f5641797-46a9-495d-8d5f-bea02895b56620230221023952076wseas:wseasmdt@crossref.orgMDT DepositWSEAS TRANSACTIONS ON FLUID MECHANICS2224-347X1790-508710.37394/232013http://wseas.org/wseas/cms.action?id=40363120223120221710.37394/232013.2022.17https://wseas.com/journals/fluids/2022.phpAnalytic Computational Method for Solving Fractional Nonlinear Equations in Magneto-Acoustic WavesRaniaSaadehDepartment of Mathematics Zarqa University Zarqa 13110, JORDANIn this article, we employ a useful and intriguing method known as the ARA-homotopy transform approach to explore the fifth-order Korteweg-de Vries equations that are nonlinear and time-fractional. The study of capillary gravity water waves, magneto-sound propagation in plasma, and the motion of long waves under the effect of gravity in shallow water have all been influenced by Korteweg-de Vries equations. We discuss three instances of the fifth-order time-fractional Korteweg-de Vries equations to demonstrate the efficacy and applicability of the proposed method. Utilizing, also known as the auxiliary parameter or convergence control parameter, the ARA-homotopy transform technique which is a combination between ARA transform and the homotopy analysis method, allows us to modify the convergence range of the series solution. The obtained results show that the proposed method is very gratifying and examines the complex nonlinear challenges that arise in science and innovation.123120221231202224125422https://wseas.com/journals/fluids/2022/a445113-359.pdf10.37394/232013.2022.17.22https://wseas.com/journals/fluids/2022/a445113-359.pdf10.1016/j.jksus.2021.101347P. Veeresha, D. G. Prakasha, A. H. Abdel-Aty, H. Singh, E. E. Mahmoud, S. Kumar, An efficient approach for fractional nonlinear chaotic model with Mittag-Leffler law, Journal of King Saud University-Science, 2021;33(2):101347. R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000. 10.1016/j.joes.2017.09.002M. A. Abdou, An analytical method for space– time fractional nonlinear differential equations arising in plasma physics, Journal of Ocean Engineering and Science, 2017;2:288-292. 10.1088/1402-4896/ab96e0M. Al-Smadi, O. A. Arqub, S. Momani, Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense, Physica Scripta, 2020;95(7):075218. 10.1002/andp.201900011S. S. Chen, B. Tian, Y. Sun, C. R. Zhang, Generalized Darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics, Annalen der Physik, 2019;531(8):1900011. 10.37394/23206.2022.21.91R. Saadeh, A Reliable Algorithm for Solving System of Multi-Pantograph Equations, WSEAS transactions on mathematics, 2022; 2022 (DOI 10.37394/23206.2022.21.91). 10.1016/j.rinp.2020.103581D. Kumar, C. Park, N. Tamanna, G. C. Paul, M. S. Osman, Dynamics of two-mode SawadaKotera equation: Mathematical and graphical analysis of its dual-wave solutions, Results in Physics, 2020;19:103581. 10.1002/mma.7013M. Bilal, A. R. Seadawy, M. Younis, S. T. R. Rizvi, H. Zahed, Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis, Mathematical Methods in the Applied Sciences, 2021;44(5):4094-4104. 10.1016/j.rinp.2019.102775A. R. Seadawy, A. Ali, W. A. Albarakati, Analytical wave solutions of the (2+ 1)- dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods, Results in Physics, 2019;15:102775. 10.1007/s12648-018-1357-3R. A. Shahein, A. R. Seadawy, Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperatures ions, Indian Journal of Physics, 2019;93(7):941-949. 10.1142/s0217979220502835I. Ali, A. R. Seadawy, S. T. R. Rizvi, M. Younis, K. Ali, Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model, International Journal of Modern Physics B, 2020;34(30):2050283. 10.1186/s13662-020-02951-zK. K. Ali, M. A. Abd El Salam, E. M. Mohamed, B. Samet, S. Kumar, M. S. Osman, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Advances in Difference Equations, 2020;2020(1):1-23. 10.1016/j.rinp.2022.106079M. A. Akbar, A. M. Wazwaz, F. Mahmud, D. Baleanu, R. Roy, H. K. Barman, ... M. S. Osman, Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme, Results in Physics, 2022;43:106079. 10.1142/s0217984921504686Y. Saliou, S. Abbagari, A. Houwe, M. S. Osman, D. S. Yamigno, K. T. Crépin, M. Inc, W-shape bright and several other solutions to the (3+ 1)-dimensional nonlinear evolution equations, Modern Physics Letters B, 2021;35(30):2150468. 10.1088/1572-9494/ab6181M. S. Osman, K. U. Tariq, A. Bekir, A. Elmoasry, N. S. Elazab, M. Younis, M. AbdelAty, Investigation of soliton solutions with different wave structures to the (2+ 1)- dimensional Heisenberg ferromagnetic spin chain equation, Communications in Theoretical Physics, 2020;72(3):035002. 10.1016/j.rinp.2021.104043S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, M. S. Osman, A (2+ 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results in Physics, 2021;23:104043. 10.1016/j.rinp.2021.104557I. Siddique, M. M. Jaradat, A. Zafar, K. B. Mehdi, M. S. Osman, Exact traveling wave solutions for two prolific conformable MFractional differential equations via three diverse approaches, Results in Physics, 2021;28:104557. 10.1080/14786449508620739D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philosophical Magazine 1895;39(5):422-43. J. Singh, D. Kumar, S. Kuma,r A reliable algorithm for solving discontinued problems arising in nanotechnology, Scientia Iranica 2013;20(3):1059-62. 10.3390/fractalfract6120694R. Saadeh, O. Ala’yed, A. Qazza, Analytical Solution of Coupled Hirota–Satsuma and KdV Equations. Fractal and Fractional 2022;6(12):694. 10.4236/ajcm.2012.23030M. Almazmumy, F. A. Hendi, H. O. Bakoda, H. Alzumi. Recent Modification of Adomian Decomposition Method for initial value problem in ordinary differential equations. Am. J. Comput. Math. 2012;2:228–34. 10.4236/ajcm.2013.31008H. O. Bakodah. Modified Adomian decomposion method for the generalized fifth order KdV equations. American Journal of Computational Mathematics, 2013;3(1):53. Y. Khan. An effective modification of the Laplace decomposition method fornonlinear equations. Int. J. Nonlin. Sci. Numer. Simul. 2009;10:1373–6. 10.1155/2023/6973734A. Qazza, R. Saadeh, R. (2023). On the Analytical Solution of Fractional SIR Epidemic Model. Applied Computational Intelligence and Soft Computing, 2023.. 10.3390/fractalfract7020120Saadeh, R., Abbes, A., Al-Husban, A., Ouannas, A., & Grassi, G. (2023). The Fractional Discrete Predator–Prey Model: Chaos, Control and Synchronization. Fractal and Fractional, 7(2), 120.. 10.1103/physrevlett.27.1192R. Hirota. Exact solution of the Korteweg-de Vries equation for multiplecollisions of solitons. Phys. Rev. Lett. 1971;27:1192–4. 10.3390/math11030555Al-Husban, A., Djenina, N., Saadeh, R., Ouannas, A., & Grassi, G. (2023). A New Incommensurate Fractional-Order COVID 19: Modelling and Dynamical Analysis. Mathematics, 11(3), 555.. G. C. Wu, J.H. He, Fractional calculus of variations in fractal spacetime, Nonlin. Sci. Lett. A1 2010;3:281–7. 10.1016/j.amc.2006.07.002A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-orderKdV equations, Applied Mathematics and Computation, 2007;184(2): 1002-14. H. Jafari, M. A. Firoozjaee. Homotopy analysis method for solving KdV equations. Surveys Math. Applicat. 2010;5:89–98. 10.3390/math10152581R. Saadeh, A. Qazza, A. Burqan, On the Double ARA-Sumudu transform and its applications. Mathematics 2022, 10(15), 2581. 10.1155/2022/6939045A. Qazza, A. Burqan, R. Saadeh, Application of ARA-Residual Power Series Method in Solving Systems of Fractional Differential Equations. Mathematical Problems in Engineering 2022, 2022. 10.3934/math.2023267A. Qazza, R. Saadeh, E. Salah, Solving fractional partial differential equations via a new scheme. AIMS Mathematics 2023, 8(3), 5318-5337. 10.3390/sym12060925Saadeh, R., Qazza, A., & Burqan, A. (2020). A new integral transform: ARA transform and its properties and applications. Symmetry, 12(6), 925. 10.3390/math9233039Qazza, A., Burqan, A., & Saadeh, R. (2021). A new attractive method in solving families of fractional differential equations by a new transform. Mathematics, 9(23), 3039. 10.3390/computation10120216Saadeh, R. (2022). Applications of double ARA integral transform. Computation, 10(12), 216. 10.3390/computation11010004Saadeh, R. (2023). Application of the ARA Method in Solving Integro-Differential Equations in Two Dimensions. Computation, 11(1), 4. 10.1143/jpsj.33.260Kawahara (1972), T. Oscillatory solitary waves in dispersive media, Journal of the Physical Society of Japan, Volume 33, Issue 1, 1972, Pages 260-264 10.37394/232023.2021.1.10Ivan V. Kazachkov (2021), Modern Status of the Parametric Excitation of Oscillations in Film Flows and Granulation for Amorphous Materials’ Production, MOLECULAR SCIENCES AND APPLICATIONS, pp.58-67, Volume 1, 2021, DOI: 10.37394/232023.2021.1.10,