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Abstract: In this article, we use the functional variational method to solve the Burgers equation with
an additional time-dependent variable coefficient. The main advantage of the proposed method over
other methods is that it allows to obtain more new solutions of the equation. Among the solutions
obtained, new soliton solutions should be noted, which are of great importance for revealing the internal
mechanism of physical phenomena. Three-dimensional graphs of solutions are constructed using the
mathematical program Matlab. For a better understanding of the physical properties of some of the
resulting solutions, their graphical representations are shown. This method is effective for finding exact
solutions to many other similar wave equations.
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1 Introduction
The Burger equation is a fundamental partial dif-
ferential equation in fluid mechanics. It is also
a very important model used in several areas
of applied mathematics such as heat conduction,
acoustic waves, gas dynamics and traffic flow[1].
In[2], the Burgers equation was first introduced in
1915. This equation is expressed in the following
basic form

ut + uux − uxx = 0.

It was later proposed by Burger as one of
the classes of equations describing mathematical
models of turbulence[3]. In 1951, Cole studied the
Burgers equation and gave a theoretical solution
to this equation[4].

In[5], the Burgers equation with variable coef-
ficient

ut + α(t)uux − β(t)uxx = 0

is investigated, where α(t) and β(t) are given con-
tinuous differentiable functions. These variable
coefficients of Burgers equation with the nonlin-
ear α(t) and dispersion β(t) can model propaga-
tion of a long shock-wave in a two-layer shallow
liquid. In addition, this equation appears in ion
acoustic waves in plasma[6], traffic flow[7, 8], dy-
namics of soil water[9], shock formation in elastic
gas[10], turbulence in fluid dynamics[11, 12].

The shock wave, multi-shock solitons and
voltera integral type wave solutions[13, 14] for
the Burgers equation with variable coefficient are
obtained by using Cole-Hopf transformation[15].
Zhang obtained not trivial and time dependent
conservation laws with the presence of admissible
transformation and Lie symmetry for the Burgers
equation with variable coefficient[16]. Christov
obtained the kink or shock type traveling waves
solution of the Burgers equation with variable co-
efficient by using the Crank-Nicolson numerical
scheme.

To find exact solutions to nonlinear evolu-
tion equations, many direct methods are used.
For example: tanh-function method[17], func-
tional variable method[18], Hirota method[19],
Backlund transform method[20], G/G′ expansion
method[21] and extended tanh-method[22].

In this paper, we consider the Burgers equa-
tion with additional time-dependent variable co-
efficient

ut + h1(t)uux − h2(t)uxx + ω(t)ux = 0, (1)

where u(x, t) is an unknown function, x ∈ R, t ≥
0, h1(t) ̸= 0, h2(t) ̸= 0 and ω(t) ̸= 0 are given
continuous differentiable functions.

The main aim of this paper is to find the exact
soliton solutions of the Eq.1 via functional vari-
able method. The main advantage of the pro-
posed method over other methods is that it al-
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lows to obtain more new solutions of the equa-
tion. Among the solutions obtained, new soliton
solutions should be noted, which are of great im-
portance for revealing the internal mechanism of
physical phenomena. Three-dimensional graphs
of solutions are constructed using the mathemat-
ical program Matlab. For a better understanding
of the physical properties of some of the result-
ing solutions, their graphical representations are
shown. This method is effective for finding exact
solutions to many other similar wave equations.

2 Description of the method
The basic idea of the functional variable method
proposed in[23]. Let us consider the nonlinear
differential equation with independent variables
x, y, z, t and a dependent variable u

P (u, ut, ux, uy, uz, uxy, uyz, uxz, ...) = 0, (2)

where P is a polynomial in u(t, x, y, z, ...) and
its partial derivatives.

The following transformation

ξ =
p∑

i=0

αiχi + δ, (3)

is used for the new wave variable.
Now, we can introduce the following transfor-

mation for the travelling wave solution of Eq.2

u(χ0, χ1, ...) = u(ξ), (4)

and the chain rule

∂u

∂χi
= αi

du

dξ
,

∂2u

∂χi∂χj
= αiαj

d2u

dξ2
, .... (5)

After this transformation, the Eq.2 is trans-
formed into an ordinary differential equa-
tion(ODE) of the form

Q(u, u′, u′′, u′′′, ...) = 0, (6)

where Q is a polynomial in u(ξ) and its total
derivatives, while u′ = du

dξ .

Let us make a transformation in which the un-
known function u is considered as a functional
variable of the form

u′ = F (u), (7)

then, the solution can be found by the relation∫
du

F (u)
= ξ + C, (8)

Some successive differentiations of u in terms
of F are given as

u′′ = dF (u)
du

du
dξ = dF (u)

du F (u) = 1
2
d(F 2(u))

du ,

u′′′ = 1
2
d2(F 2(u))

du2

√
F 2(u),

u(IV ) = 1
2

[
d3(F 2(u))

du3 F 2(u) + d2(F 2(u))
du2

d(F 2(u))
du

]
,

........................................................................
(9)

The Eq.6 can be reduced in terms of u, F and
its derivatives upon using the expressions of Eq.7
and Eq.9 into Eq.2 gives

R(u,
dF (u)

du
,
d2F (u)

du2
,
d3F (u)

du3
, ...) = 0. (10)

After integration, Eq.10 provides the expres-
sion of F (u) and this, together with Eq.7, give ap-
propriate solutions to the being considered prob-
lem.

3 Algorithm for finding
solutions

Let us consider the Burgers equation with addi-
tional time-dependent variable coefficient

ut + h1(t)uux − h2(t)uxx + ω(t)ux = 0. (11)

This equation appears in many physical prob-
lems, including the behavior of waves in nonlin-
ear optics, plasma or liquids, water waves, ion-
acoustic waves in collisions, and less commonly
in plasma. The first term ut represents the evo-
lution term and the second represents the disper-
sion term.

The wave variable

ξ = a(t) + b(t)x (12)

will convert Eq.11 to the following form
u′t + (at(t) + bt(t))u

′
ξ + h1(t)b(t)uu

′
ξ−

−h2(t)b
2(t)u′′ξ + ω(t)b(t)u′ξ = 0, (13)

where a(t) and b(t) are an unknown time-
dependent functions, to be determined later.

Let a(t), b(t), h1(t), h2(t) and ω(t) are con-
stant functions in Eq.11, that is, a(t) = a, b(t) =
b, h1(t) = h1, h2(t) = h2 and ω(t) = ω. In this
case, the following transformation

ξ = a+ bx. (14)

is used in Eq.11 to get an ordinary differential
equation of the form

h1buu
′
ξ − h2b

2u′′ξ + ωbu′ξ = 0. (15)
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Integrating Eq.15, we have

h1b

2
u2 − h2b

2u′ξ + ωbu = 0. (16)

From Eq.16 follows the expression for the func-
tion u′ξ:

u′ξ = su+ nu2, (17)

where s = ω
h2b

, n = h1

2h2b
.

Now we move on to the question of determin-
ing unknown functions a(t) and b(t). To do this,
we search the solution of Eq.11 in the form

u(t, ξ) =
m∑
k=0

qk(t)Φ
k(ξ), (18)

where Φ satisfies Eq.19

Φ′ = λΦ+ µΦ2, (19)

where λ and µ are free parameters and m is an
undetermined integer and qk(t) are coefficients to
be determined later.

One of the most useful ways to obtain the m
parameter is in Eq.18 is the homogeneous balance
method. Substituting Eq.18 into Eq.13 and by
making balance between the linear term u′′ξ and

the nonlinear term uu′ξ, we will get that 2m+1 =
m+ 2, this in turn gives m = 1, and the solution
Eq.18 takes the form

u(t, ξ) = q0(t) + q1(t)Φ(ξ). (20)

Now, we substitute Eq.20 into Eq.13 and set
each coefficient of Φk (Φ′)p (k = 0, 1, 2 and p =
0, 1 ) to zero to obtain a set of algebraic equations
for q0(t), q1(t), a(t) and b(t):

q0t
(t) = 0, q1t

(t) = 0,
h1(t)b(t)q1(t)− 2µh2(t)b

2(t) = 0,
at(t) + bt(t)x+ h1(t)b(t)q0(t)−
−λh2(t)b

2(t) + ω(t)b(t) = 0.

(21)

Solving the system of algebraic equations, we ob-
tain

q0(t) = const, q1(t) = const, (22)

b(t) = q1(t)
2µ

h1(t)
h2(t)

, a(t) =
∫ t
0(λh2(τ)b

2(τ)−

−bτ (τ)x+ h1(τ)b(τ)q0(τ)− ω(τ)b(τ))dτ. (23)

Putting determined parameters q0(t), q1(t),
a(t) and b(t) into Eq.20 and taking into account
Eq.12 and Eq.19 we get the soliton solution of
Eq.1:

u(x, t) = Acth

(
a(t) + b(t)x

2

)
, (24)

where b(t) = q1(t)h1(t)
2µh2(t)

, q0(t) = −A = const,

q1(t) = −2A = const, A > 0,

a(t) =
∫ t
0(λh2(τ)b

2(τ)−bτ (τ)x+h1(τ)b(τ)q0(τ)−
−ω(τ)b(τ))dτ.

4 Example
We illustrate the application of algorithm to solv-
ing the eq.11. Exact soliton solution of the
eq.11 can be defined explicitly for exact values
of h1(t) = t, h2(t) = t, ω(t) = −2t, λ = 1, µ = 1.
In this case, the soliton solution of the eq.11 has
the form

u(x, t) = cth

(
t2 + x

2

)
. (25)

This solution of Eq.11 is verified and 3D
plots of the solutions obtained using Matlab
mathematical software are shown. Soliton wave
solutions are an important class of solutions
to nonlinear partial differential equations, since
many nonlinear partial differential equations have
been found to have different soliton wave solu-
tions(Figure 1.).

Figure 1: Soliton wave solution of the eq.11 for
h1(t) = t, h2(t) = t, ω(t) = −2t, λ = 1, µ = 1.

5 Conclusion
In this work, the functional variational method
is successfully used to solve the Burgers equation
with additional variables and time-dependent co-
efficients. Soliton solutions of this equation and
three-dimensional graphs of the resulting solu-
tions are found. The main advantage of the
proposed method over other methods is that it
gives more accurate traveling wave solutions. It
is concluded that exact solutions are of great im-
portance for revealing the internal mechanism of
physical phenomena.
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