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Abstract: - In a bounded domain subject to Dirichlet boundary conditions, this paper discusses the phenomenon 
of finite time blow-up of solutions for a particular class of evolution equations that affects the pseudo -
Laplacian viscoelastic term. We give the equation by: 

𝑢𝑡 − Δ𝑢 −∫
𝑡

0

𝑔(𝑡 − 𝑠)Δ𝑝(𝑥)𝑢(𝑥, 𝑠)d𝑠 = |𝑢|
𝑞(𝑥)−2𝑢. 

Our findings show that, regardless of the initial energy and sizable initial values, the classical solutions of this 
equation blow-up in finite time in two cases. Subject to certain conditions on p, q, g, and the initial given data, 
we have established a new criterion for blow-up and provided lower and upper bounds on the solutions if blow-
up occurs.  
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1   Introduction 

The pseudo-parabolic equation in the form of   
𝑢𝑡(𝑡) − 𝑘Δ𝑢𝑡(𝑡) − Δ𝑢(𝑡) = 𝑓(𝑢),    𝑥 ∈ Ω,

𝑡 ≥ 0, 
is commonly used to describe various physical and 
biological phenomena, such as the propagation of 
nonlinear dispersive long waves, [1], population 
aggregation, [2], heat conduction with two 
temperatures, [3], and nonstationary processes in 
semiconductors, [4], fluid dynamics, 
electrorheological fluids, quantum mechanics 
theory, [5], [6], [7], [8]. It originated from the study 
of beams and heats. In reference, [9], the authors 
provide a comprehensive overview of the system: 
 

{

𝑢𝑡 − Δ𝑢 − Δ𝑢𝑡 = 𝑢
𝑝, in Ω × (0, 𝑇)

𝑢(𝑥, 𝑡) = 0, on 𝜕Ω × (0, 𝑇)
𝑢(𝑥, 0) = 𝑢0(𝑥), in Ω,

      (1) 

 
where 1 < 𝑝 < ∞ if 𝑛 = 1,2; 1 < 𝑝 ≤ 𝑛+2

𝑛−2
 if 𝑛 ≥ 3.  

By exploiting the potential well method and the 
comparison principle, they obtained global existence 
and finite-time blow-up results for the solutions 
with initial data at a high energy level. In recent 
years, a great deal of attention has been given to the 
study of mathematical nonlinear models with 
variable-exponent nonlinearity. For instance, 
modeling physical phenomena such as flows of 
electrorheological fluids or fluids with temperature-
dependent viscosity, nonlinear viscoelasticity, 
filtration processes through porous media and image 
processing. More details on these problems can be 
found in, [10], [11], [12]. Regarding parabolic 
problems with nonlinearities of variable-exponent 
type, many works have appeared. Let us mention 
some of them. For instance, in the, [13], the author 
studied the following problem: 
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{

𝑢𝑡(𝑥, 𝑡) − Δ𝑢(𝑥, 𝑡) = 𝑓(𝑢(𝑥, 𝑡)), in Ω × 0, 𝑇)
𝑢(𝑥, 𝑡) = 0, on 𝜕Ω × 0, 𝑇)
𝑢(𝑥, 0) = 𝑢0(𝑥), in Ω,

 

                                                                     (2) 
 
where Ω ⊂ ℝ𝑛 is a bounded domain with a smooth 
boundary 𝜕Ω, and the source term is of the form: 
  

𝑓(𝑢(𝑥, 𝑡)) = 𝑎(𝑥)𝑢𝑝(𝑥)(𝑥, 𝑡), 𝑥 ∈ Ω,

𝑡 ≥ 0   
or 𝑓(𝑢) = 𝑎(𝑥) ∫Ω 𝑢

𝑞(𝑦)(𝑦, 𝑡)𝑑𝑦,               (3) 
 
with 𝑝(𝑥), 𝑞(𝑥): Ω → (1,∞) and the continuous 
function 𝑎(𝑥): Ω → ℝ are given functions satisfying 
specific conditions. He established the local 
existence of positive solutions and proved that 
solutions with sufficiently large initial data blow up 
in finite time. Parabolic problems with sources of 
the form (3) appear in several branches of applied 
mathematics and have been used to model chemical 
reactions, heat transfer or population dynamics. The 
nonlinear parabolic problems of the diffusion 
equation with nonstandard 𝑝(. )-growth conditions 
in the form: 
  
𝑢𝑡(𝑥, 𝑡) − 𝑑𝑖𝑣𝜑(𝑢(𝑥, 𝑡)) = 𝑓(𝑢(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 ≥

0,                                                                            (4) 
 

for diverse choices of point functions 𝜑(. ), 𝑓(. ) 
such as one might reasonably expect, this equation 
arises naturally as the equation of motion in all sorts 
of physical situations such as heat transfer, flows in 
porous media, propagation of magnetic fields in 
media with finite conductivities, and in chemical 
kinetics or biochemical kinetics, to name just a few. 
In the case where 𝜑(𝑢) = 𝑑𝑖𝑣(|∇𝑢|𝑝(𝑥)−2∇𝑢), for 
the choices of the function 𝑝(. ), problem (4) occurs 
in many mathematical models in fluid mechanics, 
elasticity theory recently in image processing, [14], 
[15], porous medium, [16],  [17], the unidirectional 
propagation of nonlinear, dispersive, long waves 
and the aggregation of population, [18], and the 
references therein. A series of papers related to 
problems in the so-called rheological and 
electrorheological fluids, which lead to spaces with 
variable exponents, have appeared recently in, [18]. 
These topics are novel and attractive. It appears 
from nonlinear elasticity theory, electrorheological 
fluids, etc. These fluids possess the impressive 
property that their viscosity depends on the electric 
field in the fluids. For a general statement of the 
underlying physics, [19], and for the mathematical 

presents, [20]. The results detailed in those papers 
were collected in the books, [21],  [22]. Let Ω be a 
bounded domain in ℝ𝑛(𝑛 ≥ 1)  with a smooth 
boundary 𝜕Ω = Γ. A class of pseudo parabolic 
equations with 𝑝(. )-Laplacian viscoelastic terms 
subject to homogenous Dirichlet boundary 
conditions are written in the form of partial integro 
differential equations by: 
 

{
 
 

 
 𝑢𝑡 − Δ𝑢 − ∫

𝑡

0
𝑔(𝑡 − 𝑠)Δ𝑝(𝑥)𝑢(𝑥, 𝑠)d𝑠

     = |𝑢|𝑞(𝑥)−2𝑢, 𝑥 ∈ Ω, 𝑡 ≥ 0,         

𝑢(𝑥, 𝑡) = 0,    𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0,
𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑥 ∈ Ω,

      (5) 

 
where Δ𝑝(𝑥)𝑢 = −𝑑𝑖𝑣(|∇𝑢|𝑝(𝑥)−2∇𝑢), 𝑝(. ) and 
𝑞(. ) are two measurable functions, Ω ⊂ ℝ𝑛(𝑛 ≥ 1) 
is a bounded domain, Γ = 𝜕Ω is Lipschitz 
continuous, 𝑢0 ≥ 0, with 𝑢0 ∈ 𝑊0

1,𝑝(𝑥)
(Ω), and 

𝑔:ℝ+ → ℝ+ is a bounded 𝐶1 function. The function 
𝑞(. ) is a continuous function on Ω̅. This particular 
model involves parabolic equations that are 
nonlinear concerning the gradient of the solution 
and have varying degrees of nonlinearity. The most 
common case is the evolution 𝑝-Laplace equation, 
where the exponent 𝑝 is dependent on the external 
electromagnetic field. For further information, 
please refer to sources such as, [23], as well as their 
respective references. The viscoelastic model has 
become increasingly popular for analyzing the 
dynamics of viscoelastic structures in recent years. 
There is a common issue known as problem (5), 
which appears in various mathematical models used 
in engineering and physics. Over the last few 
decades, equations containing viscoelastic terms 
have received significant attention, and numerous 
findings have been made regarding the existence, 
uniqueness, and regularity of weak or classical 
solutions. For more detail on this topic, we 
recommend referring to source, [ 42 ], [25]. In a 
recent investigation of a homogeneous Dirichlet 
boundary value problem, the study, [25], found that 
when 𝑞 is a constant, and 𝑔 and 𝑝 satisfy certain 
conditions, a weak solution for (5) with positive 
initial energy will blow-up in finite time. However, 
the conditions on 𝑔 and 𝑞 are quite rigid. When 
𝑝(. ) = 2, the conventional Fourier law of heat flux 
is typically substituted with the following equation  

𝑞 = −𝑑∇𝑢 −∫
𝑡

−∞

∇𝑘(𝑥, 𝑡)𝑢(𝑥, 𝜏)]d𝜏,              

(6) 
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where 𝑢 is the temperature, 𝑑 is the diffusion 
coefficient, and the integral term represents the 
memory effect in the material. Looking at it 
mathematically, we expect the primary term in the 
equation to have the most significant impact on the 
integral term, allowing us to use the theory of 
parabolic equation to solve problem (5). The 
property of finite time blow-up is crucial for many 
evolutionary equations. Exploring the blow-up of 
solutions can be done through various methods. 
Kaplan introduced the first eigenvalue method in 
1963, Levine introduced the concavity method 
during the 1970s, and the comparison method is 
based on the comparison principle. Recently, for 
𝑞(. ) = 𝑞 = constant and 𝑝 = 2, the problem (5) 
reduces to the following equation: 
 

{
 
 

 
 𝑢𝑡 − Δ𝑢 − ∫

𝑡

0
𝑔(𝑡 − 𝑠)Δ𝑢(𝑥, 𝑠)d𝑠

     = |𝑢|𝑞−2𝑢, 𝑥 ∈ Ω, 𝑡 ≥ 0,         

𝑢(𝑥, 𝑡) = 0,    𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0,
𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑥 ∈ Ω,

             (7) 

 
when 𝑔 is not equal to zero (𝑔 ≠ 0), in, [26], the 
author studied the blow-up results of (7), and found 
a lower bound for the solution’s blow-up time if it 
occurs. Additionally, he created a new blow-up 
criterion and provided an upper bound for the 
solution’s blow-up time based on certain conditions 
involving 𝑝, 𝑔, and 𝑢0. Based on previous research, 
we have found that the solution of problem (5) 
blows up when given arbitrary positive initial 
energy and appropriate large initial values, as long 
as 𝑞(. ) ≥ 2 and 𝑁 ≥ 1. Additionally, we have 
proven that the nonnegative solutions must blow-up 
in a finite amount when given negative initial 
energy. 
 
 
2   Preliminaries 
Let 𝑝: Ω → 1,∞] be a measurable function. 𝐿𝑝(.)(Ω) 
denotes the set of the real measurable functions 𝑢 on 
Ω such that: 

∫
Ω

|𝜆𝑢(𝑥)|𝑝(𝑥)d𝑥 < ∞   for some  𝜆 > 0. 

The variable-exponent space 𝐿𝑝(.)(Ω) equipped with 
the Luxemburg-type norm: 

‖𝑢‖𝑝(.) = inf {𝜆 > 0, ∫
Ω

|
𝑢(𝑥)

𝜆
|

𝑝(𝑥)

d𝑥 ≤ 1}, 

 
is a Banach space. Throughout the paper, we use 
‖. ‖𝑞 to indicate the 𝐿𝑞-norm for 1 ≤ 𝑞 ≤ +∞. 

Next, we will define the variable-exponent Sobolev 
space 𝑊1,𝑝(.)(Ω) in the following manner 

𝑊1,𝑝(.)(Ω) = {
𝑢 ∈ 𝐿𝑝(.)(Ω): ∇𝑢 exists and

 |∇𝑢| ∈ 𝐿𝑝(.)(Ω)
}. 

 
This space is a Banach space, which is defined by 
its norm: 

‖𝑢‖
𝑊0
1,𝑝(.)

(Ω)
= ‖𝑢‖𝑝(.),Ω + ‖∇𝑢‖𝑝(.),Ω. 

 
In addition, we have established that 𝑊0

1,𝑝(.)
(Ω) is 

the closure of 𝐶0∞(Ω) in 𝑊1,𝑝(.)(Ω). It is known that 
for the elements of 𝑊0

1,𝑝(.)
(Ω) the Poincaré 

inequality holds, 
 

‖𝑢‖𝑝(.),Ω ≤ 𝐶(𝑛, Ω)‖∇𝑢‖𝑝(.),Ω,           (8) 
 
and an equivalent norm of 𝑊0

1,𝑝(.)
(Ω) can be 

defined by: 
 

‖𝑢‖
𝑊0
1,𝑝(.)

(Ω)
= ‖∇𝑢‖𝑝(.),Ω. 

 
To state and prove our main result, we need to 

establish the following hypotheses. 
The measurable exponent functions 𝑝(. ) and 𝑞(. ) 
provided meet the requirements. 
 

2 < 𝑞1 ≤ 𝑞(𝑥) ≤ 𝑞2 < 𝑝1 ≤ 𝑝(𝑥) ≤ 𝑝2

<
2𝑛

𝑛 − 2
 for 𝑛 ≥ 3, 

 
where for a given measurable function 𝜑 on Ω; 

𝜑2 = 𝑒𝑠𝑠sup
𝑥∈Ω

𝜑(𝑥), 𝜑1 = 𝑒𝑠𝑠inf
𝑥∈Ω

𝜑(𝑥), 

 
assuming except that 𝑝(. ), and 𝑞(. ) everifies the 
log-Hölder continuity condition: 
 

|𝜑(𝑥) − 𝜑(𝑦)| ≤ 𝑀(|𝑥 − 𝑦|),                     (9) 
 
where 𝑀(𝑟) satisfies 

limsup
𝑟→0+

𝑀(𝑟)ln (
1

𝑟
) = 𝑐 < ∞. 

 
The memory kernel 𝑔: [0, +∞) → 0,+∞) is a 𝐶1 
function satisfying: 
  

𝑔(𝑡) ≥ 0, 𝑔′(𝑡) ≤ 0, 1 − ∫
∞

0
𝑔(𝑠)d𝑠 = 𝜅 > 0,  

               (10) 
 

1 − ∫
∞

0
𝑔(𝑠)d𝑠 = 𝜅 ∈ [

1

(𝑞1−1)
2 , 1].  (11) 
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3  Blow-up in Finite Time and Bounds 

of Blow-Up Time 
In this section, we will prove that the blow-up of 
solutions to problem (5) with arbitrary positive 
energy and suitable initial data, besides, we get a 
new bounds for the blow-up time if the variable 
exponents and the initial data satisfy some 
conditions. 

As it is well known that degenerate equations do 
not have classical solutions, we give a precise 
definition of the weak solution. 
 

Definition 1 A function 𝑢(𝑥, 𝑡) ∈ 𝐿∞(𝛺 × (0, 𝑇)) ∩

𝐿𝑝(.) (0, 𝑇;𝑊0
1,𝑝(.)

(𝛺)), 𝑢𝑡 ∈ 𝐿
2(0, 𝑇; 𝐿2(𝛺)) is 

called weak solution of problem (5), if and if only if 

the equality 
∫Ω ∫

𝑇

0
𝑢𝑡𝜑d𝑡d𝑥 + ∫Ω ∫

𝑇

0
∇𝜑. (∇𝑢 − ∫

𝑡

0
𝑔(𝑡 −

𝑠)|∇𝑢(𝑠)|𝑝(.)−2∇𝑢(𝑠)d𝑠)d𝑡d𝑥 =

∫Ω ∫
𝑇

0
|𝑢|𝑞(.)−2𝑢𝜑d𝑡d𝑥,   

Holds for all 
𝜑 ∈ 𝐿2(𝑄) ∩ 𝐿𝑝(.) (0, 𝑇;𝑊0

1,𝑝(.)
(Ω)).  

 
The proof of the first main result relies heavily on 
the significance of these two lemmas: 
 

Lemma 2 Suppose that a positive, twice-

differentiable function 𝜃(𝑡) satisfies the inequality 
𝜃′′(𝑡)𝜃(𝑡) − (1 + 𝛽)𝜃′(𝑡)2 ≥ 0,    𝑡 > 0, 

where 𝛽 > 0 is some constant. If 𝜃(0) > 0 and 
𝜃′(0) > 0, then there exists 0 < 𝑇1 <

𝜃(0)

𝛽𝜃′(0)
 such 

that 𝜃(𝑡) tends to infinity as 𝑡 → 𝑇1. 
 
In the following, we prepare some lemmas needed 
in the proof of the main results. 
 

Lemma 3 (Sobolev-Poincarà inequality) If 𝑞(. ) 
satisfy (𝐻1) For all 𝑢 ∈ 𝐻0

1(𝛺), then the following 

embedding  
𝐻0
1(Ω) ↪ 𝐿𝑞2(Ω) ↪ 𝐿𝑞(.)(Ω) ↪ 𝐿𝑞1(Ω) ↪ 𝐿2(Ω), 

are continuous, and we get: 
 

∥ 𝑢 ∥𝑞(.)≤ 𝐵 ∥ ∇𝑢 ∥2, 
 
where the optimal constant of the Sobolev 
embedding is denoted by 𝐵, and the norm of 
𝐿𝑞(.)(Ω) is represented by ∥. ∥𝑞(.). The following 
property is associated: 
  

min(‖𝑢‖𝑞(.)
𝑞1 , ‖𝑢‖𝑞(.)

𝑞2 ) ≤ 𝜚(𝑢) =

∫Ω |𝑢(𝑥)|
𝑞(𝑥)d𝑥 ≤ max (‖𝑢‖𝑞(.)

𝑞1 , ‖𝑢‖𝑞(.)
𝑞2 ),  (12) 

 
for any 𝑢 ∈ 𝐿𝑞(.)(Ω).  
Our main result is presented here. 

We assert the local existence of a solution for 
(5), even without proof. This can be gained through 
the Faedo-Galerkin methods, in combination with 
the fixed point theorem in Banach spaces. 
 

Theorem 1 Assuming that both (𝐻1) and (𝐻2) are 

valid. Problem (5) has a local solution, denoted as 

𝑢, that satisfies 𝑢(𝑥, 𝑡) ∈ 𝐿∞(𝛺 × (0, 𝑇0)) ∩

𝐿𝑝(.) (0, 𝑇0;𝑊0
1,𝑝(.)

(𝛺)) and 𝑢𝑡 ∈ 𝐿
2(0, 𝑇0; 𝐿

2(𝛺)) 

for 𝑇0 > 0.  

 
3.1   First blow-up Result 
One of the primary techniques for proving the blow-
up of solutions involves calculating the energy 
function and using the concavity argument. 
Let  

𝑀1 = (1−
2

𝑞1

(1 + 𝜏 − ∫
𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

) ,

𝑀2 =
(1 + 𝜏 − ∫

𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

, 

                                                                     (13) 
for any positive 𝜏 such that  
  

𝜏 ∈ [
1

2
(√1 −∫

𝑡

0

𝑔(𝑠)d𝑠 + ∫
𝑡

0

𝑔(𝑠)d𝑠 − 1) ,

1

2
(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) (𝑞1 − 2)]. 

 

Theorem 2 Let us consider the assumptions of 

Theorem 1 . If 𝐸(𝑢0) > 0 for any given 𝑢0 such that  

∫
Ω

|𝑢0|
2d𝑥 ≥

1

𝑀1
(2𝑀2E(0) +𝑀1|Ω|), 

with 
0 < 𝐸(0) <

|Ω|

4(𝑝1+1)
.                         (14) 

 
If 𝑝(. ) and 𝑞(. ) satisfy (9) and (H1) − (H2) hold, 
then the solution 𝑢(𝑥, 𝑡) can exist for a finite 
amount of time. However, if there exists a 𝑇1 ≤
𝑇max such that lim

𝑡→𝑇1
∫
𝑡

0
‖𝑢(𝑠)‖2

2d𝑠 = +∞, this 

means that the solution 𝑢 blows up in finite time in 
𝐿2(Ω)-norm. 𝑀1 and 𝑀2 are given in (13).  
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Lemma 6 Under the assumptions of Theorem 5, the 

corresponding energy to problem (5) 

𝐸:𝑊0
1,𝑝(.)

(𝛺) ∩ 𝐿𝑞(.)(𝛺) → ℝ, is considered by 
𝐸(𝑡) ≔ 𝐸(𝑢(𝑡)) 

=
1

2
(1 − ∫

𝑡

0
𝑔(𝑠)𝑑𝑠) ∥ ∇𝑢(𝑡) ∥2

2−

∫Ω
1

𝑞(𝑥)
|𝑢|𝑞(𝑥)d𝑥 +

1

2
(𝑔 ∘ ∇𝑢)(𝑡),               (15) 

𝐸(𝑡) decreasing, that is  

𝐸′(𝑡)  = −
1

2
𝑔(𝑡)∫

Ω

|∇𝑢(𝑡)|2d𝑥 

+
1

2
(𝑔′ ∘ ∇𝑢)(𝑡) − ∫Ω |𝑢𝑡(𝑡)|

2d𝑥  

≤ −∫
Ω

|𝑢𝑡(𝑡)|
2d𝑥 ≤ 0. 

                (16) 
where 

 (𝑔 ∘ ∇𝑢)(𝑡) 

= ∫
𝑡

0

𝑔(𝑡 − 𝑠)‖∇𝑢 − |∇𝑢(𝑠)|𝑝(𝑥)−2∇𝑢(𝑠)‖
2

2
d𝑠. 

 

Proof. For a solution 𝑢 to problem (5), multiplying 
Equation (5) (2) by 𝑢𝑡, integrating the result over Ω, 
using the Green’s formula, we find: 

1

2

𝑑

𝑑𝑡
(∫

Ω

|∇𝑢(𝑡)|2d𝑥 −∫
Ω

1

𝑞(𝑥)
|𝑢|𝑞(𝑥)d𝑥) 

  
− ∫

𝑡

0
𝑔(𝑡 − 𝑠)|∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠)∇𝑢𝑡(𝑡)d𝑠

= −∫Ω |𝑢𝑡(𝑡)|
2d𝑥.

 

(17) 
 

A direct calculation of the last term on the left side 
of (17) can views as follows: 

−∫
𝑡

0

𝑔(𝑡 − 𝑠)|∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠)∇𝑢𝑡(𝑡)d𝑠 = 

1

2
𝑔(𝑡)∫

Ω

|∇𝑢|2d𝑥 −
1

2
(𝑔′ ∘ ∇𝑢)(𝑡) 

+
1

2

𝑑

𝑑𝑡
(𝑔 ∘ ∇𝑢)(𝑡) −

1

2

𝑑

𝑑𝑡
(∫

𝑡

0
𝑔(𝑠)𝑑𝑠 ∫Ω |∇𝑢|

2d𝑥)
            

(18) 
 
Putting (18) in (17), we get: 

  

𝑑

𝑑𝑡

(

 
 

1

2
∫
Ω

|∇𝑢(𝑡)|2d𝑥 −
1

2
∫
𝑡

0

𝑔(𝑠)𝑑𝑠∫
Ω

| ∇𝑢(𝑡)|2d𝑥

−∫
Ω

1

𝑞(𝑥)
|𝑢(𝑡)|𝑞(𝑥)d𝑥 +

1

2
(𝑔 ∘ ∇𝑢)(𝑡)

)

 
 

 

−
1

2
𝑔(𝑡)∫

Ω

|∇𝑢(𝑡)|2d𝑥 +
1

2
(𝑔′ ∘ ∇𝑢)(𝑡)

= −∫
Ω

|𝑢𝑡(𝑡)|
2d𝑥 

 
 
Integrating the above identify over (0, 𝑡), we obtain 

𝐸(𝑡) − 𝐸(0) 
≤ −

1

2
∫
𝑡

0
𝑔(𝑠) ∫Ω |∇𝑢(𝑠)|

2d𝑥𝑑𝑠

+
1

2
∫
𝑡

0
(𝑔′ ∘ ∇𝑢)(𝑠)𝑑𝑠 − ∫

𝑡

0 ∫Ω |𝑢𝑡|
2d𝑥𝑑𝑠 ≤ 0.

 (19) 

 
Proving Theorem 2 relies on the significance of the 
following lemma 7. 
 

Lemma 7 Under the assumptions of Theorem 2, the 

solution of problem (5) satisfies the following 

inequalities 
|𝑢(𝑡)|2d𝑥 ≥ e2𝑀1𝑡 [𝐺(0) − 2

𝑀2

𝑀1
E(0) − |Ω|]  

∫
Ω

+ 2
𝑀2
𝑀1

E(0) + |Ω|

= e2𝑀1𝑡𝐺(0) + (2
𝑀2
𝑀1

E(0) + |Ω|) (1 − e2𝑀1𝑡),

 

                                                                     (20) 
and 
∫Ω 𝑢𝑢𝑡d𝑥 ≥ 𝑀1e

2𝑀1𝑡 [‖𝑢0‖2
2 − 2

𝑀2

𝑀1
E(0) − |Ω|] +

𝑀2 ∫
𝑡

0
‖𝑢𝑡(. , 𝑠)‖2

2d𝑠,    > 0,                     (21)     
 
where 𝑀1 and 𝑀2 as in (13).  
 

Proof. Set 

𝐺(𝑡) = ∫
Ω

|𝑢(𝑡)|2d𝑥. 

Integrating by parts, and using Eq. (5), we obtain  
𝐺′(𝑡) = −2 ∥ ∇𝑢(𝑡) ∥2

2 
+2∫

𝑡

0
𝑔(𝑡 − 𝑠) ∫Ω ∇𝑢(|∇𝑢(𝑠)|

𝑝(𝑥)−2∇𝑢(𝑠) −

∇𝑢(𝑡))d𝑥d𝑠  

+2∫
𝑡

0

𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥2
2+ 2∫

Ω

|𝑢|𝑞(𝑥)d𝑥.
 

                                                                   (22) 
 

Applying Young and Hölder inequalities, the 
second term in the right-hand side of (22) can be 
estimated as follows 

||
∫
𝑡

0

𝑔(𝑡 − 𝑠)

∫
Ω

∇𝑢(𝑡)(|∇𝑢(𝑠)|𝑝(𝑥)−2∇𝑢(𝑠) − ∇𝑢(𝑡))d𝑥d𝑠
|| 
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=| ∫Ω ∇𝑢(𝑡) ∫
𝑡

0
𝑔(𝑡 − 𝑠)

(|∇𝑢(𝑠)|𝑝(𝑥)−2∇𝑢(𝑠) − ∇𝑢(𝑡))d𝑠d𝑥
| 

≤  𝜏 ∫
Ω

|∇𝑢(𝑡)|2d𝑥 

+
1

4𝜏
∫
Ω

(
∫
𝑡

0

𝑔(𝑡 − 𝑠)

(|∇𝑢(𝑠)|𝑝(𝑥)−2∇𝑢(𝑠) − ∇𝑢(𝑡))d𝑠

)

2

d𝑥 

≤ 𝜏 ∥ ∇𝑢(𝑡) ∥2
2 

+ 1

4𝜏
∫Ω (∫

𝑡

0
𝑔(𝑡 − 𝑠)d𝑠) 

(∫
𝑡

0

𝑔(𝑡 − 𝑠)||∇𝑢(𝑠)|𝑝(𝑥)−2∇𝑢(𝑠)

− ∇𝑢(𝑡)|
2
d𝑠)𝑑𝑥 

= 𝜏 ∥ ∇𝑢(𝑡) ∥2
2 

+
1

4𝜏
(𝑔 ∘ ∇𝑢)(𝑡)∫

𝑡

0

𝑔(𝑠)d𝑠,                           

(23) 
  
for any 𝜏 > 0. Using (22) and (23), we conclude 

𝐺′(𝑡) ≥ 2 (−1 − 𝜏 + ∫
𝑡

0
𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2

2−
1

2𝜏
∫
𝑡

0
𝑔(𝑠)d𝑠(𝑔 ∘ ∇𝑢)(𝑡) + 2∫Ω |𝑢|

𝑞(𝑥)d𝑥.                 
(24) 

 
by 𝑞1 > 2, it is clear to check that  

∫
Ω

|𝑢|𝑞(𝑥)d𝑥 = ∫
{𝑥∈Ω:|𝑢|≤1}

|𝑢|𝑞(𝑥)d𝑥

+ ∫
{𝑥∈Ω:|𝑢|≥1}

|𝑢|𝑞(𝑥)d𝑥 

≥ ∫
{𝑥∈Ω:|𝑢|≥1}

|𝑢|2d𝑥

≥ ∫
Ω

|𝑢|2d𝑥 − ∫
{𝑥∈Ω:|𝑢|≤1}

|𝑢|2d𝑥

≥ ∫
Ω

|𝑢|2d𝑥 − |Ω|, 

(25) 
which connect with (24) give 

d

d𝑡
𝐺(𝑡)  ≥ 

2(−1 − 𝜏 + ∫
𝑡

0

𝑔(𝑠)d𝑠) × 

2E(𝑡) − (𝑔 ∘ ∇𝑢)(𝑡) +
2

𝑞2
∫Ω |𝑢|

𝑞(𝑥)d𝑥

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

 

+2∫
Ω

|𝑢|𝑞(𝑥)d𝑥 −
1

2𝜏
∫
𝑡

0

𝑔(𝑠)d𝑠(𝑔 ∘ ∇𝑢)(𝑡) 

≥ −4
(1 + 𝜏 − ∫

𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

E(𝑡) 

+2[
(1 + 𝜏 − ∫

𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

−
1

4𝜏
∫
𝑡

0

𝑔(𝑠)d𝑠] × 

(𝑔 ∘ ∇𝑢)(𝑡) 

+2(1 −
2

𝑞1

(1 + 𝜏 − ∫
𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

)∫
Ω

|𝑢|2d𝑥 

+2(
2

𝑞1

(1 + 𝜏 − ∫
𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

− 1) |Ω| 

 (26) 
 
Inequality (26) confirms that  

d

d𝑡
𝐺(𝑡) ≥ 2𝑀1 (𝐺(𝑡) − 2

𝑀2
𝑀1

E(𝑡) − |Ω|) 

≥ 2𝑀1 (𝐺(𝑡) − 2
𝑀2

𝑀1
E(0) − |Ω|) +

2𝑀2 ∫
𝑡

0
‖𝑢𝑡(. , 𝑠)‖2

2d𝑠 (27) 
 
because ∫𝑡0 ‖𝑢𝑡(. , 𝑠)‖2

2d𝑠 is positive, we have  
d

d𝑡
𝐺(𝑡) ≥ 2𝑀1 (𝐺(𝑡) − 2

𝑀2
𝑀1

E(0) − |Ω|) 

 
By solving nonhomogeneous ordinary differential 
equation, we can obtain 

𝐺(𝑡) ≥ e2𝑀1𝑡 [𝐺(0) − 2
𝑀2
𝑀1

E(0) − |Ω|] 

+2
𝑀2

𝑀1
E(0) + |Ω| = e2𝑀1𝑡𝐺(0)

+ (2
𝑀2

𝑀1
E(0) + |Ω|) (1 − e2𝑀1𝑡).

(28) 

Substituting (28) into (27), it follows that 
d

d𝑡
𝐺(𝑡) ≥ 2𝑀1e

2𝑀1𝑡 [𝐺(0) − 2
𝑀2
𝑀1

E(0) − |Ω|]

+ 2𝑀2∫
𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠. 

Here is the proof for the first main result: 
We point out that the the main method employed in 
this proof is based on the concavity technique, 
taking into account the idea used in, [26], Theorem 
2.2. 
 
Proof of Theorem 2. We first assume that 𝑢 exists 
in the classical sense on Ω × 0,∞) i.e.,  𝑇max = +∞ 
(The interval of existence of 𝑢 is unbounded, or 𝑢 is 
defined in the whole interval (0, +∞)), and then 
show that this leads to a contradiction. We select an 
𝜑(𝑡) of the following form for 0 < 𝑡 < ∞, 

𝜑(𝑡) = ∫
𝑡

0

∥ 𝑢(𝜏) ∥2
2 d𝜏 

Then 𝜑′(𝑡) = ‖𝑢‖22,                                   (29) 
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we distinguish two cases: 
1.  Case.1 E(𝑢(𝑡)) ≥ 0, for all 𝑡 > 0. Through (14) 
we can choose 𝛽 as such 

1 < 𝛽 <
|Ω|

4E(0)(𝑝1+1)
.                       (30) 

 
By adding 4(𝑝1 + 1)𝛽E(𝑡) − 4(𝑝1 + 1)𝛽E(𝑡), and 
making us (21), (29), and (25) it yields 

𝜑′(𝑡) ≥  

e2𝑀1𝑡 [𝜑′(0) − 2
𝑀2
𝑀1

E(0) − |Ω|] 

+(2
𝑀2
𝑀1

+ 4(𝑝1 + 1)𝛽)E(𝑡)

− 4(𝑝1 + 1)𝛽E(𝑡) + |Ω|

≥ e2𝑀1𝑡 [𝜑′(0) − 2
𝑀2

𝑀1
E(0) − |Ω|]

− 4(𝑝1 + 1)𝛽E(0) + |Ω| 
+4(𝑝1 + 1)𝛽 ∫

𝑡

0
‖𝑢𝑡(. , 𝑠)‖2

2d𝑠,     (31) 
 
Let 𝜓 be an auxiliary function defined as 

𝜓(𝑡) = 𝜑2(𝑡) + 𝜀−1𝜑′(0)𝜑(𝑡) + 𝛾, 
where 𝜀 > 0, is taken small enough such that 

0 < 𝜀 ≤
[𝜑′(0)−2

𝑀2
𝑀1
E(0)−|Ω|]+|Ω|−4(𝑝1+1)𝛽E(0)

(𝑝1+1)𝛽𝜑(0)
,  

and 𝛾 > 0 large enough (if needed), so that            
4𝜀2𝛾 > 𝜑2(0).              (32) 

 
Therefore, 

𝜓′(𝑡) = (2𝜑(𝑡) + 𝜀−1𝜑′(0))𝜑′(𝑡); 
                                                                   (33) 

 
𝜓′′(𝑡) = (2𝜑(𝑡) + 𝜀−1𝜑′(0))𝜑′′(𝑡) + 2(𝜑′(𝑡))2. 

           (34) 
 
From (33), we obtain 
(𝜓′(𝑡))

2
= (2𝜑(𝑡) + 𝜀−1𝜑′(0))

2
(𝜑′(𝑡))2 

= (4𝜑2(𝑡) + 𝜀−2(𝜑′(0))
2
+ 4𝜀−1𝜑(𝑡)𝜑′(0))

× (𝜑′(𝑡))2 
= (4𝜑2(𝑡) + 4𝜀−1𝜑(𝑡)𝜑′(0) + 4𝛾 − 𝛿)(𝜑′(𝑡))

2 
= (4𝜓(𝑡) − 𝛿)(𝜑′(𝑡))2,                (35) 

 
where 𝛿 = 4𝛾 − 𝜀−2(𝜑′(0))

2
> 0, then  

(𝜓′(𝑡))
2
+ 𝛿(𝜑′(𝑡))2 = 4𝜓(𝑡)(𝜑′(𝑡))2. 

                                                                   (36) 
Noting that 

  

∫
𝑡

0

(𝑢𝑡(. , 𝑠), 𝑢)d𝑠 =
1

2
∫
𝑡

0

(
d

d𝑠
‖𝑢‖2

2) d𝑠

=
1

2
‖𝑢(𝑡)‖2

2 −
1

2
‖𝑢0‖2

2. 
 
 
Therefore,  

‖𝑢(𝑡)‖2
2 = ‖𝑢0‖2

2 + 2∫
𝑡

0

∫
Ω

𝑢𝑡(. , 𝑠)𝑢(𝑠)d𝑥d𝑠. 

Using Holder and Young’s inequalities gives 
(𝜑′(𝑡))2 = ‖𝑢(𝑡)‖2

4 = (‖𝑢0‖2
2 +

2∫
𝑡

0 ∫Ω 𝑢𝑡(. , 𝑠)𝑢(𝑠)d𝑥d𝑠)
2
  

≤ (‖𝑢0‖2
2

+ 2(∫
𝑡

0

‖𝑢‖2
2d𝑠)

1

2

(∫
𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠)

1

2

)

2

 

  

≤ ‖𝑢0‖2
4 + 2‖𝑢0‖2

2 (∫
𝑡

0

‖𝑢‖2
2d𝑠

+ ∫
𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠) 

+4(∫
𝑡

0

‖𝑢‖2
2d𝑠)(∫

𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠) 

= ‖𝑢0‖2
4 + 2𝜀−1‖𝑢0‖2

2∫
𝑡

0

‖𝑢𝑡(. )‖2
2d𝑠 

+4𝜑(𝑡)∫
𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠 + 2𝜀‖𝑢0‖2

2𝜑(𝑡). 

(37) 
 
From (34) and (36), we get 
2𝜓′′(𝑡)𝜓(𝑡) = 2(2𝜙(𝑡) + 𝜀−1𝜑(0))𝜑′′(𝑡)𝜓(𝑡) 
+4(𝜑′(𝑡))2𝜓(𝑡)

= 2(2𝜑(𝑡) + 𝜀−1𝜑(0))𝜑′′(𝑡)𝜓(𝑡) 
+(𝜓′(𝑡))

2
+ 𝛿(𝜑′(𝑡))2. 

(38) 
 
Now, from (38), (35), (31) and (37), the following 
estimates ensured: 

2𝜓′′(𝑡)𝜓(𝑡) − (1 + 𝛽)(𝜓′(𝑡))
2 

= 2(2𝜑(𝑡) + 𝜀−1𝜑(0))𝜑′′(𝑡)𝜓(𝑡) 
+𝛿(𝜑′(𝑡))2 − 𝛽(𝜓′(𝑡))

2  
= 2(2𝜑(𝑡) + 𝜀−1𝜑(0))𝜑′′(𝑡)𝜓(𝑡) 
+𝛿(𝜑′(𝑡))2 − 𝛽(4𝜓(𝑡) − 𝛿)(𝜑′(𝑡))2 
= 2(2𝜑(𝑡) + 𝜀−1𝜑(0))𝜑′′(𝑡)𝜓(𝑡)

− 4𝛽𝜓(𝑡)(𝜑′(𝑡))2 
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+𝛿(1 + 𝛽)(𝜑′(𝑡))2 
≥ 2𝜓(𝑡)(2𝜑(𝑡) + 𝜀−1𝜑(0)) × 

(

 
 
2𝑀1e

2𝑀1𝑡 [‖𝑢0‖2
2 − 2

𝑀2

𝑀1
E(0) − |Ω|]

+2𝑀2∫
𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠

)

 
 

 

−4𝛽𝜓(𝑡) × 

(

 
 
‖𝑢0‖2

4 + 2𝜀−1‖𝑢0‖2
2∫

𝑡

0

‖𝑢𝑡(. , 𝑠)‖2,Ω2
2 d𝑠

+2𝜀‖𝑢0‖2
2𝜑(𝑡) + 4𝜑(𝑡)∫

𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠

)

 
 

 

 
Recalling the values of 𝛽 and 𝜀 and taking into 

account that e𝑀0𝑡 > 1, 𝑝1 + 1 > 2, 𝜓 > 0, it result  
2𝜓′′(𝑡)𝜓(𝑡) − (1 + 𝛽)(𝜓′(𝑡))

2 

≥ 4𝛽𝜓(𝑡)(2𝜑(𝑡) + 𝜀−1𝜑(0)) ((𝑝1 +

1)∫
𝑡

0
‖𝑢𝑡(. , 𝑠)‖2

2d𝑠 + (𝑝1 + 1)𝜀𝜑(0)) −4𝛽𝜓(𝑡) × 

(

 
 
‖𝑢0‖2

4 + 2𝜀−1‖𝑢0‖2
2∫

𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠 +

2𝜀‖𝑢0‖2
2𝜑(𝑡) + 4𝜑(𝑡)∫

𝑡

0

‖𝑢𝑡(. , 𝑠)‖2
2d𝑠

)

 
 

≥ 0 
  

Now, in this case we show that 𝑇 cannot be 
infinite, and therefore there is no weak solution all 
the time. 
From Lemma 2, it follows that there exists a 

0 < 𝑡1 < +∞ 
such that 𝜓(𝑡) → ∞   as 𝑡 → 𝑡1, where  

  

0 < 𝑡1 <
2𝜓(0)

(𝛽 − 1)𝜓′(0)
=

2𝛾𝜀

(𝛽 − 1)‖𝑢0‖2
4 < +∞. 

 
Since 𝜓 is continuous with respect to 𝜑, we 

conclude that there exists a 𝑇1 ≤ 𝑡1 such that 
lim
𝑡→𝑇1

∫
𝑡

0
‖𝑢(𝑠)‖2

2d𝑠 = +∞ ⇒ lim
𝑡→𝑇1

sup‖𝑢(𝑡)‖2
2 =

+∞. 
Hence, 𝑢(𝑥, 𝑡) discontinuing at some finite time 

𝑇1, that is to means, 𝑢(𝑥, 𝑡) not exist for all time, i.e. 
𝑢(𝑥, 𝑡) blows up at a time 𝑇1, which will lead to the 
nonexistence result stated in the theorem, then 
𝜑blows up at time 𝑇1 in 𝐿2(Ω)-norm, which 
contradicts. Hence, for the data satisfies (14) any 
solution possesses finite explosion time. 

 
2.  Case 2. Assume that there exists 𝑡0 > 0 such that 
E(𝑢(𝑡0)) < 0, (𝑢(𝑡0) ≠ 0). We define 𝑣(𝑥, 𝑡) =

𝑢(𝑥, 𝑡 + 𝑡0), so 𝐸(𝑣(0)) = 𝐸(𝑢(𝑡0)) < 0. By the 
fact that 𝐸(𝑡) is deceasing in 𝑡, we can get: 
 

𝐸((𝑣(𝑡)) ≤ 𝐸(𝑣(0)) ≤ 0.                         (39) 
 

Define 𝐺(𝑡) = ∫Ω 𝑣
2(𝑥, 𝑡)d𝑥, then we have as in 

(26) 

d

d𝑡
𝐺(𝑡) ≥ −4

(1 + 𝜏 − ∫
𝑡

0
𝑔(𝑠)d𝑠)

1 − ∫
𝑡

0
𝑔(𝑠)d𝑠

E(𝑡) 

+2(1 −
2(1 + 𝜏 − ∫

𝑡

0
𝑔(𝑠)d𝑠)

𝑞1 (1 − ∫
𝑡

0
𝑔(𝑠)d𝑠)

)∫
Ω

|𝑣|𝑞(𝑥)d𝑥 

≥ 2(1 −
2(1+𝜏−∫

𝑡

0
𝑔(𝑠)d𝑠)

𝑞1(1−∫
𝑡

0
𝑔(𝑠)d𝑠)

)∫Ω |𝑣|
𝑞(𝑥)d𝑥.   

 
Then, it follows that:  

𝐺′(𝑡) ≥ 2𝑀1 ∫Ω |𝑣|
𝑞(𝑥)d𝑥.                        (40) 

 
For 𝑞(. ) satisfy (H2), the following embedding 

𝐿𝑞2(Ω) ↪ 𝐿𝑞(.)(Ω) ↪ 𝐿𝑞1(Ω) ↪ 𝐿2(Ω), 
hold. Therefore, from 𝐿𝑞(.)(Ω) ↪ 𝐿2(Ω), we obtain 
that: 
 

∥ 𝑣 ∥2≤ Ce ∥ 𝑣 ∥𝑞(𝑥).                     (41) 
 
Using (12), and (41) from (40), we can get 

𝐺′(𝑡) ≥ 2𝑀1min

{
 
 

 
 (

1

Ce
)
𝑞1

𝑣 ∥2
𝑞1

, (
1

Ce
)
𝑞2

∥ 𝑣 ∥2
𝑞2

}
 
 

 
 

≥ 𝐶5min {𝐺
𝑞1
2 (𝑡), 𝐺

𝑞2
2 (𝑡)} , 

                                                                   (42) 
 
where Ce is a best embedding constant and  

𝐶5 = 2𝑀1min {(
1

Ce
)
𝑞1

, (
1

Ce
)
𝑞2

}. 

 By 𝐺′(𝑡) > 0, so 𝐺(𝑡) ≥ 𝐺(0). We can conclude 
that 

[
𝐺(𝑡)

𝐺(0)
]

𝑞2
2

≥ [
𝐺(𝑡)

𝐺(0)
]

𝑞1
2

, 

that is 
𝐺(𝑡)]

𝑞2
2 ≥ 𝐺(0)

𝑞2−𝑞1
2 [𝐺(𝑡)]

𝑞1
2 .       (43) 

 
Using (43) and (44), we have   

𝐺′(𝑡) ≥ 𝐶5min {𝐺
𝑞1
2 (𝑡), 𝐺(0)

𝑞2−𝑞1
2 [𝐺(𝑡)]

𝑞1
2 }

≥ 𝐶6𝐺
𝑞1
2 (𝑡) 

                                                                   (44) 
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where 𝐶6 = 𝐶5min {1, 𝐺(0)
𝑞2−𝑞1
2 }. Using (44) we 

can derive the following result 

𝐺
𝑞1−2

2 (𝑡) ≥
1

𝐺
2−𝑞1
2 (0) −

𝑞1−2

2
𝐶6𝑡

. 

The above inequality implies that 𝐺(𝑡) blows up at 

finite time 𝑇∗ ≤ 2𝐺
2−𝑞1
2 (0)

(𝑞1−2)𝐶6
, which is a contraction.  

 
3.2  Second Blow-Up Result 
In this subsection, we will address problem (5) by 
establishing a blow-up criterion and obtaining 
bounds for the blow-up time of weak solutions 
through the use of differential inequality techniques. 
For our result, we need to consider the following 
auxiliary functions.  

𝛼(𝑡) = [𝜅 ∥ ∇𝑢(𝑡) ∥2
2+ (𝑔 ∘ ∇𝑢)(𝑡)]

1

2, 
 (45) 

 
and for 𝜀 (a small positive number) and 𝑁 (a precise 
positive constant) to be picked later; 

A(𝑡):= 𝐻1−𝛼(𝑡) + 𝜀∫
Ω

|𝑢(𝑡)|2d𝑥 + 𝜀𝑁E1𝑡,

𝑡 ∈ 0, 𝑇), 
                                                                   (46) 
and 

𝜑(𝑡) = ∫
Ω

|𝑢|𝑞2d𝑥 + (𝑞2 + 1)𝐸(𝑡)

+ (𝑞2 + 1)∫
Ω

1

𝑞(𝑥)
|𝑢|𝑞(𝑥)d𝑥 

                                                                   (47) 
 
Let 𝐵, 𝛼1, 𝛼0, 𝑐∗ and E1 be positive auxiliary 
constants satisfying 

𝑐∗ = max((2𝐵)
𝑞1 , (2𝐵)𝑞2), 𝐵 = √𝜅𝑐∗

−1

𝑞2𝐵1,  

𝛼1 = (
𝑞1
𝑞2
𝐵1
−𝑞2)

1

𝑞2−2

𝛼(0) = 𝛼0 = 𝜅
1

2‖∇𝑢0‖2,    E1 = (
1

2
−
1

𝑞2
)𝛼1

2.

 

                                                                   (48) 
 
The second result of the blow-up is as follows. 
 

Theorem 3 Assuming that 𝑔, 𝑝(. ), and 𝑞(. ) satisfy 

conditions (𝐻1) − (𝐻3) with 𝑞1 > 2. Then the local 

solution of problem (5) under boundary conditions 

satisfying 𝐸(0) < 𝐸1, 𝜅
1

2‖∇𝑢0‖ > 𝛼1 blows up in 

finite time 𝑇∗, which provide the following estimates 

∫
+∞

𝜑(0)

d𝑧

c (𝑧𝛿 + 𝑧
𝛿
𝑞1
𝑞2 + 𝑧 + 𝑧

𝑞1
𝑞2 + 1)

≤ 𝑇∗

≤
1 − 𝛼

𝛼
𝛿1

𝛿2
A

𝛼

1−𝛼(0)
, 

where  
0 < 𝛼 ≤

𝑞1−2

2𝑞1
,                                (49) 

c, 𝛿, 𝛿1, and 𝛿2 are defined in (80), (78), (70) and 
(73), respectively.  
Our desired result depends heavily on the following 
lemma 9. 
 

Lemma 9 Let ℎ: [0, +∞) → ℝ be defined by  

ℎ(𝑡):= ℎ(𝛼) =
1

2
𝛼2 −

𝐵1
𝑞2

𝑞1
𝛼𝑞2 ,     (50) 

 
then ℎ has the following properties: 

(i) ℎ is increasing for 0 < 𝛼 ≤ 𝛼1 and 
decreasing for 𝛼 ≥ 𝛼1, 

            (ii)   lim
𝛼→+∞

ℎ(𝛼) = −∞ and ℎ(𝛼1) = E1, 
            (iii)  E(𝑡) ≥ ℎ(𝛼(𝑡)),  
 
where 𝛼(𝑡) is given in (46), 𝛼1 and E1 are given in 
(49).  
Proof. ℎ(𝛼) is continuous and differentiable in 
[0, +∞),  

ℎ′(𝛼) = 𝛼(1 −

𝐵1
𝑞2𝛼𝑞2−2(𝑡)) {

> 0, 𝛼 ∈ (0, 𝛼1)

< 0, 𝛼 ∈ (𝛼1, +∞),
  

 
which means that 

  
ℎ(𝛼)isstrictlyincreasingin(0, 𝛼1),

ℎ(𝛼)isstrictlydecreasingin(𝛼1, +∞).
 

                                                                   (51) 
 
Then (i) follows. Since 𝑞2 − 2 > 0, we have 
lim
𝛼→+∞

ℎ(𝛼) = −∞. A simple computation yields to 
ℎ(𝛼1) = E1. Then (ii) holds valid. By Lemma 3 

∫Ω |𝑢(. )|
𝑞(𝑥)d𝑥 ≤  

max {‖𝑢‖𝑞(.)
𝑞1 , ‖𝑢‖𝑞(.)

𝑞2 }

≤ 𝑐∗max

(

 
 
(∫

{‖∇𝑢‖2≥1}

|∇𝑢(𝑡)|2d𝑥)

𝑞1

,

(∫
{‖∇𝑢‖2≥1}

|∇𝑢(𝑡)|2d𝑥)

𝑞2

)

 
 

= 𝑐∗ (∫
{‖∇𝑢‖2≥1}

|∇𝑢(𝑡)|2d𝑥)

𝑞2

.

≤ 𝑐∗ (∫
Ω

|∇𝑢(𝑡)|2d𝑥)

𝑞2
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Using (H1), (15) and Lemma 3, we have 

E(𝑡) ≥  
1

2
(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) ×

∥ ∇𝑢(𝑡) ∥2
2+

1

2
(𝑔 ∘ ∇𝑢)(𝑡) 

−
1

𝑞1
∫
Ω

|𝑢(𝑡)|𝑞(𝑥)d𝑥 

≥
1

2
𝜅 ∥ ∇𝑢(𝑡) ∥2

2+
1

2
(𝑔 ∘ ∇𝑢)(𝑡) 

−
1

𝑞1
𝐵𝑞2𝑐∗ (∫

Ω

|∇𝑢(𝑡)|2d𝑥)

𝑞2

 

≥
1

2
[𝜅 ∥ ∇𝑢(𝑡) ∥2

2+ (𝑔 ∘ ∇𝑢)(𝑡)] 

−
𝐵1
𝑞2

𝑞1
[𝜅 ∥ ∇𝑢(𝑡) ∥2

2+ (𝑔 ∘ ∇𝑢)(𝑡)]
𝑞2
2  

=
1

2
𝛼2(𝑡) −

𝐵1
𝑞2

𝑞1
𝛼𝑞2(𝑡) = ℎ(𝛼(𝑡)).   

 
Then (iii) holds true.  
 

Lemma 10 Assuming the conditions in Theorem 8 

are fulfilled, there is a positive constant 𝛼2 > 𝛼1 

such that 
𝛼(𝑡) ≥ 𝛼2 > 𝛼1, 𝑡 ≥ 0;                             (52) 

 
𝜚(𝑢) ≥ 𝐵1

𝑞2𝛼2
𝑞2 ,                                         (53) 

 
where 𝛼1, 𝐵1 and E1 are given in (49).  
Proof. Since E(0) < E1 and ℎ(𝛼) is a continuous 
function, there exist 𝛼2′  and 𝛼2 with 𝛼2′ < 𝛼1 < 𝛼2 
such that ℎ(𝛼2′ ) = ℎ(𝛼2) = E(0) which join with 
Lemma 9 give:  
 

ℎ(𝛼0) ≤ E(0) = ℎ(𝛼2).                 (54) 
 

From Lemma 9(i), we infer that: 
 

𝛼0 ≥ 𝛼2,                                         (55) 
 
so (51) holds for 𝑡 = 0. 
 
Now we prove (53), we proceed by contradiction 
and assume there exist 𝑡∗ > 0 such that 𝛼(𝑡∗) < 𝛼2, 
then we distinguish two cases, 

Case 1. If 𝛼2′ < 𝛼(𝑡∗) < 𝛼2, we know 
through Lemma 9 and (52) that  

ℎ(𝛼(𝑡∗)) > 𝐸(0) ≥ E(𝑡∗), 
which contradicts Lemma 9(iii). 

Case 2. If 𝛼(𝑡∗) ≤ 𝛼2′ , then 𝛼(𝑡∗) ≤ 𝛼2′ <
𝛼2. Setting 𝜆(𝑡) = 𝛼(𝑡) − 𝛼2+𝛼2

′

2
, then 𝜆(𝑡) is a 

continuous function, 𝜆(𝑡∗) < 0 and by applying 
(56), 𝜆(0) > 0. Hence, there exists 𝑡0 ∈ (0, 𝑡∗) such 

that 𝜆(𝑡0) = 0, that means 𝛼(𝑡0) =
𝛼2+𝛼2

′

2
, which 

signifies 
ℎ(𝛼(𝑡0)) > 𝐸(0) ≥ E(𝑡0). 

 
This contradicts to Lemma 9(iii), hence (51) 
follows. By (15), we have  
1

2
[(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2
2+ (𝑔 ∘ ∇𝑢)(𝑡)]

≤ E(𝑡) +
1

𝑞1
∫
Ω

|𝑢(𝑡)|𝑞(𝑥)d𝑥, 

which give 
1

𝑞1
∫Ω |𝑢(𝑡)|

𝑞(𝑥)d𝑥 ≥  
1

2
[(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2
2+ (𝑔 ∘ ∇𝑢)(𝑡)] 

−E(𝑡) ≥
1

2
[𝜅 ∥ ∇𝑢(𝑡) ∥2

2+ (𝑔 ∘ ∇𝑢)(𝑡)] − E(0) ≥

1

2
𝛼2
2 − ℎ(𝛼2) =

𝐵1
𝑞2

𝑞1
𝛼2
𝑞2 ,  

 
then the second inequality in (54) holds. Let 

𝐻(𝑡) = E1 − E(𝑡)for𝑡 ≥ 0.                       (56) 
 
The following lemma hold 
 

Lemma 11 Under the assumptions of Theorem 3, if 

0 ≤ 𝐸(0) < 𝐸1, the functional 𝐻(𝑡) defined in (57) 

satisfies the following estimates: 
0 < 𝐻(0) ≤ 𝐻(𝑡) ≤ ∫Ω

1

𝑞(𝑥)
|𝑢(𝑡)|𝑞(𝑥)d𝑥 ≤

1

𝑞1
𝜚(𝑢), 𝑡 ≥ 0.      (57) 

 Proof. Lemma 3 ensure that 𝐻(𝑡) is nondecreasing 
in 𝑡. Thus 

𝐻(𝑡) ≥ 𝐻(0) = E1 − E(0) > 0, 𝑡 ≥ 0. 
 (58) 

 
By (49) and Lemma 10, we have 
  

E1 −

[
 
 
 
 
1

2
(1 −∫

𝑡

0

𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2
2

+
1

2
(𝑔 ∘ ∇𝑢)(𝑡) ]

 
 
 
 

≤ E1 − [
1

2
(𝜅 ∥ ∇𝑢(𝑡) ∥2

2+ (𝑔 ∘ ∇𝑢)(𝑡))]

= E1 −
1

2
𝛼2(𝑡) = −

1

𝑝2
𝛼1
2 < 0,

 

for all 𝑡 ∈ 0, 𝑇), which gives  
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𝐻(𝑡) = E1  

−[
1

2
(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2
2+

1

2
(𝑔 ∘ ∇𝑢)(𝑡)]

+∫
Ω

1

𝑞(𝑥)
|𝑢(𝑡)|𝑞(𝑥)d𝑥 ≤ ∫

Ω

1

𝑞(𝑥)
| 𝑢(𝑡)|𝑞(𝑥)d𝑥.

 

  ≤ 1

𝑞1
𝜚(𝑢)                                                 (59) 

 
(57) follows from (58) and (59). 
 

Lemma 12 Assume that the conditions in Theorem 3 

hold, then there exists a positive constant 𝐶 such 

that  
∥ ∇𝑢(𝑡) ∥2

2≤ C𝜚(𝑢).                  (60) 
 
for all 𝑡 ∈ 0, 𝑇).  
Proof. By Lemma 10 and 𝛼2 > 𝛼1, we have  

𝜚(𝑢) ≥ 𝐵1𝛼2
𝑞2 > 𝐵1𝛼1

𝑞2−2𝛼1
2 =

𝑞1
𝑞2
𝐵1
1−𝑞2𝛼1

2, 

which combining with (49) imply 
E1 ≤ 𝐵1

1−𝑞2 𝑞2

𝑞1
(
1

2
−

1

𝑞2
) 𝜚(𝑢).         (61) 

 
combining (57), (61) and the definition of 𝐻(𝑡), we 
have 

1

2
𝜅 ∥ ∇𝑢(𝑡) ∥2

2 

≤
1

2
(1 − ∫

𝑡

0

𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2
2 

= E(𝑡) −
1

2
(𝑔 ∘ ∇𝑢)(𝑡) + ∫

Ω

1

𝑞(𝑥)
|𝑢(𝑡)|𝑞(𝑥)d𝑥 

≤ 𝐵1
1−𝑞2

𝑞2
𝑞1
(
1

2
−
1

𝑞2
) 𝜚(𝑢) − 𝐻(𝑡) 

−
1

2
(𝑔 ∘ ∇𝑢)(𝑡) +

1

𝑝1
𝜚(𝑢)  

= (𝐵1
1−𝑞2 𝑞2

𝑞1
(
1

2
−

1

𝑞2
) +

1

𝑞1
) 𝜚(𝑢) − 𝐻(𝑡)  

−
1

2
(𝑔 ∘ ∇𝑢)(𝑡) 

≤ (𝐵1
1−𝑞2 𝑞2

𝑞1
(
1

2
−

1

𝑞2
) +

1

𝑞1
) 𝜚(𝑢).                 (62) 

 
Then the desired result, with 

𝐶 =
(𝐵1

1−𝑞2𝑞2
𝑞1
(1−

2

𝑞2
)+

2

𝑞1
)

𝜅
.  

 
The proof of Theorem 3 is shown below, based on 
the lemmas presented above 
Proof of Theorem 3 .  

       Case 1. If 0 ≤ E(0) < E1, then by 
differentiating (47), we get  

A′(𝑡) = (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 2𝜀∫
Ω

𝑢𝑢𝑡d𝑥

+ 𝑁E1. 

Integrating by parts on Ω, recalling Eq (5), we 
obtain 

−∫
𝑡

0

𝑔(𝑡 − 𝑠)|∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠)∇𝑢(𝑡)d𝑠 

  

=
1

2
𝑔(𝑡)∫

Ω

|∇𝑢|2d𝑥 −
1

2
(𝑔′ ∘ ∇𝑢)(𝑡)

+
1

2

𝑑

𝑑𝑡
(𝑔 ∘ ∇𝑢)(𝑡)

 

−
1

2

𝑑

𝑑𝑡
(∫

𝑡

0

𝑔(𝑠)𝑑𝑠∫
Ω

|∇𝑢|2d𝑥) 

P 
utting (13) in (17), we get 
A′(𝑡) = (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) − 2𝜀 ∥ ∇𝑢(𝑡) ∥2

2 

+𝜀∫
𝑡

0

𝑔(𝑡 − 𝑠)∫
Ω

∇𝑢(𝑡)Δ𝑝(𝑥)𝑢(𝑠)d𝑥d𝑠 

+𝜀∫
Ω

|𝑢(𝑡)|𝑞(𝑥)d𝑥 + 𝜀𝑁E1

= (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀‖𝑢𝑡‖2
2

− 𝜀 ∥ ∇𝑢(𝑡) ∥2
2 

+𝜀∫
𝑡

0

𝑔(𝑡 − 𝑠)∫
Ω

∇𝑢(𝑡)(|∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠)

− ∇𝑢(𝑡))d𝑥d𝑠 

+𝜀∫
𝑡

0

𝑔(𝑡 − 𝑠)∫
Ω

|∇𝑢(𝑡)|2d𝑥d𝑠 

+𝜀 ∫Ω |𝑢(𝑡)|
𝑞(𝑥)d𝑥 + 𝜀𝑁E1.        (63) 

 
Employing Young inequality, we can obtain:  

|∫
𝑡

0

𝑔(𝑡 − 𝑠)∫
Ω

∇𝑢(𝑡)(|∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠)

− ∇𝑢(𝑡))d𝑥d𝑠| 

≤ 𝜏 ∫
𝑡

0
𝑔(𝑡 − 𝑠) ∥ |∇𝑢|𝑝(𝑥)−2∇𝑢(𝑥, 𝑠) −

∇𝑢(𝑡) ∥2
2 d𝑠 +

1

4𝜏
∫
𝑡

0
𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥2

2  

= 𝜏(𝑔 ∘ ∇𝑢)(𝑡) +
1

4𝜏
∫
𝑡

0

𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥2
2 

for any 𝜏 > 0                (64) 
 

By substituting (65) in (64) and then applying 
(15), we can choose 𝜏 > 0 such that 0 < 𝜏 < 𝑞1

2
, we 

can deduce  
A′(𝑡) ≥  

(1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀‖𝑢𝑡‖2
2 − 𝜀 ∥ ∇𝑢(𝑡) ∥2

2 

+∫
𝑡

0

𝑔(𝑠)d𝑠 ∥ ∇𝑢(𝑡) ∥2
2− 𝜏𝜀(𝑔 ∘ ∇𝑢)(𝑡) 
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−
1

4𝜏
𝜀 ∫

𝑡

0

𝑔(𝑠)d𝑠 ×

∥ ∇𝑢(𝑡) ∥2
2+ 𝜀𝑝1(𝐻(𝑡) − E1)

+
𝑞1
2
𝜀(𝑔 ∘ ∇𝑢)(𝑡) 

+
𝑞1

2
𝜀 (1 − ∫

𝑡

0
𝑔(𝑠)d𝑠) ∥ ∇𝑢(𝑡) ∥2

2  

≥ (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀 (
𝑞1
2
− 𝜏) (𝑔 ∘ ∇𝑢)(𝑡) 

+𝜀(𝑁 − 𝑝1)E1 + 𝜀𝑝1𝐻(𝑡) 

+𝜀 [(
𝑞1
2
− 1) − (

𝑞1
2
− 1 +

1

4𝜏
)∫

∞

0

𝑔(𝑠)d𝑠]

∥ ∇𝑢(𝑡) ∥2
2. 

(65) 
By combining (11) and (66), we obtain: 

A′(𝑡) ≥ (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝑎1𝜀(𝑔 ∘ ∇𝑢)(𝑡)

+𝑎2𝜀 ∥ ∇𝑢(𝑡) ∥2
2+ 𝜀(𝑁 − 𝑞1)E1 + 𝜀𝑞1𝐻(𝑡),

 

(66) 
Where 

𝑎1 = (
𝑞1
2
− 𝜏) > 0, 

𝑎2 = (
𝑞1
2
− 1) − (

𝑞1
2
− 1 +

1

4𝜏
)∫

∞

0

𝑔(𝑠)d𝑠 > 0. 

obviously 𝐻(𝑡) ≥ 

E1 −
1

2
∥ ∇𝑢(𝑡) ∥2

2−
1

2
(𝑔 ∘ ∇𝑢)(𝑡) +

1

𝑞2
𝜚(𝑢), 

(67) 
 
Using (67) in (66) and rewriting 𝑞1 as 𝑞1 = 𝑞1 −
2𝑎3 + 2𝑎3,with 0 < 𝑎3 < 𝑚𝑖𝑛 (𝑎1, 𝑎2,

𝑞1

2
) produce 

A′(𝑡) ≥ (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) 
+𝜀(𝑎1 − 𝑎3)(𝑔 ∘ ∇𝑢)(𝑡) + 𝜀(𝑎2 − 𝑎3) ∥ ∇𝑢(𝑡) ∥2

2 
+𝜀(𝑁 − (𝑞1 − 2𝑎3))E1 + 𝜀(𝑞1 −

2𝑎3)𝐻(𝑡) + 𝜀
2

𝑞2
𝑎3𝜚(𝑢).  

 
At this point, we choose 𝑁 that is sufficiently large 
so that  

𝑁 − (𝑞1 − 2𝑎3) > 0. 
 
After determining a fixed value for 𝑁, we select a 
small enough 𝜀 to meet the necessary conditions 

A(0) = 𝐻1−𝛼(0) + 𝜀∫
Ω

|𝑢0|
2d𝑥 > 0,

𝑠𝑖𝑛𝑐𝑒 𝐻(0) > 0. 
                                                                   (68) 
Then there is a constant 𝛿1 satisfying   

0 < 𝛿1 ≤ min{

𝑞1
2
+ 1 − 𝑎3, 𝑎1 − 𝑎3

,
2

𝑞2
𝑎3, 𝑞1 − 2𝑎3

} , 

                                                                   (69) 
and  

A′(𝑡) ≥ 𝛿1𝜀[‖𝑢𝑡‖2
2 + (𝑔 ∘ ∇𝑢)(𝑡)+

∥ ∇𝑢(𝑡) ∥2
2+𝐻(𝑡) + 𝜚(𝑢)], 

                                                                   (70) 
 
which combining with (69) infer  

A(𝑡) ≥ A(0) > 0, ∀𝑡 ∈ 0, 𝑇). 
Choosing 𝜀 > 0 such that 𝜀 < 1

𝑇
(
𝛼2

𝛼1
)
𝑞2

, recalling 
Lemma 10 and then, we have 

|𝜀𝑁E1𝑇|
1

1−𝛼 ≤ (
𝛼2
𝛼1
)
𝑝2
𝑁E1 ≤

𝑁E1

𝐵1𝛼1
𝑝2
𝜚(𝑢). 

                                                                   (71) 
By utilizing Holder’s and Young’s inequalities, 

and keeping in mind the embedding 𝐿𝑞(.)(Ω) ↪
𝐿2(Ω), it can be observed that: 

|∫Ω |𝑢|
2d𝑥|

1

1−𝛼 ≤∥ 𝑢 ∥2

1

1−𝛼 ‖𝑢‖2

1

1−𝛼  

≤ (1 + |Ω|)
𝑞1−2

𝑞1(1−𝛼) ∥ 𝑢 ∥
𝑞(𝑥)

1

1−𝛼 ‖𝑢‖2

1

1−𝛼

≤ 𝑐4 (‖𝑢‖2
2+∥ 𝑢 ∥

𝑞(𝑥)

2

1−2𝛼)

≤ 𝑐4‖∇𝑢‖2
2 + 𝑐4max

{
 
 

 
 
(∫

Ω

|𝑢|𝑞(𝑥)d𝑥)

2

(1−2𝛼)𝑞1

,

(∫
Ω

|𝑢|𝑞(𝑥)d𝑥)

2

(1−2𝛼)𝑞2

}
 
 

 
 

≤ (𝑐4C + 𝑐5)∫
Ω

|𝑢|𝑞(𝑥)d𝑥,

 

                                                                   (72) 
where:   

𝑐4 = (1 + |Ω|)
𝑞1−2

𝑞1(1−𝛼)

𝑐5 = 𝑐4max{
(𝑞1𝐻(0))

2

(1−2𝛼)𝑞1
−1

, (𝑞1𝐻(0))
2

(1−2𝛼)𝑞2
−1
} ,

C as in  (61).

 

 
Let 𝛿2 be a positive constant such:  

𝛿2 = 2
1/(1−𝛼)+1max(1, 𝜀

1

1−𝛼, 𝑐4C, 𝑐5 +
𝑁E1

𝐵1𝛼1
𝑝2
) . 

 (73) 
 
Using (47), (72), (73), and Cauchy-Schwarz’s 
inequality, 

A
1

1−𝛼(𝑡) ≤ 21/(1−𝛼)+1

(

 𝐻(𝑡) + 𝜀
1

1−𝛼 |∫
Ω

|𝑢|2d𝑥|

1

1−𝛼

+𝜀
1

1−𝛼(𝑁E1𝑇)
1

1−𝛼 )

 

≤ 𝛿2[𝐻(𝑡) + 𝜚(𝑢)].

 

(74) 
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We join (72) and (73) with (71), it result 

A′(𝑡) ≥
𝛿1

𝛿2
A

1

1−𝛼(𝑡), for all 𝑡 ≥ 0,     (75) 
 
After integrating (65) over the interval (0, 𝑡), we 
can deduce that: 
 

A
𝛼

1−𝛼(𝑡) ≥
1

A
𝛼
1−𝛼(0)−

𝛼

1−𝛼

𝛿1
𝛿2
𝑡
.               (76) 

 
Consequently, A(𝑡) blows up in a finite time 𝑇̂,  

𝑇̂ ≤
1 − 𝛼

𝛼
𝛿1

𝛿2
A

𝛼

1−𝛼(0)
. 

 
Since A(0) > 0, (77) shows that lim𝑡→𝑇∗A(𝑡) = ∞, 
where 𝑇∗ = 1−𝛼

𝛼
𝛿1
𝛿2
A

𝛼
1−𝛼(0)

. This ends the proof. 

Case 2.If 𝐸(0) < 0, we can use Lemma 12 
by setting 𝐻(𝑡) = −𝐸(𝑡) to obtain a result similar 
to Lemma 12. Before this, we had 0 < −𝐸(0) =

𝐻(0) ≤ 𝐻(𝑡) and 𝐻(𝑡) ≤ 1

𝑞1
𝜚(𝑢). By taking 𝑁 = 0 

in (47) and using the same approach as in Case1, we 
can reach our desired outcome. 

We still need to determine an upper bound of 
the blowing-up time, we can calculate it as follows; 
Using (15), (16) and Lemma 3, the derivative of 
(48) give: 

𝜑′(𝑡) = 𝑞2∫
Ω

|𝑢|𝑞2−2𝑢𝑢𝑡d𝑥 + (𝑞2 + 1)𝐸
′(𝑡) 

+
𝑞2 + 1

𝑞1
∫
Ω

|𝑢|𝑞(𝑥)−2𝑢𝑢𝑡d𝑥 ≤ 𝑞2∫
Ω

|𝑢|2𝑞2−2d𝑥 

+𝑞2 ∫Ω |𝑢𝑡|
2d𝑥 + (𝑞2 + 1)𝐸

′(𝑡)  

+(𝑞2 + 1)
2∫

Ω

|𝑢|2𝑞(𝑥)−2 +∫
Ω

|𝑢𝑡|
2d𝑥 

≤ 𝑞2∫
Ω

|𝑢|2𝑞2−2d𝑥

+ (𝑞2 + 1)
2

(

 
∫
Ω

|𝑢|2𝑞1−2d𝑥

+∫
Ω

|𝑢|2𝑞2−2d𝑥
)

  

≤ 𝑞2∫
Ω

|𝑢|2𝑞2−2d𝑥 

+(𝑞2 + 1)
2 (
2𝑞1 − 2

2𝑞2 − 2
∫
Ω

|𝑢|2𝑞2−2d𝑥

+ ∫
Ω

|𝑢|2𝑞2−2d𝑥 +
𝑞2 − 𝑞1
𝑞2 − 1

) 

= (𝑞2 +
𝑞1 + 𝑞2 − 2

𝑞2 − 1
(𝑞2 + 1)

2)∫
Ω

|𝑢|2𝑞2−2d𝑥 

+(𝑞2 + 1)
2 𝑞2−𝑞1

𝑞2−1
                               (77) 

 

To estimate the term on the right-hand side of 
the inequality above, we need to analyze the 
following three scenarios 

Case.1. 𝑛 < 3. The inequality embedding 
has led us to  

  

∫
Ω

|𝑢|2𝑞2−2d𝑥 ≤ 𝐵̂2𝑞2−2 ∥ ∇𝑢 ∥2
2(𝑞2−1)

≤ 𝐵̂2𝑞2−2 (∥ ∇𝑢 ∥2
2

+∫
Ω

|𝑢|𝑞2d𝑥)

𝑞2−1

. 

          

Case.2. 2 < 𝑞2 <
2𝑛

𝑛−1
, 𝑛 ≥ 3. Using Hölder’s and 

embedding inequalities, we have 
 

∫Ω |𝑢|
2𝑞2−2d𝑥 = ∫Ω |𝑢|

2𝑞2−4𝑢2d𝑥  

≤ (∫
Ω

|𝑢|𝑛(𝑞2−2)d𝑥)

2

𝑛

(∫
Ω

|𝑢|
2𝑛

𝑛−2d𝑥)

1−
2

𝑛

≤ |Ω|
2

𝑛
−
2(𝑞2−2)

𝑞2 ∥ 𝑢 ∥ 2𝑛

𝑛−2

2 (∫
Ω

|𝑢|𝑞2d𝑥)

2(𝑞2−2)

𝑞2

≤ 𝐵1
2|Ω|

2

𝑛
−
2(𝑞2−2)

𝑞2 ∥ ∇𝑢 ∥2
2 (∫

Ω

|𝑢|𝑞2d𝑥)

2(𝑞2−2)

𝑞2

≤ 𝐵1
2|Ω|

2

𝑛
−
2(𝑞2−2)

𝑞2 (∥ ∇𝑢 ∥2
2+∫

Ω

|𝑢|𝑞2d𝑥)

3𝑞2−4

𝑞2

.

 

                 

Case.3.
2𝑛

𝑛−1
≤ 𝑞2 <

2𝑛−2

𝑛−2
, 𝑛 ≥ 3. Through the 

simulation of Case 2, we have obtained the 
following results.  

∫
Ω

|𝑢|2𝑞2−2d𝑥 = ∫
Ω

|𝑢|2𝑞2−4𝑢2d𝑥

≤ 𝐵2|Ω|
2

𝑛
−
2(𝑞2−2)

𝑝2 (∥ ∇𝑢 ∥2
2

+∫
Ω

|𝑢|𝑞2d𝑥)

3𝑞2−4

𝑞2

. 

Hence, we get : 

∫
Ω

|𝑢|2𝑞2−2d𝑥 ≤ 𝑐∗ (∫
Ω

|𝑢|𝑞2d𝑥 + ∫
Ω

|∇𝑢|2d𝑥)

𝛿

. 

                                                                   (78) 
Where 𝛿 > 1 equals 𝑞2 − 1,

3𝑞2−4

𝑞2
 for the cases 

mentioned above. 
Using (48) and E(𝑡) definition, we can see that: 
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∫
Ω

|∇𝑢|2d𝑥 ≤
2

𝜅
E(0) +

2

𝜅

1

𝑞1
∫
Ω

|𝑢|𝑞(𝑥)d𝑥

≤
2

𝜅
E(0) +

2

𝜅

𝑐6
𝑞1
(𝜑(𝑡) + 𝜑

𝑞1
𝑞2(𝑡)) 

                                                                   (79) 
 

where 𝑐6 = (1 + |Ω|)
𝑞2−𝑞1
𝑞1 . Joining (78)-(79), 

taking into account that 𝐸(𝑡) + ∫Ω
1

𝑞(𝑥)
|𝑢|𝑞(𝑥)d𝑥 ≥

0, which means 𝜑(𝑡) ≥ ∫Ω |𝑢|
𝑞2d𝑥; we get 

𝜑′(𝑡) ≤ 𝑐∗ (𝑞2 +
𝑞1+𝑞2−2

𝑞2−1
(𝑞2 + 1)

2) ×  

(∫
Ω

|𝑢|𝑞2d𝑥 + ∫
Ω

| ∇𝑢|2d𝑥)

𝛿

 

+(𝑞2 + 1)
2
𝑞2 − 𝑞1
𝑞2 − 1

 

≤ 𝑐∗ (𝑞2 +
𝑞1 + 𝑞2 − 2

𝑞2 − 1
(𝑞2 + 1)

2) × 

(

2

𝜅
E(0) +

(1 +
2𝑐6
𝜅𝑞1

)𝜑(𝑡) +
2

𝜅

𝑐6
𝑞1
𝜑
𝑞1
𝑞2(𝑡)

)

𝛿

+ (𝑞2 + 1)
2
𝑞2 − 𝑞1
𝑞2 − 1

≤ c (𝜑𝛿(𝑡) + 𝜑
𝑞1
𝑞2
𝛿
(𝑡) + 𝜑(𝑡) + 𝜑

𝑞1
𝑞2(𝑡) + 1) ,

 

Where 

C=2𝛿−1max((𝑐∗ (𝑞2 +
𝑞1+𝑞2−2

𝑞2−1
(𝑞2 +

1)2)
2

𝜅
E(0))

𝛿
, 

(𝑐∗ (𝑞2 +
𝑞1+𝑞2−2

𝑞2−1
(𝑞2 + 1)

2) (1 +
2𝑐6

𝜅𝑞1
)
𝛿
),  

.(2𝑐6
𝜅𝑞1
)
𝛿
, (𝑞2 + 1)

2 𝑞2−𝑞1

𝑞2−1
)                          (80) 

 
By the definition of 𝑇∗;  

lim
𝑡→𝑇∗

∫
Ω

|𝑢|𝑞2d𝑥 = +∞, 

we obtain that  

∫
+∞

𝜑(0)

d𝑧

c (𝑧𝛿 + 𝑧
𝛿
𝑞1
𝑞2 + 𝑧 + 𝑧

𝑞1
𝑞2 + 1)

≤ 𝑇∗. 

 
The proof is complete.  
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4   General Comments and Issues 
This paper is devoted to studying new class of 
mixed pseudo parabolic p(.)-Laplacian type 
equation with viscoelastic term on a bounded and 
regular domain (5), which that equations appear in 
dynamics of viscoelastic structures, besides the most 
common case is the evolution p(.)-Laplace equation, 
where the exponent p(.) is dependent on the external 
electromagnetic field.  
    We provide a blow-up threshold resulting in a 
finite time of solutions, yielding a new blow-up 
criterion. The upper bound estimate of the blow-up 
time is also derived. We show that blow-up may 
occur under appropriate smallness conditions on the 
initial datum, in which case we also establish a 
lower bound estimate.  
   The significance of this study is that it will 
determine a new criterion and upper and lower 
bounds estimate of the blow-up time, which have 
not stayed vocalised in either case for the value of 
q(.) (constant or variable) for this type of equation. 
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