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Abstract: The hydrodynamics performance of submerged and surface-piercing lifting bodies is analyzed by a
potential flow model based on a Vortex Lattice Method (VLM). Such a numerical scheme, widely applied in
aerodynamics, is particularly suitable to model the lifting effects thanks to the vortex distribution used to dis-
cretize the boundaries of the lifting bodies. The method has been developed with specific boundary conditions
to account for the development of steady free surface wave patterns. Both submerged bodies, such as flat plates
and hydrofoils, as well as planing hulls can be studied. The method is validated by comparison against available
experimental data and other Computational Fluid Dynamic (CFD) results from Reynolds Averaged Navier Stokes
(RANS) approaches. In all the analyzed cases, namely 2D and 3D flat plates, a NACA hydrofoil, planning flat
plates and prismatic planing hulls, results have been found to be consistent with those taken as reference. The
obtained hydrodynamic predictionsare discussed highlighting the advantages and the possible improvements of
the developed approach.
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1 Introduction
Design high performance floating and submerged
vessels has always been a great challenge in hydro-
dynamics. This is mainly related to the effects of
the dynamic pressures on the lifting body that induce
changes in their running attitudes and, particularly,
to the interactions that arise with the water free sur-
face. Such interactions on a side alter the pressure
distribution on the body surface and, on the other side,
produce waves that propagates in the far field down-
stream.
This hydrodynamic problem has been deeply stud-
ied both numerically and experimentally. Consider-
ing the latter approach the two components of the
wave resistance, related to the breaking and the non-

breaking waves, have been analyzed for a submerged
hydrofoil [1, 2]. The pressure distribution at the wet
surface of a planing plate has been measured for sev-
eral configurations and conditions at the NASA re-
search center [3]. Considering the numerical solution
of the problem, a variety of methods have been pro-
posed. Boundary Element Methods (BEM) relying
on potential flow theory have been developed to solve
related problems such as the performance of cavitat-
ing and supercavitating hydrofoils [4, 5, 6] or sub-
cavitating hydrofoils interacting with a free surface
[7] and are widely applied in design by optimization
processes thanks to their inherent computational ef-
ficiency [8, 9]. Among potential flow based meth-
ods, there are also vortex based approaches relying
on the so called Vortex Lattice Method (VLM), ini-
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tially developed to solve aerodynamics related prob-
lems [10]. Despite it is particularly suitable to pre-
dict lifting effects of a body, relatively few authors
have developed VLM based approaches to predict the
performance of lifting bodies such as planing hulls
[11, 12, 13, 14]. Other hydrodynamic solutions of
planing hulls have been presented based on high-
fidelity Reynolds Averaged Navier Stokes (RANS)
methods [15, 16, 17, 18, 19, 20, 21].
A VLM for the solution of lifting bodies, both sub-
merged and surface piercing, is proposed. The math-
ematical formulation of the problem, i.e. the devel-
opment of the suitable set of boundary conditions, is
presented and the numerical scheme is described. An
extensive validation of the developed VLM is then
presented proving the accuracy of the solution. In
particular the VLM is applied to the hydrodynamic
analysis of submerged and surface piercing flat plates,
both 2D and 3D, to the solution of submerged, finite,
NACA hydrofoils and to the performance prediction
of a prismatic planing hull. The obtained results are
compared with available experimental measurements
and against results obtained from other computational
methods.

2 Free Surface Hydrodynamic
Problem Formulation

The fluid domain changes based on the position of
the lifting body under analysis, according to the
schematic representation shown in Fig. 1. Consid-
ering the fully submerged lifting body SB , e.g. a hy-
drofoil, the fluid wake detached by its trailing edge
SW needs to be included to fulfill the so-called Kutta
condition and the free surface SFS is a continuous in-
terface where stationary waves (both transverse and
divergent) could develop. On the other hand, as the
lifting body crosses the free surface, as e.g. in the
case of a planing hull, a more complex wave pattern
is generated since the fluid interface is forced to be
attached to the bottom of the lifting body. Both cases
have been developed for deep water condition, mean-
ing that the sea bottom surface S∞ is far enough not
be included into the model.
The solution is formulated in the framework of a so-
called potential flow theory, i.e. assuming the flow
to be ideal, irrotational and incompressible. Introduc-
ing the Cartesian reference system shown in Figure 2,
consistent with the body, a velocity potential, scalar,
function Φ can be defined so that ∇Φ = −→v , being−→v = [U + vx, vy, vz] the global flow velocity vec-
tor. In particular, such a potential function can be
seen as the superimposition of a free stream poten-
tial ϕ0 = x · U with a potential ϕ consequence of the
disturbance to the flow generated by the presence of
the body, resulting in Φ(x, y, z) = x ·U + ϕ(x, y, z).

According to the mentioned hypothesis, the Laplace
Eq. (1) hold in the fluid domain:

∇2Φ = 0, in D (1)

ANeumann-type boundary condition on the body wet
surface is imposed to ensure the non-penetration of
the fluid particles. Being −→n = (nx, ny, nz) the nor-
mal vector to the body surface, the normal velocity is
null at the body boundaries according to Eq. (2):

∇Φ · −→n =
∂ϕ

∂n
+ Unx = 0, at SB (2)

The perturbation needs to decay at a large distance−→r = (xr, yr, zr) to the body. This radiation condition
is expressed by Eq. 3:

lim−→r −→∞
∇Φ = 0 (3)

Considering the free surface as a function z =
η(x, y), two boundary conditions hold, namely a kine-
matic and a dynamic condition. The first, according
to Eq. 4, guarantees that the fluid particles belong-
ing to the free surface will remain on that interface.
The second is a direct consequence of the Bernoulli's
theorem, written in Eq. 5, keeping constant the atmo-
spheric pressure patm at the interface.

∂Φ

∂z
−∇Φ · ∇η = 0, on z = η(x, y) (4)

1

2
(∇Φ)2 − 1

2
U2 + gη = 0, on z = η(x, y) (5)

An additional boundary condition is required for a
submerged lifting body, ensuring the uniqueness of
the solution. From a physical perspective the Kutta
condition imposes that the TE of the hydrofoil has to
be a stagnation point, then ∆pTE = 0. The free sur-
face boundary conditions can be combined consider-
ing the gradient of the dynamic boundary condition,
obtaining the following non-linear condition:

1

2
∇Φ · ∇(∇Φ)2 + g

∂Φ

∂z
= 0, on z = η(x, y) (6)

Despite the advantage of being independent from the
free surface elevation η(x, y), which is part of the so-
lution, Eq. (6) is still very complex to be fulfilled.
For this reason, it can be further linearized by consid-
ering that it can be imposed at the undisturbed free
surface level z = 0, instead of the actual free surface
z = eta(x, y) [22, 23], resulting in the following Eq.
(7):

U2∂ϕ
2

∂x2
+ g

∂ϕ

∂z
= 0, on z = 0 (7)
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Figure 1: Schematic representation of the fluid domain for both the submerged (left) and surface-piercing (right)
cases.

Figure 2: Reference system used for the formulation
of the hydrodynamic problem.

According to the presented formulation, the Bound-
ary Value Problem (BVP) for lifting bodies travel-
ing close or across a free surface, in deep, water can
be formulated in terms of two boundary conditions,
namely Eq. (2) for the body and Eq. (7) for the lin-
earized free surface.

3 Solution trough the Vortex Lattice
Method

The potential function in a generic point of the con-
sidered domain can be written according to the Green
equation, Eq. (8), based on the distribution of singular
elements over the boundaries, as:

Φ(x, y, z) =
1

4π

∫
S
µ−→n · ∇

(
1

r

)
dS + U∞x (8)

being S = SB + η(x, y) and µ the strength of a
constant distribution of dipoles. The numerical so-
lution of the BVP is achieved by using a Vortex Lat-
ticeMethod (VLM). According to this approach, each
material surface (the body and the free surface) is dis-
cretized by using a lattice of vortex built by the so-
called vortex rings, as shown in Fig. 3. Each of these
vortex rings is made of four straight vortex filaments,
each carrying a constant circulation Γi strength, be-
ing circulation around the hydrofoil is defined as the

Figure 3: Generic representation of the VLM panel
mesh discretization for a wing and particular of one
of its vortex rings.

vorticity flux over a surface:

Γ =

∫
S

−→
ζ · −→n dS (9)

The vorticity is defined as the curl of the velocity
−→
ζ =

∇×−→v . A collocation point Pcoll is defined for each
vortex ring as the center of the mean plane defined
by the ring. The boundary conditions are enforced
at those collocation points. The velocity induced by
a vortex ring, that is equivalent to that induced by a
constant distribution of dipoles, is found according to
the Biot-Savart law, defined in Eq. (10) as:

−→v ind =
Γ

4π

∮
C

d
−→
l ×−→r
r3

(10)

being
−→
l and −→r the vector length of a vortex fila-

ment and the vector distance of the collocation point
from the filament itself, respectively. Considering
Eq. (10), the circulation strengthΓ of each vortex ring
is the unknown to be found as solution of a linear sys-
tem. The rest, called influence coefficient, only de-
pends on the relative position of the collocation point
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with respect to the vortex ring and can be directly
found.
Once the BVP has been solved, the total, linearized,
pressure pt at a point P, made of a static and a dynamic
contribution, ps and pd, respectively, can be found as:

pt = ps + pd = −ρg(zp + η(xp, yp))− ρU
∂ϕ

∂x
(11)

The dynamic pressure in Eq. (11) is computed ac-
counting for the tangential velocity jump ∆−→v tan at
the lifting surface due to the presence of the vortex
lattice. This contribution is computed considering the
mean distribution of circulation −→γ ij over a vortex
ring of area Aij :

∆−→v tan = −→n ij ×−→γ ij =
1

Aij

4∑
k=1

σΓk ·
−→
l ij (12)

being σ = 0.5 everywhere but at the leading edge vor-
tex filament for which σ = 1. Then the total induced
velocity at each collocation point is computed as:

−→
v±ind = −→v ind ±

1

2
∆−→v tan (13)

Considering a discretization made of N ×M vortex
rings, the lift and the induced drag are computed from
the knowledge of the pressure as follows:

L =

N∑
i=1

M∑
j=1

Lij =

N∑
i=1

M∑
j=1

−pT ij ·Aij · nZij (14)

D =

N∑
i=1

M∑
j=1

Dij =

N∑
i=1

M∑
j=1

−pTij ·Aij · nXij

(15)
The Kutta condition, used in the case of a submerged
hydrofoil, imposes that the strength of the vortexes at
the TE is null, that is the circulation at the TE is re-
leased in the wake behind it. Such a further boundary
condition is used to ensure the presence of a stagna-
tion point at the TE (valid for attached flows with-
out separation) and it is simply enforced by imposing
ΓTE = ΓWake.
As regards the free surface boundary condition, to
prevent numerical damping of the free surface eleva-
tion, a four point derivation scheme is used for the
term ∂ϕ/∂x [22]. Moreover, the collocation points
of the free surface are placed at a minimum distance
dh/c = 0.1÷ 0.2 with respect to the undisturbed free
surface level (z=0) to let the generation of the com-
plete wave pattern.

4 Validation and verification of the
VLM

Themethod has been validate against available exper-
imental data and other numerical results on several
cases, namely a submerged flat plate, a submerged
hydrofoil and a planing prismatic hull. In the follow-
ing sections results of this validation process are pre-
sented and discussed, highlighting the accuracy of the
obtained predictions.

4.1 Submerged Finite Flat Plate
The hydrodynamic performance of a deeply sub-
merged flat plate, with AR = 3 and t/c = 2.3%,
have been studied by using a CFD [24] atRe = 8·104.
The comparison of the results in terms of lift and drag
coefficients are displayed in Fig. 4 and Fig. 5, re-
spectively. The obtained predictions have also been
compared against theoretical results obtained by ap-
plying the 2D thin profile theory, corrected to include
the three dimensional effects. In particular, the theo-
retical lift coefficient for an infinitely AR wing, i.e. a
2D case, is defined as:

C2D
L =

∂CL

∂α
· sin(α) = 2π · sin(α) (16)

being α and ∂CL/∂α the angle of attack and the slope
of the lift curve, respectively. Among the possible
formulations, two have been selected for the AR cor-
rection of the lift curve slope, reported in Eq. (17) and
Eq. (18), and one formula for the drag coefficient, re-
ported in Eq. (19), respectively.

∂C3D
L

∂α
= f ·

∂C2D
L

∂α
P
l

1 +

(
57.3 ·

∂C2D
L

∂α

πARP

l

) (17)

∂C3D
L

∂α
=
∂C2D

L

∂α
· AR

AR+ 2
(18)

C3D
D =

2C3D
L

πeAR
(19)

In the previous equations, P and l are the half perime-
ter and the span of the wing, respectively, f =
[0.98; 1] is a coefficient given as a function of the AR,
and e = 1.78(1−0.045AR0.68)−0.64 is the Oswald
coefficient, which accounts for a correction for non-
elliptic wings.
The lifting coefficient predicted by the proposed
method is in very good agreement with the CFD re-
sults up to about α = 12deg, that is over all the lin-
ear trend of the curve. This is consistent with the as-
sumptions of the potential flow theory used to develop
the method. For higher angles of attack, predominant
viscous effects rise, highlighting a larger separation
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among the viscous and inviscid predictions. Consid-
ering the drag coefficient, a relatively good agreement
is found. Considering that only the induced drag is
predicted by the VLM, a correction through Blausius
formulation for the friction contribution Cf , valid for
laminar flow regimes (Re < 2.5 ·105), is applied. As
for the lift coefficient, the drag coefficient predicted
by the simplified formula is consistent with the other
results only for small angles of attack, in the order of
α < 6deg.

Figure 4: Comparison of the computed lift coeffi-
cients for the AR=3, deeply submerged, flat plate.

Figure 5: Comparison of the computed drag coeffi-
cients for the AR=3, deeply submerged, flat plate.

4.2 Submerged Infinite Flat Plate
A 2D flat plate (AR → ∞) with t/c = 1% has been
analyzed atRe = 104 and results have been compared
against available wind tunnel experiments [25], then
neglecting the effect of the free surface. The compar-
isons of the lift coefficient is shown in Fig. 6. Again,
the results are consistent within the linear trend of the
lift curve. Being this case referred to a 2D flat plate,
far from the free surface, the induced drag related to
the three dimensional effect is null. The predicted
pressure coefficient at the center line of the flat plate is
compared against experimental measurements in Fig.
7. The pressure distribution is computed according to
the velocity jump induced by the vortex distribution,
as in Eq. (12). The relatively slight difference found
on the face of the plate is ascribed to the effect of
the thickness, that is not modeled in the present VLM
(e.g. by using a source distribution superimposed to
the vortex lattice).

Figure 6: Comparison of the computed lift coeffi-
cients for theAR→ ∞, deeply submerged, flat plate.

Figure 7: Comparison of the computed pressure dis-
tribution at the center line for the AR → ∞, deeply
submerged, flat plate.

4.3 Submerged Finite NACA hydrofoil
The predicted free surface elevation at the center line
of a NACA profile, with a mean camber line a=0.8, is
compared against available numerical prediction [26]
in Fig. 8. The hydrofoil, AR = 1.5 and t/c = 0%,
is analyzed at a draught over chord ratio T/c = 1,
α = 5deg and at a relatively high speed, correspond-
ing to Fn = 0.58. The two methods, relying on
the same theoretical approach, provide very similar
results. The complete three dimensional, stationary,
wave pattern generated by the hydrofoil is shown in
Fig. 9. It is worth noticing that to avoid reflections of
the waves a relatively large free surface domain has
to be discretized. The dimensions of the free surface,
especially its length behind the profile location, very
much depends on the speed of the hydrofoil and on the
submergence ratio since they affect the wave length
and, consequently, the wave celerity. In general, it is
in the order of several chord lengths (Laft/c > 10).
The method has been used to analyze the effect of the
angle of attack variation on the free surface elevation
and on the overall performance of the hydrofoil. The
predicted free surface profiles at the center line are
shown in Fig. 10. As α increases a higher pressure
disturbance is generated, resulting in a larger wave
amplitude of the first wave hollow. Such a maximum,
negative, wave amplitude is also anticipated due to the
relative shift forward of the center of pressure of the
hydrofoil. These characteristics are maintained over
the whole development of the wave profile. Consis-
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tently, the lift and drag coefficients, referred in Fig.
11 to the 2D case, increase as α increases. While the
CL/C

2D
L ratio increment is in the extent of about 5%

from α = 0deg to α = 10deg, the CD/C
2D
D ratio

increases of about 14% over the same range of α.

Figure 8: Wave profile at the symmetry plane of the
free surface for the NACA a=0.8 mean camber line at
T/c=1. Blue line with markers: VLM computation.
Red circles: computation from [26]

Figure 9: Global view of the computed free surface
for the NACA a=0.8 mean camber line at T/c=1.

Figure 10: Wave profiles at the symmetry plane of the
free surface for the NACA a=0.8 mean camber line at
T/c=1 for several angle of attacks α.

4.4 Surface-Piercing Lifting Bodies
The method has been conceived to account for sur-
face piercing lifting bodies, as in the case of planing
hulls. This is a very interesting application in the field
of naval architecture since there are very few poten-
tial flow based methods developed to analyze it. The
pressure coefficients at the half-span line of two plan-
ing flat plates experimentally tested at NASA [3] are

Figure 11: Variation of theCL andCD with respect to
the 2D limit case for the NACA a=0.8 mean camber
line for several angles of attack α.

Table 1: Planing surfaces particulars and lift and drag
coefficients comparison.

Case 1 Case 2
AR 2.87 1.07
FnB 10.11 12.14
τ 6.0 6.0
CV LM
L 6.10E-02 8.80E-02

CSavitsky
L 5.90E-02 8.50E-02

ϵ(CL) 3.4% 3.4%
CV LM
D 6.40E-03 9.30E-03

CSavitsky
D 6.40E-03 9.00E-03

ϵ(CD) 3.2% 3.3%

compared to the numerical prediction carried out by
using the proposed VLM and to those obtained by us-
ing another BEM [27], in Fig 12 and in Fig. 13, re-
spectively. In Table 1, the main particulars of the two
cases and the comparison of the corresponding lift and
drag coefficients computed by the VLM and by the
well known Savitsky's method [28] are reported. The
Froude number is related to the beam (the span) of
the surface, FnB = V /

√
gB. The trim angle τ is the

equivalent of the angle of attack α for an hydrofoil.
The relative percentage errors of a quantity ϵ(x) are
computed as:

ϵ(x) = 100 ·
|xref − x|
xref

(20)

In both cases, the CP distributions are in very well
agreement with the experimental measurements. In
particular they better fit the experimental distribution
especially close to the forward stagnation line, called
spray root line, where the peak of the pressure occurs.
This is a key feature for a reliable prediction of the
overall planing hull performance. When compared to
the Savitsky's predictions, used as term of reference,
the percentage errors on both the lift and the drag co-
efficients are slightly beyond the 3%, confirming that
the global hydrodynamic performance are well pre-
dicted.
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Figure 12: Pressure coefficient at the center line of
a planing flat plate, L/b = 2.87, Fr = 10.11, τ =
6deg. Blue circles: experimental measurements. Red
solid line with circles: VLM computations. Black
dashed line with squares: BEM computations from
[27].

Figure 13: Pressure coefficient at the center line of
a planing flat plate, L/b = 1.07, Fr = 12.14, τ =
6deg. Blue circles: experimental measurements. Red
solid line with circles: VLM computations. Black
dashed line with squares: BEM computations from
[27].

The last analysis deals with prismatic planing hull.
In this case a so called deadrise angle β is introduced.
This is similar to the dihedral angle typically used in
wing design. The hull have been designed accord-
ing to the Savitsky's method [28]. Its main partic-
ulars are listed in Table 2, being LK , LC and LM

the wet lengths at keel and chine and the mean wet
length, respectively, d the draught at transom and
λ = (LK + LC)/2B the mean wet length ratio. The
predicted lift and drag coefficients are compared to
those obtained by Savitsky's method in Fig. 14 and in
Fig. 15, respectively. The main differences between
the two predictions are in the pre-planing regime, i.e.
for Fn < 1. In this phase the hull is still supported
by a relatively large hydrostatic force, as shown in
Fig. ??. At higher speeds, Fn > 1, the dynamic
pressure becomes prevalent compared to the hydro-
static component, supporting the hull that runs in fully
planning regime. Since the VLM method has been
developed particularly for this kind of flow regime,
the obtained agreement is satisfactory. The steady
wave patterns corresponding to the two Froude num-
bers Fn = [0.77, 1.80] are shown in Fig. 16 and Fig.

Table 2: Planing surfaces particulars and lift and drag
coefficients comparison.

Particular Units Hull
L [m] 15
B [m] 4
d [m] 1
τ [deg] 5.0
β [deg] 10.0
λ [-] 2.55
LK [m] 11.47
LC [m] 8.91
LM [m] 10.2

17. The free surface elevation is colored by using a
color map from blue to yellow. Consistently with the
known evidences on ship wave patter formation, in
the pre-planing regime (Fn = 0.77) there are both di-
vergent and transverse waves (the latter being almost
disappearing due to the relatively high speed). The so
called Kelvin angle ψ ≈ 19deg from the bow apex,
defining the existence domain of the generated waves
in the plane of the free surface, is present. As the crit-
ical Froude number is overcome Fn > 1, the hull
starts planing and the Kelvin sector narrows while
the transverse waves completely disappear revealing
a wave pattern made of divergent waves only.

Figure 14: Lift coefficient vs Froude number for a
prismatic planing hull, λ = 2.55, τ = 5deg, β =
10deg. Red: VLM computations. Blue: Savitsky's
method.

5 Conclusion
The hydrodynamic problem of either submerged and
surface-piercing lifting bodies has been solved in the
framework of a potential flow theory. In particular,
a Vortex Lattice Method has been developed to pre-
dict both the pressure distribution over these lifting
surfaces and the steady free surface elevation gen-
erated by the presence of the body. The boundary
value problem has been linearized in order to achieve
a fast and reliable numerical solution. The method
has been validated by comparison against available
experimental data and against computational results
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Figure 15: Drag coefficient vs Froude number for a
prismatic planing hull, λ = 2.55, τ = 5deg, β =
10deg. Red: VLM computations. Blue: Savitsky's
method.

Figure 16: Complete wave pattern predicted for a
prismatic planing hull, λ = 2.55, τ = 5deg, β =
10deg, at Fr=0.77. The wave elevation is displayed
by using a colormap from blue (z=-1m) to yellow
(z=2m).

from other sources, namely a conventional Boundary
Element Method, a viscous RANS based solver, Sav-
itsky's semi-empirical method for planing hulls and
theoretical results from thin foil theory, including cor-
rections for finite Aspect Ratios.
The validation process assesses the accuracy of the
method, that results to be in good agreement with the
majority of the analyzed cases in terms of pressure, lift
and drag coefficients. The method has been further
applied to analyzed the free surface formation of both
a submerged hydrofoil, i.e. a NACAa=0.8mean cam-
ber line, and a prismatic planing hull. The obtained
trends of the free surface, despite not directly vali-
dated against experimental measurements, are consis-
tent with the theoretical knowledge on these phenom-
ena, then confirming the VLM predictions.

Figure 17: Complete wave pattern predicted for a
prismatic planing hull, λ = 2.55, τ = 5deg, β =
10deg, at Fr=1.80. The wave elevation is displayed
by using a colormap from blue (z=-1m) to yellow
(z=2m).
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