technical 

problems close to the problem of the rotation of a perturbed 

rigid body. In particular, when analyzing the external stability 

of resonances during disturbed motion relative to the center of 

mass of spacecraft in the atmospheres of terrestrial planets and 

small satellites in orbit. In addition, the external stability 

conditions obtained in this work can be used to analyze the 

disturbed rotation of gyroscopes with a small mass asymmetry. 

In this case, it is required that the equations of motion of these 

technical devices can be written in the form of a system of 

equations with one fast phase. In addition, after non-resonance 

averaging on the right-hand side of the equation for a slow 

frequency, the first approximation should be equal to zero, and 

the second approximation should be a continuous and 

differentiable function of constant sign. Moreover, the right-

hand side of the equation for the fast variable must also be a 

continuous and differentiable function of constant sign. 

It should be noted that the system under consideration has 

only one slow variable. Such a system of equations describes 

the motion of a rigid body at small angles of nutation. 

However, in practice, at considerable nutation angles, it is 

required to analyze a system of equations with two averaged 

slow variables. The solution to this more complex problem of 
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monotonic external stability of resonance is beyond the scope 

of this paper, but it is planned to study it in subsequent 

publications. 

6. Conclusion 

This paper analyzes the monotonic external stability of the 

resonance in a single perturbed two-frequency nonlinear 

system consisting of two ordinary differential equations. If the 

frequencies of the system coincide for a long time, the 

resonance can be implemented. The main results of this paper 

are to obtain the conditions of monotonic external stability and 

instability of this resonance. The author is not aware of 

publications containing conditions for monotonic external 

stability of an individual resonance in similar dynamical 

systems. It should be noted that in this paper were obtained as 

the necessary conditions, as well as well as the necessary and 

sufficient conditions for the monotonous external stability and 

instability of the separate resonance. All the formulated 

conditions for monotonic external stability and instability of 

resonance assume that the signs of the analyzed derivatives of 

the resonance ratio of the frequencies of the first and third 

orders remain unchanged in the considered non-resonant 

domain of the change in the time. In addition, this paper gives 

a new classification of the phenomenon of external monotonic 

stability of resonance, i.e. weak, linear, and strong stability of 

the resonance are identified. The linear monotonic external 

stability of an individual resonance is understood as a 

monotonous non-resonant convergence of the magnitude of the 

resonant ratio to the resonance domain by means of linear 

dependence. The weak nonlinear monotonic external stability 

of an individual resonance is understood as the monotonic 

convergence of the magnitude of the resonance ratio to a small 

resonant domain, which arises in the considered non-resonant 

domain and occurs over a longer period of time than in the 

case of linear external stability. The strong nonlinear 

monotonic external stability of an individual resonance is 

understood as the monotonic convergence of the ratio of 

resonances to a small resonance domain, which arises in the 

considered non-resonant domain and occurs over a shorter 

period of time than in the case of linear external stability. By 

analogy, the article introduces a classification of linear, weak 

and strong monotonic external instability of the resonance.  

In general, the mathematical results of the work relate to the 

study of the influence of resonant denominators on the non-

resonant evolution of slow variables of dynamical systems. 

The author is not aware of publications containing conditions 

for monotonic external stability of an individual resonance in a 

system with one fast and one slow variable. These new results 

can be directly used to analyze the monotonic external stability 

of resonance in dynamical systems of the type under 

consideration. It is important to note that some systems of 

equations averaged in the non-resonant case also reduce to the 

presented system.  

The concluding part of the paper considers the application 

of the theoretical results obtained within the framework of the 

problem of the perturbed motion of a rigid body relative to a 

fixed point. Note that the conditions for monotonic external 

stability and instability of resonance presented in the paper can 

be used to analyze the stability of resonances in various 

modern scientific and technological problems close to the 

problem of the perturbed rotational motion of the Lagrange 

top. Such problems, for example, include studies of the 

rotational motion of an asymmetric gyroscope, the research of 

motion relative to the center of mass of a descent asymmetric 

spacecraft in the atmosphere, the analysis of the disturbed 

rotation of a small satellite relative to its own center of mass, 

etc. 
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