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Abstract: - In this paper, free vibration characteristics of a uniform Rayleigh beam are studied using the 
differential transform method. The procedure entails transforming the partial differential equation governing 
the motion of the beam under consideration and the associated boundary conditions. The transformation yields 
a set of difference equations. Some simple algebraic operations are performed on the resulting difference 
equations to determine any ith natural frequency and the closed-form series function for any ith mode shape. 
Finally, one problem is presented to illustrate the implementation of the present method and analyse the effect 
of mass per length on the natural frequencies of the beam. 
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1 Introduction 
Vibration of elastic bodies, because of its real-life 
applications, has been studied by quite a number of 
scholars. Many authors have considered the forced 
vibrations of elastic bodies such as beams and 
plates. A study on the influence of a moving load 
with variable velocity on the dynamic response of a 
simply supported Euler-Bernoulli beam was 
undertaken by Awodola [1]. The beam was assumed 
to be resting on a uniform foundation and excited by 
a load moving with variable velocity. Oni and 
Omolofe [2] investigated the transverse vibration of 
a prismatic Rayleigh beam using generalized finite 
integral transform and modified Struble’s 
asymptotic method. The effects of boundary 
conditions, slenderness ratio and elastic foundation 
on which the beam rests were analysed.  Auciello 
and Lippiello [3] investigated the dynamic response 
of a column partially immersed in water, using the 
Rayleigh beam theory to model the column. Golas 
[4] worked on the influence of the rotary inertia on 
the eigenvalues of composite beams. It was found 
that the influence of the rotary inertia is over ten 
times smaller than the influence of shear 
deformations. It was therefore suggested that rotary 
inertia might be neglected. 

Rajesh and Kumar [5] carried out a study on free 
vibration behaviour of some viscoelastic sandwich 

beams based on the Euler-Bernoulli beam model at 
different end classical conditions. The viscoelastic 
sandwich beams considered had aluminium and 
mild steel as face material and the core material was 
modelled using neoprene rubber. The study reveals 
that higher natural frequencies are associated with 
mild steel used as face material compared with 
when aluminium is used. It was further shown that 
the natural frequencies reduce when neoprene 
rubber was used as the core material. Usman, 
Ogunsan, Okusaga and Solanke [6] studied the 
influence of damping coefficient on an Euler-
Bernoulli beam excited by distributed load using the 
finite Fourier sine transform and finite difference 
method. It was reported that an increase in the speed 
of the load causes a decrease in the amplitude of the 
beam’s deflection in the presence of damping 
coefficient. Contrarily, it was found that the 
amplitude of the beam’s deflection decreases as the 
speed of the load increases when damping is 
neglected. 

Usman, et al. [7] used the series solution method 
to obtain the response Euler-Bernoulli beam under 
the excitation of a concentrated moving load. Jimoh 
and Ajoge [8] employed Galerkin’s method and the 
integral transform techniques to study the influence 
of rotatory inertia and axial force on the vibration 
characteristics of non-uniform beam. It was 
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assumed that the beam resting on Pasternak 
foundation was harmonically excited by moving 
loads with varying magnitude. Jimoh and Ajoge [9] 
considered the influence of rotatory inertial and 
damping coefficient on the dynamic response of a 
uniform Rayleigh beam traversed moving loads of 
constant magnitude. The authors used the Fourier 
Sine and Laplace Integral Transformations. It was 
found that the beam’s amplitude of displacement 
decreases due to increase in the values of rotatory 
inertia and damping coefficient of the beam. The 
effects of shear modulus, foundation modulus and 
axial force on the beam’s amplitude of deflection 
were also investigated. 

The effect of variable prestress and foundation 
constants on the natural frequencies of a simply 
supported Rayleigh beam subjected to distributed 
loads was analysed by Andi and Wilson [10]. The 
generalized Galerkin’s and modified Struble’s 
asymptotic methods were applied to solve the 
vibration problem. The study reported that both the 
natural and modified frequencies increase when the 
values of prestress increase. Another finding of the 
study has it that resonance is reached earlier for 
lower values of prestress and lower values of the 
foundation constant. The problem of dynamic 
behaviour of two-steps nanobeam modelled using 
the Rayleigh beam theory was studied by Hossain 
and Lellep [11]. They analysed the influence of 
rotatory inertia on the dynamic characteristics of the 
system. The study shows that the effect of rotatory 
inertia is highly significant in the nanobeam and its 
influence rises with the increase of mode of 
frequency. Omolofe and Adara [12] in a study 
applied Galerkin’s residual method and Struble’s 
asymptotic technique in conjunction with 
Duhamel’s integral transform to analyse the 
response of a beam under the action compressive 
axial force and moving masses.  

Differential transform method (DTM) used in 
this paper has been proved to be highly effective in 
solving both ordinary and partial differential 
equations. Research works in which the method has 
been successfully applied to solve problems in solid 
mechanics and computational fluid mechanics. 
These include the work of Opanuga, Adesanya, 
Okagbue and Agboola [13] where DTM was used to 
obtain semi-analytical solutions of the equations 
governing the entropy generation of radiative 
Magnetohydrodynamic mixed convection Casson 
fluid. In another work by Opanuga et al. [14], DTM 
was used to solve the velocity and energy equations 
associated with the entropy generation of unsteady 
hydromagnetic Couette flow through vertical 
microchannel. Agboola et al. [15] used DTM to 

study the entropy generation of a steady natural 
convection flow between two vertical parallel 
micro-channels with Hall effect.  

The aim of this work is to analyse numerically 
the vibration characteristics of a uniform Rayleigh 
beam considering simply supported end conditions. 
The effect of mass per unit length on the non-
dimensional frequencies of the freely vibrating 
beam is also explored. It is pertinent to note that the 
effects of rotary inertia and shear deformation are 
neglected in the Euler-Bernoulli beam theory, which 
make the theory applicable to an analysis of long 
and slender beams only. On the other hand, the 
Rayleigh beam theory takes cognizance of the effect 
of rotary inertia, while the Timoshenko beam 
theory, which is applicable to short and thick beams, 
considers the effects of both rotary inertia and shear 
deformation. In real life engineering application, 
Rayleigh beams are used to model spinning beam. 
[16]. 
 

 

2 Problem Formulation 
The partial differential equation governing the free 
vibration of a uniform Rayleigh beam is given by 

4 2 4

4 2 2 2

( , ) ( , ) ( , ) 0 
  

  
   

V x t V x t V x t
EI b

x t x t
     (1)                                                                           

Here, E is the Young’s modulus, I  is the moment 
of inertia of the cross section of the beam,   is the 
mass per unit length of the beam, b  is the rotatory 
inertia of the beam, ( , )V x t  is the transverse 
displacement of the beam at point x  and time t . 

The beam is assumed to be simply-supported at both 
ends. Thus, the associated boundary conditions at 
the two ends of the beam, that is at 0x  and 

Lx   ( L  being the length of the beam) for the 
partial differential equation in (1) are as follows: 

(0, ) 0V t ,                                                             (2)  
 

2

2

(0, ) 0




V t

x
,                                                         (3)                                                                                                                           

( , ) 0V L t ,                                                             (4) 

and                                                                                                                            
2

2

( , ) 0




V L t

x
.                                                         (5)                                                                                                                       

The initial conditions are given by 
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2

2

( ,0)( ,0) 0, 0
 



V x
V x

t
.                                   (6)                                                                                                 

 
 
3 Problem Solution 
 

3.1 Description of the Method of Solution 
The differential transform method, which is based 
on the Taylor series expansion, can be used to 
obtain analytical solutions of differential equations. 
To apply this method, certain transformation rules 
are used to transform the governing equation of 
motion and the associated boundary conditions of 
the problem under consideration. This process will 
yield a system of algebraic equations in terms of the 
differential transforms of the original functions. 
Solving this resulting system of algebraic equations 
yields the desired solution of the transformed 
problem. The differential transform method is 
described as follows: 

 Let x  be any point in a domain D. Also suppose 
( )F x  is analytic in domain D. Then a power series 

whose center is 0x  can be used to represent the 
function. The differential transform of the function 

( )f x  is given by 

0

1 ( )( )
!



 
  

 

k

k

x x

d F x
F k

k dx
,                                       (7) 

where ( )F x  is the function to be transformed and 
( )F k  called the transformed function is the new 

function obtained after the transformation. The 
inverse transformation is defined as 

0
0

( ) ( ) ( )




  k

k

F x x x F k .                            (8) 

To express ( )F x  by a finite series, Eqs. (7) and (8) 
are combined to get the series 

0

0

0

( ) ( )( )
! 

 
  

 


k km

k
k x x

x x d F x
F x

k dx
.                        (9) 

It shoulde be noted that the value of m  depends 
largely on the convergence of the natural 
frequencies. Some of the theorems that are useful 
when transforming the governing differential 
equation are provided as follows. 

Theorem 1:  

If ( ) ( ) ( ) F x G x H x , then ( ) ( ) ( ) F r G r H r . 

Theorem 2:  

If ( ) ( )F x G x , then ( ) ( )F r G r . 

Theorem 3:  

If, ( ) ( ) ( )F x G x H x , then 
0

( ) ( ) ( )


 
r

s

F r G s H r s . 

Theorem 4:  

If  ( )( ) 
n

n

d G x
F x

dx
, then  !( ) ( )

!


 
r n

F r G r n
r

. 

Theorem 5:  

If ( )  nF x x , then  
0

( )
1




   


if r n
F r r n

if r n
. 

The basic DTM theorems that are used for 
transforming boundary conditions, which are found 
applicable in this paper are as follows: 

Theorem 6: 

If (0) 0F , then (0) 0F . 

Theorem 7: 

If (0) 0dF

dx
, then (1) 0F . 

Theorem 8: 

If (1) 0F , then 
0

( ) 0





k

F k . 

Theorem 9: 

If (1) 0dF

dx
, then 

0
( ) 0






k

kF k . 

Theorem 10: 

If 
2

2 (1) 0d F

dx
, then 

0
( 1) ( ) 0





 
k

k k F k . 

 

3.2 Using the DTM to Analyze the Free 

Vibration Problem of Rayleigh Beam 
To obtain the solution of the differential equation 
(1) subject to the given conditions, a sinusoidal 
variation of ( , )V x t  is assumed and consequently 
the function is approximated as 

 

 , ( )  i tV x t W x e ,                                            (10)                                                                                                              
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where ( )W x  is the modal deflection and   is the 
circular natural frequency of the harmonic function 
of time. 

Using equation (10), then equations (1)-(5) can be 
expressed as follows: 

4 2
2 2

4 2

( ) ( )( ) 0,

0

     

 

d W x d W x
EI W x b

dx dx

x L

     (11)                                                          

(0) 0W ,     (12)                                                                                                                                 
2

2

(0) 0d W

dx
,            (13)                                                                                                                     

( ) 0W L ,              (14)                                                                                                                       
2

2

( ) 0d W L

dx
.                         (15)                                                                                                                   

Let us introduce the dimensionless quantities as 
follows 

( ), ( )  
x W x

w
L L

     (16)                                                                                                            

The governing equation (11) can then be written in 
the following dimensionless form: 

4 2
2 2

4 2

( ) ( ) ( ) 0 
 

 
   

d w d w
w

d d
      (17)                                                                                

where the dimensionless coefficients are given by 

4
 

L

EI
, 

2
 

bL

EI
.                                      (18)                                                                                                  

The boundary conditions in equations (12)–(15) 
have the following dimensionless form: 

(0) 0w ,                                                              (19)                                                                                                                
2

2

(0) 0



d w

d
,                                                         (20)                                                                                                                   

(1) 0w ,                                                               (21) 

 
2

2

(1) 0



d w

d
.          (22)                                                                                                                

Taking the differential transform of equation (11) in 
accordance with the Theorems 1-4, one obtains 

2 2

( 1)( 2)( 3)( 3) ( 4)
( 1)( 2) ( 2) ( ) 0

    

      

r r r r W r

r r W r W r
.     (23) 

The following recursive equation can be obtained 
from equation (23): 

 

2( ) ( 1)( 2) ( 2)( 4)
( 1)( 2)( 3)( 4)

    
  

   

W r r r W r
W r

r r r r
 (24) 

Now applying appropriate transformation theorems 
6-8 and 10, the boundary conditions (19)-(22) 
become 

(0) 0W ,                                                             (25)                                                                                                                              

(2) 0W ,                                                            (26)                                                                                                                    

0
( ) 0




m

r

W r ,                                                        (27)                                                                                                                                                              

and  

0
( 1) ( ) 0



 
m

r

r r W r .                                                  (28)                                                                                                                       

 

Let us define 

1(1) W c ,                                                             (29)                                                                                                                  

2(3)W c , (30)                                                                                                                                     

as the unknown parameters. 

Substituting equations (29) and (30) into equation 
(24), we have 

For 0r : 

(4) 0W         (31)                                                                                                                             
For 1r : 

21 26(5)
5!

 
 

c c
W            (32)                                                                                                     

By following the same recursive procedure, (6)W  

up to ( )W m  can be evaluated; where m  is to be 
determined by the convergence of natural 
frequencies. 

Substituting ( )W j , for 0, 1, ,j m  into equations 
(27) and (28), we obtain a system of two algebraic 
equations which can be put in the matrix form as 
follows: 
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[ ] [ ]
111 12

[ ] [ ]
221 22

0( ) ( )
0( ) ( )

      
     

     

m m

m m

cf f

cf f
,                         (33)                                                                                       

where [ ]
11 ( )mf , [ ]

12 ( )mf , [ ]
21 ( )mf  and [ ]

22 ( )mf  are 
polynomials of  . 

For the nontrivial solutions of equation (33), the 
determinant of the coefficient matrix is set to zero. 
Thus, we have 

[ ] [ ]
11 12
[ ] [ ]

21 22

( ) ( )
0

( ) ( )
 


 

m m

m m

f f

f f
                 (34)                                                                                                 

The dimensionless natural frequencies are then 
calcuated by solving equation (34). [ ] m

j  is the 

estimated jth dimensionless natural frequency that 
corresponds to m . The value of m  is decided by the 
following convergence criterion: 

[ ] [ 1]| |   m m

j j ,              (35)                                                                                                                                      

where [ 1] m

j  is the jth estimated dimensionless 

natural frequency corresponding to 1m  and   is a 
predefined small value. 

3.3 Verification and Case Study 
Setting 1 M  and the first dimensionless 
natural frequency and mode shape for 
demonstration, the computations and results 
corresponding to 16m  are described as follows: 

Substituting Equations (25), (26), (29) and (30) and 
0r  into Eq. (24), we have 

(4) 0W                                                               (36) 

Substituting Eqs. (25), (26), (29)-(31) and 1r  into 
Eq. (24), we have 

  2
1 2

1(5) 6
5!

  W c c .                                       (37) 

Substituting Equations (25), (26), (29)-(31) and 
2r into Eq. (24), we have 

(6) 0W .                                                             (38) 

Substituting Equations (25), (26), (29)-(32) and 
3r into Eq. (24), we have 

4 2 2
1 2

1(7) (1 ) 6(2 )
7!

      W c c              (39) 

Following the same recursive procedure, we 
calculate up to the 20th term (16)W . Substituting 

( ), 0,1,2, , 16W j j into Eqs. (27) and (28) and 
using Eq. (34), we have the frequency equation as 
follows 

9 12 7 10

8 6

4 2

1.126964276 10 1.700514259 10
0.00001858512347 0.001325165135
0.05481481481 1.066666667 0.6

    









  

   

(40) 

Solving Eq. (34), we have the first two roots 

 20
1 2.9936                                                        (41) 

 20
2 5.9019                                                        (42) 

When 15j , by the same method we obtain 

 19
1 2.9936                                                        (43) 

From Eqs. (35) and (37), we have 

[20] [19]
1 1| | 0     ,                                           (44) 

which implies convergence. 

So, 1 2.9936   is taken as the first dimensionless 
natural frequency. 

Substituting 1 2.9936   into ( ), 0,1, , 16V j j  

and using 
16

0
( ) ( ) 



 j

j

V V j , we obtain the closed 

form series solution of the first mode shape. 

3 5
1

7 9

11 13

15

( ) 1.644936963 0.8117470647

0.1907536301 0.02614819400
0.002346120939 0.001484318771
0.000006976044909

   

 

 



  

 

 



V i

 (45) 

Following the same routine demonstrated above, 
one can determine the other natural frequencies and 
their associated mode shapes. As the number of 
terms, denoted by m increases, the first five non-
dimensional natural frequencies 1  up to 5  of the 
Rayleigh beam converge to 2.993593837, 
6.205088447, 9.372169410, 12.52676961, 
15.72132054. The predefined value of  used to 
monitor the convergence of the natural frequencies 
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is 0.0001  . In the example considered, the first 
five natural frequencies converge quickly one by 
one without missing any frequency. The natural 
frequencies are then used to determine their 
corresponding mode shapes. The first three mode 
shapes of the freely vibrating beam with the given 
configuration are shown in Figs. 2, 3 and 4. The 
combination of all the first three mode shapes is 
given in Fig. 5. 
 

 
Fig. 1: First mode shape 
 

 
Fig. 2: Second mode shape 
 

 
Fig. 3: Third mode shape 
 

 
Fig. 4:  The first, second and third mode shapes 
 
Table 1 shows the effect of mass per unit length of 
the beam on the first five natural frequencies of the 
simply supported Rayleigh beam. The results reveal 
that the non-dimensional frequencies calculated 
become smaller with the increase in the mass per 
unit length of the beam. The implication of this is 
that there will be a decrease in natural frequencies 
of excitation of the beam if there is an increase in 
the beam’s mass per unit length. 
 
Table 1. Effect of Mass per Unit length of the beam 

on Non-dimensional frequencies of Simply-
Supported Rayleigh Beam ( 1  ) 

 M 
 1 5 10 15 

1  
2.9940 2.5595 2.2141 1.9791 

2  
6.2051 5.9195 5.6124 5.3487 

3  
9.3722 9.1702 8.9352 8.7174 

4  
12.5268 12.3703 12.1864 12.0089 

5  
15.7213 15.5955 15.4428 15.2943 

 

 

4 Conclusion 
The differential transform method has been used to 
the closed form series solution of the freely 
vibrating uniform Rayleigh beam. As earlier noted, 
solving the problem using DTM involves three main 
steps. The first step is to transform the equation 
governing the motion as well as the boundary 
conditions into a system of algebraic difference 
equations. The second step entails solving the set of 
algebraic difference equations in step one. Finally, 
the solution of the transformed problem is inverted 
using the inverse differential transform to determine 
the natural frequencies and their associated closed 
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form series solution of the mode shape. The 
influence of mass per unit length on the natural 
frequencies of a simply supported Rayleigh beam 
freely vibrating has also been investigated. The 
governing differential equation is solved and the 
dimensionless natural frequencies for various values 
of the mass per unit length of the beam were 
obtained and presented in table. It was found that 
the natural frequency of the beam decreases with 
increase in the value of the mass per unit length. It is 
recommended that the further studies on the 
influence of rotary inertia on the vibration 
characteristics of freely vibrating Rayleigh beam 
should be carried out. 
 
Nomenclature 

E  Young’s modulus,  
I   Moment of inertia of the cross section of the 

beam  
   Mass per unit length of the beam,  
b   Rotatory inertia of the beam  
x spatial location along the beam 
T time 

( , )V x t   Transverse displacement of the beam at 
point x  and time t . 

L length/span of the beam 
    Circular natural frequency of harmonic 

function of time 
( )W x   Modal deflection of the beam 

   Non-dimensional parameter of the spatial 
location along the beam 

( )w  Non-dimensional parameter of the 
modal deflection of the beam 

   Non-dimensional parameter of the mass per 
unit lenght of the beam 

   Non-dimensional rotary inertia 
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