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Abstract: - The squeezing flow of an electrically conducting Casson fluid has been occupied in the report. The 
governing magneto-hydrodynamic equations transformed into highly nonlinear ordinary differential equations. 
The Hermite wavelet technique (HWM) resolves the consequential equation numerically. The outcomes of the 
Hermite wavelet and numerical approaches are remarkably identical. Through this, it is confirmed that we can 
solve such problems with the help of the Hermite wavelet method. Flow properties involving material 
parameters are additionally mentioned and defined in the element with the graphical resource. It is determined 
that magnetic subject is used as a managed occurrence in several flows because it normalizes the drift property. 
In addition, squeeze range theatre is a crucial responsibility in these sorts of issues, and an increase in squeeze 
variety will increase the velocity outline. 
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1  Introduction 
During the end of the 20th century, the lavish and 
philosophical theory of wavelets was formed due to 
the efforts of mathematicians, physicists, and 
engineers. The idea of wavelets is constantly 
sophisticated to attempt various problems arising in 
different branches of sciences and engineering. 
Wavelet theory is one of the current up-and-coming 
facts in applicable mathematics. It has applications 
in subsequent fields, such as mathematical 
modeling, image processing, signal analyses, 
computer science, and applied sciences. The 
primary goal of this research is to provide a forum 
for multidisciplinary conversation among scientists 
working on diverse projects related to wavelets, 
fluid mechanics, and their applications. The wavelet 
techniques to solve nonlinear equations in fluid 
problems are among the recently created 
methodologies for the numerical solution of an 
equation that has received much attention, [1], [2], 
[3], [4], [5]. 

Many mechanical system paintings are beneath the 
principle of poignant pistons wherein plates show 
off the squeezing motion that is normal to their 
surfaces. Hydraulic lifters, engines, electric 
vehicles, and also have this clutching glide in a 
number of their components. Because sensible 
consequence squeezing goes with the flow between 
two horizontal parallel plates, its biological 
packages are also of identical significance. Flow 
interior nasogastric tubes and syringes are likewise 
compressing flows, [6].  

Initial work on squeezing flows can be named to 
Stefan, who provided the fundamental method of 
these flows underneath the lubrication hypothesis 
[7]. Following him, many researchers have 
acknowledged that they are more at ease with 
squeezed flows and have achieved much technical 
study to understand those flows. Several 
contributions are noted in imminent strains [8], [9]. 
After that, exceptional scientists made numerous 
attempts to apprehend squeezing flows with an 
improved technique. Earlier research on squeezing 
flows has been based on the Reynolds equation, 
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whose lack of a few suitcases has been proven, [10]. 
Due to efforts of, [11], [12], greater supple and 
helpful well-known similarity transforms are 
availing a position. These transforms convert the 
Navier–Stokes equation into a highly nonlinear 4th-
order normalized ordinary differential equation. 

Undertaking non-Newtonian electrically fluid 
flow is an especially significant occurrence. In most 
realistic situations, we must cope with the glide of 
electrically conducting fluid, revealing exclusive 
behaviors that affect magnetic forces. In those 
instances, the MHD characteristic of the glide 
likewise had to be well thought-out. The Homotopy 
solution for 2D MHD squeezing float between 
horizontal parallel plates has been decided with the 
aid of, [13]. Mass and heat transfer for squeezing 
drift between parallel plates using the HAM is 
investigated, [14]. Mainly of sensible fashions, the 
fluids worried aren't effortless Newtonian. Highly 
complex rheological homes of non-Newtonian 
fluids cannot be studied through an available 
version. Different arithmetical models have been 
used to study diverse kinds of non-Newtonian 
fluids. One of the important models is the Casson 
fluid version. The main well-matched system to 
reproduce blood-like fluid flow can be studied in, 
[15]. It is obvious from the creative writing review 
that the squeezing drift of a Casson fluid among the 
plates shifting ordinary to their possess floor is but 
to be investigated. Due to the intrinsic highly 
nonlinearity of the governing equations, the fluid 
glide actual results are extremely unusual. Still, 
significant oversimplification assumptions had been 
obligatory where they may be obtainable. Those 
exaggeratedly obligatory suppositions may not be 
second-hand for greater sensible flows. 
Nevertheless, numerous analytical methods have 
been urbanized to address this obstacle that have 
typically been used in recent times. The variation of 
parameters technique (HWM) is the currently 
developed numerical strategy to remedy exclusive 
problems. Several motivating fluid flow problems 
are studied with the help of different wavelet 
methods, [16], [17], [18], [19], [20]. 

As per the present literature review, the above 
model is not considered by any mathematicians with 
the wavelet method. This motivates us to explain 
such equations via HWT. HWM is second-hand in 
the current work for the solution of model highly 
nonlinear equations. The calculated outputs are 
compared with the results in the literature through 
graphs and tables. 
 

 

 

2   Problem Formulation 
The squeezing flow of an electrically conducting 
Casson fluid is explained and given in, [6] 
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     (2) 
 
The relevant parameters of equations (1) and (2) 
 

 Parameter Notation 
Velocity function F  
Casson fluid parameter   
Squeeze number S  
Magnetic number M1 

 
2.1  Process of Hermite Wavelet Matrix  
The Hermite wavelet is an incessant polynomial 
basis wavelet, and its approximations are discussed 
in, [21]. 
 
2.1.1 Preparation of Operational Matrix by 

Integration 
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Integrate the above first nine basis about x limit 
from 0 to x, then express as a linear combination of 
Hermite wavelet basis as: 
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Next, the double integration of the above nine bases 
is given below. 
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The triple integration of the above nine bases is 
given by, 
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The fourth integration of the above nine basis is 
given by, 
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x x x x

x dxdxdxdx x x  
 
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 
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x x x x

x dxdxdxdx x x  
    

  
 

   

  
Hence, 

9 9 9 9
0 0 0 0

( ) ( ) ( )
x x x x

x dxdxdxdx H x x  
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where, 

19 5 3 1 1
1536 384 512 768 6144

7 7 1 1 1
480 512 192 1536 30720

1 1 1 1 1
1152 320 512 1152 92160
17 19 3 5 1
336 384 160 1536 215040

55 13 7 1 1
9 9 768 224 384 960 430080

53 65 2311
216 256 112 1152
497 133
480

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0

H

   

   

   


  

  1,99

81 29 1,10
144 256 672

127 193 37 103
132 160 72 768

1,114277 773 3351211
288 88 160 432

1,12

0
0
0
0
0

1 ( ), ( ) 774144
1 ( )0 0 0 0 0 1290240

0 0 0 0 0 1 ( )
20275200 0 0 0 0

1 ( )
3041280

xx

x

x

x









  



 
 
 
 
 
 
     
 
 
 
 
 

 



















 
 
 



 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2023.18.21 Preetham M. P., Kumbinarasaiah S., Raghunatha K. R.

E-ISSN: 2224-347X 224 Volume 18, 2023



Analysis of the operational matrix method studied in 
detail, [3], [21]. 
 
2.1.2  Method of Solution 
Let us assume that 

)()(  Tiv Af                            (3) 
integrate Eq. (3) concerning  from 0 to  , we get, 

 )()()0()(   PAff T .   
 

(4) 
Integrate (4) concerning from 0 to   

 )()()0()(   PAff T         (5) 
Integrate (5) concerning  from 0 to   
𝑓 ′(𝜂) = 𝑓 ′(0) +

𝜂2

2
𝑓‴(0) + 𝐴𝑇[𝑃″𝜑(𝜂) + 𝜑″̄[𝜂]] (6) 

Integrate (6) concerning  from 0 to   
𝑓(𝜂) = 𝜂𝑓 ′(0) +

𝜂3

6
𝑓‴(0) + 𝐴𝑇[𝑃‴𝜑(𝜂) + 𝜑‴̄[𝜂]]    (7) 

Put 1 in (6) and (7) we get 
𝑓‴(0) = 3 [𝐴𝑇 (𝑃‴𝜑(1) + 𝜑‴̄()𝑇(𝑃″𝜑(1) + 𝜑″̄(1)))] 

      )1()1(1)1()1(
2
3)1()1()0(   PAPAPAf TTT

(8) 
Substitute these in (4) to (7) 

    )()()1()1((1)1()1(3)(   PAPAPAf TTT

(9) 
      )()()1()1(1)1()1(3)(   PAPAPAf TTT

                                                                      (10) 
      

      )()()1()1(1)1()1(
2

3

)1()1(1)1()1(
2
3)1()1()(

2










PAPAPA

PAPAPAf

TTT

TTT

 
(11)

 
      

      )()()1()1(1)1()1(
2

)1()1(1)1()1(
2
3)1()1()(

3


















PAPAPA

PAPAPAf

TTT

TTT

                                                                      (12) 
Fit (3), (10), (11), (12), and (13) in (3) and collocate 
the resultant equation by subsequent collocation 

points Mi
M

i
i ...,,2,1

2
12




 . Then, solve this 

system with the Newton-Raphson method, which 
yields unknown coefficients. Substitute these 
coefficients in (4.10), which gives the Hermite 
wavelet numerical solution. 
 
 
3  Results and Discussions 
The Hermite wavelet method is functional to solve 
the nonlinear differential equations arising in non-
Newtonian heat transfer problems, and the 
disadvantages and advantages of this method are 

discussed, [16]. Acceptable comparison is made 
with the earlier published work and validates the 
correctness of the numerical results, as shown in 
Table 1 (Appendix) and Table 2 (Appendix). The 
effects of the Casson fluid parameter , squeeze 
number S , and the magnetic variety at radial (

( )F  ) and axial ( ( )F  ) velocities are 
characterized.  
a) Plates moving apart  0S   

In appendix section the Figure 1, Figure 2, Figure 3, 
Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, 
describe how the squeeze number S  behaves when 
the plates move apart. Figure 1 (Appendix) shows 
the properties of increasing values of S  on the axial 
speed ( )F  . It is evident increasing S  effects in a 
decreased axial velocity. The property of increasing 
S  on radial pace is shown in Figure 2 (Appendix). 
For rising S , an increase  ( )F  is pragmatic 
0.5 1  ; nevertheless, there is a decrease in 

( )F  is for 0 0.5  . Figure 3 (Appendix) 
depicts the behavior of   on ( )F  . An increase in 
  slows down the axial flow. The effects of 
developing the Casson fluid parameter on radial 
velocity are proven in Figure 4 (Appendix). 
Increasing the Casson fluid parameter decreases 

( )F  for 0 0.5   , and an upward thrust in 

( )F  is determined for 0.5 1  .  
In Figure 5, Figure 6, Figure 7, Figure 8 

(Appendix), the effects of 1M  on ( )F  and ( )F   
are explained. It may be determined from Figure 5 
(Appendix) and Figure 6 (Appendix) that for 
increasing magnetic number  1M , and there may be 
a decrease in ( )F  for somewhat lower values of 
squeeze quantity S ; while for ( )F  , the growth in 

1M  offers a velocity sketch comparable to the case 
of increasing S . Figure 7 and Figure 8 (Appendix) 
are pinched to investigate the results of magnetic 
area for barely better values of squeeze wide variety 
S . The conduct of radial and axial velocities 
remainder nearly much lower S .  
b) Collapsing movement of the plates  0S   

In appendix section the Figure 9, Figure 10, Figure 
11, Figure 12, Figure 13, Figure 14, Figure 15, 
Figure 16 are for the case when collapsing 
movement of the plates. In Figure 9 (Appendix), 
tremendous axial acceleration is found for declining 
S . Figure 10 (Appendix), represents the results of 
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decreasing S on radial velocity. It is understandable 
that ( )F  increases with the squeeze charge for 
0 0.4  . A surprising exchange in ( )F  is 
found while 0.4 1  . Figure 11 and Figure 12  
(Appendix) show the impacts of  on radial and 
axial velocities, respectively. The same conduct is 
determined for  and  S when plates are 
approaching together.  

Figure 13, Figure 14, Figure 15, Figure 16 
(Appendix) gift properties' of the float while plates 
are approaching collectively  0S   and the 1M is 
changing. In Figure 13 (Appendix), the results of 
increasing 1M on ( )F  are shown, and a lower in 

( )F  is discovered for larger values to some extent 
S . Figure 14 (Appendix) gives us a diagrammatical 
exhibition of ( )F  for increasing 1M . It represents 

( )F  decreases for 0 0.4  however for 
0.4 1  it behaves in any other case, i.e., for 
increasing values of magnetic quantity, there's a 
speedy growth in radial speed of the liquid. A 
comparable behavior is determined for growing 
magnetic wide variety while 10S    has more 
well-known consequences. Likewise, in Figure 16 
(Appendix), a pretty speedy modification can be 
located for increasing values of the magnetic 
quantity. Also, the backflow can come out with a 
lower squeeze variety, and a physically powerful 
magnetic field is needed to decorate the stream, as 
proven in Figure 16 (Appendix). 
 
 
4  Conclusion 
An electrically conducting non-Newtonian fluid 
flow between two parallel plates is studied using the 
Hermite wavelet method. The basic equations are 
condensed using a similarity model to a single 
regular, highly nonlinear ordinary differential 
equation. Considering two cases, i.e., One while 
plates are transferring apart and the other when 
plates are approaching nearer. HWM is applied to 
resolve the basic equation that goes with the flow. 
The properties of up-and-coming known parameters 
on glide are verified graphically, and a complete 
dialogue is provided. A numerical answer is also 
acquired using the RK-four method, VPM, to 
evaluate the effects received by HWM, and some of 
the answers determine remarkable conformity. It 
can be seen from the figures that a robust magnetic 
field may be second-hand to decorate the float while 
plates are approaching jointly, and squeeze variety 

increases the velocity sketch for both cases, i.e., 
while plates are approaching nearer and while plates 
are leaving aside. Further, Squeeze flow is studied 
by considering different types of non-Newtionain 
fluids. 
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APPENDIX 
 

 
Fig. 1: Variation of ( )F  for different values of S . 

 

 
Fig. 2: Variation of ( )F  for different values of S . 
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Fig. 3: Variation of ( )F  for different values of  . 
 

 
Fig. 4: Variation of ( )F  for different values of  . 

 
Fig. 5: Variation of ( )F  for different values of 

1 . 
 

 
Fig. 6:. Variation of ( )F  for different values of 

1 . 
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Fig. 7: Variation of ( )F  for different values of 

1 . 
 

 
Fig. 8: Variation of ( )F  for different values of 1

. 

 
Fig. 9: Variation of ( )F  for different negative 
values of S . 
 

 
Fig. 10: Variation of ( )F  for different negative 
values of S . 
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Fig. 11: Variation of ( )F  for different values of 
 . 
 

 
Fig. 12: Variation of ( )F  for different values of 
. 

 
Fig. 13:. Variation of ( )F  for different values of 

1 . 
 

 
Fig. 14: Variation of ( )F  for different values of 

1 . 
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Fig. 15: Variation of ( )F  for different values of 

1 . 

 
Fig. 16: Variation of ( )F   for different values 
of 1 . 

 

Table 1. Comparison between the VPM, HWM, and numerical results for 4.0 and .11 M  


 
5S   5S    

)(F
 

)(F   )(F  )(F   

VPM HWM Numerical VPM HWM Numerical VPM HWM Numerical VPM HWM Numerical 

0 0 0 0 1.359393 1.359393 1.359393 0 0 0 1.677216 1.677216 1.677216 

0.1 0.139081 0.139081 0.139081 1.348452 1.348452 1.348452 0.166839 0.166839 0.166839 1.650804 1.650804 1.650804 

0.2 0.276358 0.276358 0.276358 1.357517 1.357517 1.357517 0.328444 0.328444 0.328444 1.572994 1.572994 1.572994 

0.3 0.409918 0.409918 0.409918 1.310148 1.310148 1.310148 0.479861 0.479861 0.479861 1.447971 1.447971 1.447971 

0.4 0.537628 0.537628 0.537628 1.239953 1.239953 1.239953 0.616685 0.616685 0.616685 1.282424 1.282424 1.282424 

0.5 0.657014 0.657014 0.657014 1.142869 1.142869 1.142869 0.735286 0.735286 0.735286 1.085120 1.085120 1.085120 

0.6 0.765125 0.765125 0.765125 1.013414 1.013414 1.013414 0.832992 0.832992 0.832992 0.866366 0.866366 0.866366 

0.7 0.858383 0.858383 0.858383 0.844480 0.844480 0.844480 0.908218 0.908218 0.908218 0.637365 0.637365 0.637365 

0.8 0.932408 0.932408 0.932408 0.627096 0.627096 0.627096 0.960506 0.960506 0.960506 0.409532 0.409532 0.409532 

0.9 0.981819 0.981819 0.981819 0.350136 0.350136 0.350136 0.990529 0.990529 0.990529 0.193804 0.193804 0.193804 

1.0 1 1 1 0 0 0 1 1 1 0 0 0 

 
Table 2. Numerical values and HWM for skin friction coefficient. 

S    M  
)1(11 F 









  

[6]

 

)1(11 F 








  

HWM 
-5.0   -6.298708 -6.298700 
-3.0   -8.320727 -8.320731 
-1.0   -9.970376 -9.970303 
1.0   -11.376240 -11.376224 
3.0   -12.610669 -12.610675 
5.0   -13.718095 -13.718073 
-3.0 0.1  -30.991005 -30.991088 

 0.3  -10.873387 -10.873323 
 0.5  -6.771549 -6.771515 

3.0 0.1  -35.260196 -35.260155 
 0.3  -15.149577 -15.149564 
 0.5  -11.078736 -11.078727 

-3.0 0.4 2 -13.101572 -13.101587 
  4 -14.908219 -14.908243 
  6 -17.501183 -17.501128 

3.0 0.4 2 -9.038196 -9.0381932 
  4 -11.531983 -11.531954 
  6 -14.819321 -14.819334 
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