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Abstract: - Pipe flow problems deal with flows within tubes and are studied through Fluid Dynamics models.
When considering pipe flow problems, turbulence often needs to be taken into account. Unfortunately, turbulence
gives rise to difficulties in the computation of the approximated solution to such pipe flow problems, due to
ill-conditioning. We propose an original stabilisation strategy based on Tikhonov regularisation for ill-posed
problems. Some analytical insights on the applicability of this strategy are given, and its effectiveness is shown
by a numerical experiment where the results of the proposed method are compared with the ones of a well-known
solving strategy and an empirical solution for the axial velocity.
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1 Introduction
Pipe flows are internal fluid flows occurring inside
pipes. This is a relevant branch of Fluid Dynamics,
characterised by complex phenomena that sometimes
are even not fully understood both from analytical
and numerical point of view. Challenging pipe flow
problems from real world applications are usually
characterised by other difficulties, such as multiphase
flows, [1], [2], turbulent flows [3], [4], [5], flows with
cavitation [6], [7], [8], pulsatile flows, [9], [10], [11],
transient flows [12], [13], non-Newtonian flows [2],
[14]. These problems normally require numerical
procedures that are properly refined depending on
the characteristics of the problem itself. The interest
in pipe flows studies is due to their connection
to relevant real-life applications. For instance,
the transportation of goods or material through a
pipe is referred to as pipeline transport. Pipelines
are employed for crude and refined petroleum,
fuels (oil, natural gas and biofuels), liquid foods,
sewage and slurry. Pipelines are also useful
for the transport of drinking or irrigation water
over large distances. In district heating systems,
heated water or pressurised hot water or more
rarely steam are delivered into insulated pipes. An
important issue correlated to pipeline transportation
is the internal and external corrosion due to the
transported material, external agents and biofouling,
which lead to pipe damages and consequently
dangerous accidents or fatalities. Hence, the
interest in preventing and mitigating corrosion is
interdisciplinary and involves many fields such as
Fluid Dynamics, Chemistry and Biology, [15], [16],

[17], [18]. Another important application of pipe
flows is the study of the human cardiovascular
system. Such system is made of pipes with multiple
branches in which a complex non-Newtonian fluid,
i.e., the blood, circulates. The blood vessels are
living organs sensitive to blood cells, thus their
compliance impacts on the hemodynamic conditions
and vice-versa. For instance, normal arterial flow
is laminar, with secondary flows generated at curves
and branches, [9]. The study of blood flow
is challenging from a theoretical point of view,
because it involves pulsatile flows at the edge of
turbulence. Moreover, numerical simulations of
hemodynamics in the blood vessel can yield an
accurate understanding of this kind of flow, which
means the possibility to develop tools for early
prediction and diagnosis of hemodynamic diseases,
[2], [19], [20]. Another important application of
pipe flows is heat exchangers. They are widely used
in space heating and cooling, refrigeration, power
stations, chemical plants and oil refineries. Due
to the transition to a green and renewable energy
system in the last decades, increasing attention has
been paid to geothermal heat exchangers addressed
to heat and cool spaces. In particular, the fluid flow
into the single device and the relative heat exchange
with the surrounding ground have been studied both
numerically, [3], and experimentally, [21], [22], as
well as geothermal fields with several devices have
been investigated in terms of optimal performance in
the long term, [23], [24], [25].

Pipe flow problems arising from real-world
applications often deal with turbulence, which
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is hard to address both from a theoretical and a
computational point of view. A turbulent flow is still
fully described by the Navier-Stokes equations, but
their numerical solution requires high computational
costs that are usually concretely impractical. Thus
specific models are usually considered for the
approximation of such turbulent flows. The classical
computational models can be gathered into three
kinds: Statistical Turbulence Modellings (STM),
Large Eddy Simulations (LES), Direct Numerical
Simulations (DNS). The STM approach, [26],
makes the important phenomenological features
of turbulent flows accessible by describing only
the flow mean behaviour in such a way that
the energy effects are preserved. The resulting
system of equations is usually referred to as
Reynolds Averaged Navier-Stokes (RANS). The
LES approach, [26], fully solves the relevant
large turbulent scales whereas models the small
isotropic scales. Therefore, LES approach is usually
more accurate and of wider applicability, though
computationally more expensive than the RANS
approach. An interesting comparison between the
performance of RANS and LES turbulent models
is provided in [27], for flows through rough pipes.
Finally, the DNS approach, [28], [29], computes the
numerical solution of the Navier-Stokes equations
without the need for any additional turbulence model.
Thus it provides a complete analysis of the flow,
even if the corresponding approximation schemes are
usually computationally demanding when applied to
real-world problems.

The use of the DNS approach not only requires
the availability of high-performance computational
resources but often leads to difficulties in the
computation of the solution, because of instability
issues, [30], [31], [32]. Hence, stabilisation strategies
should be applied to the discretised problem. In
this paper, the DNS approach is applied to a pipe
flow problem arising from the efficiency analysis
of geothermal heat exchangers. In particular, the
unsteady Navier-Stokes equations for a viscous,
incompressible and Newtonian fluid are considered
and discretised in space by means of the Galerkin
finite element method and in time by an implicit finite
difference scheme, [3]. The resulting system shows
instability issues that cause an initial blow-up of the
solution and consequently, the direct computation
becomes unreliable. To overcome this difficulty, we
propose a stabilisation strategy based on the Tikhonov
regularisation. The Tikhonov regularisation usually
deals with ill-posed problems in the sense of
Hadamard, that is no solution exists, or at least one
solution exists but it is not unique, or the solution
exists and is unique, but does not continuously
depend on the data, namely the initial and boundary

conditions. This latter case corresponds to unstable
solutions, meaning that a small perturbation of
initial-boundary data gives rise to an arbitrarily large
perturbation of the solution at some point of the
domain at a finite distance from the boundaries.
This fact is of primary interest in the study of
ill-posed problems, [33]. The typical example
of an ill-posed problem is given by a Fredholm
integral equation of the first kind, where the compact
operator has singular values converging to zero.
Such ill-posedness has consequences in the numerical
treatment of the problem since classical discretisation
methods usually end up in ill-conditioned problems.
To overcome this instability issue, regularisation
methods are applied and a stable approximate solution
of ill-posed problems is obtained. The Tikhonov
regularisation is based on a simple stabilisation
scheme: given an equation for a compact linear
and injective operator A, the inverse of this
operator is substituted with (αI + A∗A)−1A∗,
where α > 0 is a proper parameter, I is the
identity operator and A∗ is the adjoint operator of
A. In this paper, a similar Tikhonov scheme is
used, with A equal to the Navier-Stokes operator.
The effectiveness of this strategy is numerically
proven by showing comparisons with a well-known
empirical turbulent profile and OpenFOAM results.
Finally, such a regularisation problem is part of
an applied scenario of broad interest. In fact,
it is driven by a clear applied aim which is the
optimisation of a single geothermal exchanger, which
in turn paves the way to the optimisation of a
geothermal field with several devices. Naturally,
the final goal of such optimisation processes is to
provide an efficiency study of a renewable energy
system with wide applicability. Nevertheless, the
applicability of such a technique is not limited to
the geothermal case but it has a direct impact on
all the real-world problems that can be formalised
as forced-convective problems for Newtonian fluids.
Moreover, the context of applicability can be
even greater with proper adjustments, including for
instance large-scale pipeline transport systems or the
cardiovascular system, where a non-Newtonian fluid
and the interaction between blood and tissue must be
considered.

The paper has the following structure. In
Section 2, the analytical formulation and the
considered numerical approximation of a pipe flow
problem are described. In Section 3, the stabilisation
strategy for an effective computation of the solution is
introduced. In Section 4, the numerical results of the
proposed solving strategy are shown and compared
with empirical results and results obtained with
different numerical techniques. Finally, in Section 5,
some conclusions and future developments are
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provided.

2 The Pipe Flow Problem
We describe the mathematical formulation of the fluid
flow problem in a pipe, which is given by the unsteady
Navier-Stokes equations for viscous, incompressible
and Newtonian fluids. The discretisation scheme is
obtained by the Galerkin finite element method, [34],
for the space variable, while temporal discretisation is
based on a finite difference method. In Section 2.1,
the mathematical model for the fluid flow is
described; in Section 2.2, the discretisation scheme
is derived and the resulting linear system is shown.

2.1 The Formulation of the Flow Problem
The mathematical formulation of the flow problem
through a three-dimensional region Ω is given in
detail, then is applied in case Ω is a pipe. Let
Ω ⊂ R3 be the bounded open set, that in the
following will be the mathematical representation of
the pipe. Let x = (x1, x2, x3)

T ∈ Ω be the
spatial variable, t ∈ [0, t̄] be the time variable
and t̄ > 0 be the time of the flow observation;
let u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T ∈ R3

be the fluid velocity and P (x, t) the ratio between
the pressure and the density of the fluid (henceforth
we refer to it simply as the pressure of the fluid).
These functions are related through the well-known
Navier-Stokes equations:

∂u
∂t

(x, t)− 1

Re
∆u(x, t) + (u · ∇)u(x, t)+

+∇P (x, t) = 0, x ∈ Ω, 0 < t < t̄, (1)
∇ · u(x, t) = 0, x ∈ Ω, 0 < t < t̄, (2)

where ∇ denotes the gradient operator and ∆ the
laplacian operator, Re = ρUD/µ is the Reynolds
number, ρ, µ are the density and the viscosity,
respectively, of the carrier fluid which is supposed
incompressible, and U,D are the flow characteristic
velocity and the pipe diameter, respectively. In
particular, Eq. (1) derives from the momentum
balance and Eq. (2) is the continuity equation for
the mass balance, see, [34], [35], for a detailed
presentation of these equations.

For its solution, problem (1),(2) must be equipped
with suitable boundary and initial conditions. Indeed,
the pressure P (x, t) can be determined up to a
constant because it appears as a Lagrangian multiplier
associated to the divergence-free constraint (2), see,
[34], for details. When Ω is a pipe, let Γ be the
boundary of Ω, we assume it is divided into three
parts, as in Fig. 1: the inlet face Γin, where the fluid
enters the pipe, the outlet face Γout, where the fluid
exits, and the wall surface Γw, which is indeed the
pipe wall. More clearly, Γin,Γout and Γw have empty

Fig. 1:     The pipe with the relevant boundary
components. The picture is not scaled uniformly
along different directions.

two by two intersection and Γ = Γin ∪ Γout ∪ Γw,
moreover the closure of Ω is Ω̄ = Ω ∪ Γ. The
following conditions are considered:

u(x, t) = β(x), x ∈ Γin, 0 < t ≤ t̄, (3)
1

Re

∂u
∂n̂

(x, t)− P (x, t)n̂ = 0,

x ∈ Γout, 0 < t ≤ t̄, (4)
u(x, t) = 0, x ∈ Γw, 0 < t ≤ t̄, (5)
u(x, 0) = α(x), x ∈ Ω ∪ Γ, (6)

where 0 is the three-dimensional null vector, n̂ is the
outward unit normal with respect to the boundary Γ,
α is the initial velocity and satisfies the compatibility
condition on the boundary, β is the inlet velocity.
Equations (1)-(6) define the flow problem considered
in the following of this paper.

2.2 The Numerical Solution of the Flow
Problem

To solve the flow problem formalised in (1)-(6), it
is necessary to discretise it. Here we propose an
approximation scheme based on the Galerkin method
with a finite element basis. In particular, the domain
Ω̄ is discretised by a tetrahedral mesh. The set
V = {v1, v2, ..., vNN

} of the nodes of this mesh is
composed by the four vertices of each tetrahedron
and the six middle points of its edges. We denote
with H = {h1, h2, ..., hNH

} the set of the indices of
interior or outlet nodes, so vh ∈ Ω ∪ Γout, h ∈ H;
B = {b1, b2, ..., bNB

} the set of the indices of nodes in
Γin ∪ Γw; G = {g1, g2, ..., gNG

} the set of the indices

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2025.20.3 Nadaniela Egidi, Josephin Giacomini, Pierluigi Maponi

E-ISSN: 2224-347X 22 Volume 20, 2025



of the vertices in Ω ∪ Γout; C = {c1, c2, ..., cNC
} the

set of the indices of the vertices in Γin ∪ Γw. We
note that NN = NH + NB and J = H ∪ B =
{1, 2, ..., NN} is the set of the indices of all nodes in
Ω̄; finally,K = G∪C is the set of the indices of all the
vertices in Ω̄ and its cardinality is NK = NG +NC .

The detailed procedure for the discretisation of
problem (1)-(6) is reported in Appendix A.

For later convenience, we write here the
discretised system (24),(25), obtained in Appendix A,
in a compact matrix form. In particular, given
Nt > 0,∆t = t̄/Nt, and tn = n∆t, n = 0, 1, ..., Nt,
then for n = 0, 1, . . . , Nt − 1

(
MH + SH +NH(tn)

)
uHi (tn+1)+

+ (LH
i )T P(tn+1) =

−
(
MB + SB +NB(tn)

)
uBi (tn+1)+

+M ui(tn), i = 1, 2, 3

LH
1 uH1 (tn+1) + LH

2 uH2 (tn+1)+

+ LH
3 uH3 (tn+1) =

−
(
LB
1 uB1 (tn+1) + LB

2 uB2 (tn+1)+

+ LB
3 uB3 (tn+1)

)
,

(7)

(8)

where all the matrices M,S,N(tn), Li, i = 1, 2, 3,
are defined in formulas (30)-(33) of Appendix A,
the unknown vectors at time tn+1, uHi (tn+1), i =
1, 2, 3,P(tn+1) are defined in formulas (26),(27),
respectively, the already computed vectors at time
tn ui(tn), i = 1, 2, 3, and the known vectors
on the boundary at time tn+1 uBi (tn+1), i =
1, 2, 3, occurring in the known terms are defined in
formulas (28),(29), respectively.

We denote by An the coefficient matrix of (7),(8),
that is

An =


QH

n 0 0 (LH
1 )T

0 QH
n 0 (LH

2 )T

0 0 QH
n (LH

3 )T

LH
1 LH

2 LH
3 0

 , (9)

whereQH
n =MH +SH +NH(tn). Then the system

to solve at each time step is

Anxn+1 = b, (10)

where

xn+1 =

uH1 (tn+1)
uH2 (tn+1)
uH3 (tn+1)
P(tn+1)


is the unknown vector and b is the known vector
made of the right-hand-side of system (7),(8).
System (10) represents the discretisation scheme of

problem (1)-(6), and its solution defines the numerical
approximation of the velocity field and the pressure
field. We observe that this system is based on
the linearisation (23), so the corresponding velocity
solution may be a rough approximation of the real
velocity field. A fixed-point iterative strategy usually
provides a satisfactory refinement of the solution at
each time step, consisting in a repeated solution of the
linear system until a stop criterium is satisfied. More
precisely, let xn+1,0 be the solution of

Anxn+1,0 = b.

This solution is used as initial guess of the
following recursive procedure: from xn+1,ν−1, ν =
1, 2, . . . , the matrix An+1,ν−1 is computed by using
uHi (tn+1,ν−1) in the construction of the matrix NH

(see Equation (32)), and xn+1,ν is computed as
solution of

An+1,ν−1xn+1,ν = b.

This procedure terminates when the stop criterion
∥xn+1,ν −xn+1,ν−1∥2 < ε is verified for a prescribed
tolerance ε > 0, where ∥ · ∥2 is the Euclidean
norm. However, the solution of this system is not
a trivial task, in fact, the corresponding coefficient
matrix is not positive-definite, not symmetric, it
has a high sparsity pattern and a zero block on
the main diagonal corresponding to Equation (8);
moreover, the system is ill-conditioned for high
Reynolds numbers. Therefore the computation of the
solution requires the usage of stabilisation techniques,
especially when turbulent flows are considered.

3 The Stabilisation Strategy
We propose to compute the solution of linear
systems (10) by using a stabilisation technique
based on the Tikhonov regularisation. This
is a regularisation method commonly used for
ill-posed problems in the sense of Hadamard. The
flow problem under consideration is based on the
Navier-Stokes operator, which has a quite different
nature with respect to problems for the compact
integral operators usually solved by the Tikhonov
regularisation. Nevertheless, turbulence strongly
influences the dynamic of the flow and creates
instability in the problem, as divergent solutions,
which can be seen as a kind of ill-posedness. In
fact, when turbulence increases, the Reynolds
number is high, so the second-order diffusive part
of Equation (1) is dominated by the first-order
advective part. It follows the difficulty in the
prescription of the boundary conditions when the
first order term dominates. Despite the relation
between turbulent flows and ill-posedness deserves
further investigations, in the limit Re→ ∞, hence in
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a very high turbulent state, problem (1)-(6) becomes
ill-posed because the given boundary conditions are
inappropriate and should be prescribed in accordance
to the nature of the resulting advective problem,
[36]. From a numerical point of view, turbulence
has an impact on the conditioning of the discretised
Navier-Stokes equations, in particular, problem (10)
is ill-conditioned when a fully turbulent state arises.

We illustrate the Tikhonov regularisation on
problem (1),(2) by means of the corresponding
discretised problem (10), where the flow problem
is already reduced to a finite-dimensional problem.
The modified Tikhonov functional that we propose as
stabilisation strategy for solving problem (10) is

∥Anx− b∥2 + ∥Λ1J1x∥2 + ∥Λ2J2x∥2, (11)

where Λ1J1 and/or Λ2J2 are non-singular and

J1 =

M
H 0 0 0
0 MH 0 0
0 0 MH 0
0 0 0 I

 , (12)

J2 =

S
H 0 0 0
0 SH 0 0
0 0 SH 0
0 0 0 0

 , (13)

Λ1 =

D
1
1 0 0 0
0 D2

1 0 0
0 0 D3

1 0
0 0 0 D4

1

 , (14)

Λ2 =

D
1
2 0 0 0
0 D2

2 0 0
0 0 D3

2 0
0 0 0 D4

2

 , (15)

with Di
1, D

i
2, i = 1, 2, 3, 4, diagonal matrices

containing the non-negative Tikhonov parameters and
I identity matrix of order NK . The functional in (11)
differs from the common Tikhonov functional, [33],
for the presence of two distinct Tikhonov matrices, J1
and J2, and consequently, for the presence of multiple
regularisation parameters that constitutes the diagonal
matrices Λ1 and Λ2. Such parameters differ varying
the diagonal block and so the velocity components
as well as pressure have an ad-hoc stabilisation.
From the Tikhonov regularisation theory, finding the
minimum of the Tikhonov functional is equivalent to
finding the solution of a proper regularisation scheme,
[33]. In particular, the following theorem holds.
Theorem 1. Let A be the matrix in (9) and let
Ji,Λi, i = 1, 2, matrices as in (12)-(15). Then
for each b ∈ RNH+NK there exists a unique x̄ ∈
RNH+NK such that

∥Ax̄− b∥2 + ∥Λ1J1x̄∥2 + ∥Λ2J2x̄∥2 =

= inf
x

(
∥Ax− b∥2 + ∥Λ1J1x∥2 + ∥Λ2J2x∥2

)
.

The minimum point x̄ is given by the unique solution
of equation(
ATA+ JT

1 (Λ1)
2 J1 + JT

2 (Λ2)
2 J2

)
x = ATb. (16)

Proof. See Appendix B.

We note that, for the proposed Tikhonov
regularisation, the regularised solution of (16)
converges to the original solution of Equation (10),
as the regularisation parameters in Λ1,Λ2 tend to
zero. Considering also that the regularisation is done
at each time step, this implies that the convergence of
the Galerkin numerical scheme remains unaffected.
The choice of the optimal regularisation parameters
in Λ1,Λ2 is a critical phase and in general it can be
made by the discrepancy principle, [33]. Here, we
consider an easier approach. Roughly speaking, they
must be chosen small enough to obtain only a slightly
perturbed solution of the normal equations of (10) and
sufficiently large to obtain a well-conditioned linear
system. In other words, both accuracy and stability of
the solution must be taken into account: the accuracy
is conveyed by small regularisation parameters, the
stability instead by large ones. The optimal choice is
the one that makes a compromise between accuracy
and stability, meaning that both the residual and
the regularised solution are minimised, as stated in
Theorem 1. As usual in regularisation strategies, the
parameters are selected by a trial-and-error procedure
or by using discrepancy principles, [37], [38], in
accordance with some a-priori information on data
error and on the solution xn. So, in this paper we
show that a proper choice of the parameters can
effectively stabilise the computation of turbulent
flows. Future works have to define efficient
strategies for choosing optimal parameters. Finally,
it is worth noting that linear system (16) has also
favourable computational properties. In fact, the
action of this matrix can be computed efficiently
by using the sparsity of the original coefficient
matrix (9). Besides, such coefficient matrix is also
positive-definite and symmetric thus the solution of
system (16) can take advantage of algebraic solvers
for symmetric positive-definite matrices.

4 Numerical Results
We show some results obtained by the proposed
method applied to turbulent pipe flows, considering
the real case of a geothermal exchanger. In
Section 4.1, details about the setup of the numerical
simulations are given. In Section 4.2, the results
of the proposed stabilisation strategy are shown
and compared with heuristic results on turbulent
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pipe flows and a solving strategy used by the
well-known Computational Fluid Dynamics software
OpenFOAM.

4.1 Numerical Framework
The domain Ω corresponds to a pipe with diameter
D = 0.032 m and length L = 0.314 m. The
corresponding discretised domain consists in 11761
tetrahedral elements and 2976 vertices, with mean
element side of 5.9 ·10−3. Over this mesh, we choose
the following two finite element bases ψj , j ∈ J,
and ϕk, k ∈ K, for the velocity u and the pressure
P , respectively: ψj is the unique quadratic function
on each tetrahedron such that ψj(vl) = δj,l for all
j, l ∈ J , where δ·,· is the Kronecker symbol; ϕk
is the unique linear function on each tetrahedron
such that ϕk(vl) = δk,l for all k, l ∈ K. Note that
these functions are continuous in Ω and continuously
differentiable in each tetrahedron, see, [39], for
a detailed description of these bases and their
construction. Moreover, this choice, consisting
in a basis for pressure having at least one degree
less than the one for the velocity, guarantees
the Ladyzhenskaya-Brezzi-Babuška condition,
which can be seen as a stability criterion for the
discretisation scheme, [39].

In problem (1)-(6), we suppose a null initial inner
fluid velocity, α(x) = 0. Instead, in the following
we simulate two cases, for which the inlet boundary
condition prescribes a constant and uniform fluid
velocity: in the first case β(x) = (0, 0, 1)T ; in the
second caseβ(x) = (0, 0, 5)T . In addition, the carrier
fluid is water and its characteristics are considered
at a reference temperature of about 300 K, [40]: the
density ρ = 9.9651 · 102 kg/m3 and the viscosity
µ = 8.5384 · 10−4 kg/m·s. Thus, the Reynolds
number for each considered case is: 1. 3.7 · 104, 2.
1.9 · 105.

Regarding the numerical parameters, we consider:
a time step ∆t = 10−3 and the number of time
steps Nt = 300. The solution of linear system (16)
is computed by Gaussian elimination with partial
pivoting, and tolerance of the fixed-point iterative
is ε = 10−5. In particular, the chosen Tikhonov
parameters for the first considered case, β(x) =
(0, 0, 1)T , are

(D1
1)

2
h,h = (D2

1)
2
h,h = 10−8,

(D3
1)

2
h,h = 10−10 exp

(
−∥vh − c∥2

0.003

)
+ 10−13,

(D4
1)

2
h,h = 10−13,

(Di
2)

2
h,h = 10−6, i = 1, 2, 3, 4,

for the second considered case, β(x) = (0, 0, 5)T , are

(D1
1)

2
h,h = (D2

1)
2
h,h = 10−7,

(D3
1)

2
h,h = 10−11 exp

(
−∥vh − c∥2

0.003

)
+ 10−12,

(D4
1)

2
h,h = 10−13,

(Di
2)

2
h,h = 10−7, i = 1, 2, 3, 4,

for h ∈ H , where c is the centre of the cross
section to which the node vh belongs. The rationale
behind this choice of the regularisation parameters
is the following. For the action on the mass matrix
MH , the non axial components of the velocity must
be regularised more severely with respect to the
axial component, in fact, on average the dominant
velocity component must be u3, even in turbulent
state; besides, the regularisation for u3 is greater on
the pipe axis and very small at the pipe boundary.
For the action on the diffusive matrix SH , the
regularisation parameters must be larger to prevent
the velocity gradient from blowing up. However,
a formal analysis for the optimal choice of the
regularisation parameters should be performed in a
further development.

The proposed solving strategy is compared with
another classical strategy that we briefly describe. In
particular, we consider the pipe flow problem (1)-(6)
endowed with the RANS equations as turbulence
model. This is a classical model to handle turbulence
belonging to the STM approach, [26], where the
instantaneous velocity field is decomposed into the
mean value and a fluctuating term. Then, the resulting
turbulent model is discretised by the collocated
cell-centred finite volume method, [36]. The solving
strategy relies on the PISO algorithm, [41]. This is
a segregated solver, meaning that the velocity and
pressure computation are decoupled. In more detail,
the main steps of this solving strategy can be summed
up as follows: the momentum equation is solved first,
then the mass fluxes at cells faces are computed and
the pressure equation is solved. Thus, the mass fluxes
are corrected and the new velocity field is calculated
by exploiting the computed pressure field. All these
steps are repeated as many times as prescribed by the
user.

Finally, we report an analytical expression for the
velocity profile in turbulent pipe flows that will be
used as reference for the numerical results. Such
empirical law is based on experimental observations
and describes the average profile of the axial velocity
along the radial direction on a cross section of
the pipe. It is the well-known one-seventh power
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law, [42]:

u(x) = umax

(
r − ∥x− c∥2

r

)1/7

, (17)

where r is the pipe radius, c is the pipe centre and umax
is the maximal velocity at the centre of the pipe. In
this case of study, umax = 8/7U , where U is the mean
velocity of the profile, calculated by the mean-value
Theorem, and it must coincide with the mean velocity
of the inlet profile along the z-direction. We remark
that the one-seventh power law fails to be accurate
at the centre of the pipe and in the viscous sublayer,
namely the very thin layer next to the wall where
viscous effects are dominant, but it describes quite
precisely the turbulent flow in the most portion of the
section.

4.2 Results and Discussion
We show the numerical results obtained by the
stabilisation strategy proposed in (16) compared with
the numerical results obtained by OpenFOAM, and
at the same time we compare both to the reference
profile given by the empirical law in (17).

Figure 2 reports the results for the case 1. at the
last time step and along a radius of a cross section
at half length of the pipe. In more detail, the blue
line with circular markers shows the numerical results
with the stabilisation strategy based on Tikhonov
regularisation and averaged over points at the same
distance from the centre; the red line with squared
markers shows the empirical profile in (17); the green
line with triangular markers shows the numerical
results obtained with OpenFOAM. The three velocity
profiles in Figure 2 are in great agreement near the
centre of the pipe; for a distance from the pipe wall
in the interval (0.004, 0.01), approximately, the green
profile is slightly better than the blue one with respect
to the empirical solution (red profile); whereas, near
the wall the blue profile tends to increase a bit faster
then the green one and it does not show a linear trend.
However, both the proposed stabilisation strategy and
OpenFOAM give very similar results that closely
follow the empirical profile except for the layer near
the pipe wall, where the velocity shows a quick boost.

Figure 3 reports the results for the case 2. at the
last time step and along a radius of a cross section
at half length of the pipe. The same correspondence
between colors and velocity profiles has been kept
as before. Near the pipe wall, the blue profile is
much nearer to the red empirical profile then the
green one, moreover, the blue profile shows an initial
boost of the velocity whereas the green profile has
a linear and not steep slope. Then, moving towards
the centre till the distance 0.012 from the wall, both

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0

0.5

1

distance from pipe wall

|u
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|

Fig. 2:    Axial velocity profiles for the case 1.

at the last time step and along a radius of a
cross section at half length of the pipe, obtained
by: the stabilisation strategy based on Tikhonov
regularisation (blue line with circular markers), the
empirical one-seventh power law (red line with
squared markers), OpenFOAM (green line with
triangular markers).

the blue and green profiles follow quite closely the
red profile, except for a pick in the blue line. Near
the centre, the blue profile goes farther from the red
one. In general, the results from our stabilisation give
a behaviour that best resembles the empirical law,
and some picks appear due to the high turbulence;
while the results from OpenFOAM seems unaffected
by turbulence intensity, showing in fact the same
behaviour in  Fig. 2,  Fig. 3 and the trend  of the  axial
velocity near the wall is quite inaccurate.

5 Conclusions
The solution of the discretised Navier-Stokes problem
in the presence of turbulence is quite challenging,
especially when no turbulence models are exploited.
This is due to unfavourable characteristics of the
coefficient matrix and its oscillating eigenvalues for
high Reynolds numbers. In this paper, we proposed
a stabilisation strategy that is based on Tikhonov
regularisation. We showed that this strategy works
satisfactorily for a turbulent pipe flow problem in
the real case of a geothermal exchanger, with two
different flow velocities causing a high turbulent
regime. The effectiveness of this strategy has been
shown by a comparison with the solving strategy
used in OpenFOAM, for turbulent flows, by using
a reference velocity profile given by a commonly
accepted heuristic law. In this initial exploration
of the topic, we proposed numerical simulations
concerning a rectilinear geothermal exchanger, due
to data availability as well as the possibility to use a
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Fig. 3:     Axial velocity profiles for the case 2.

at the last time step and along a radius of a
cross section at half length of the pipe, obtained
by: the stabilisation strategy based on Tikhonov
regularisation (blue line with circular markers), the
empirical one-seventh power law (red line with
squared markers), OpenFOAM (green line with
triangular markers).

reference fully-developed velocity profile in turbulent
state. Of course, this strategy can be applied to
geothermal exchangers with a different geometry,
preserving a similar effectiveness, since it is free
from shape constraints. In addition, the scope of
this study goes beyond the heat exchanger problem,
because it could be applied to any real-world problem
described by the Navier-Stokes equations, and even
to hemodynamics in the cardiovascular system under
proper adjustments.

The proposal of using the Tikhonov regularisation
scheme for ill-posed problems as a stabilisation
technique for a turbulent pipe flow problem is
innovative. Thus, the relation between turbulence
and ill-posedness must be investigated in more
detail, and the effectiveness of the proposed method
must be extensively assessed both analytically
and numerically. Further developments of this
work should consider testing the strategies against
different mesh sizes, as well as devising a general
strategy for choosing the regularisation parameters,
by searching for a kind of normalization of the
Tikhonov parameters depending on the inlet velocity
and/or the mesh size. Finally, we would like
to investigate the correlation between our method
and artificial viscosity methods, [43], since in the
proposed stabilisation scheme the matrix Λ2 in (16)
could be seen as a kind of artificial viscosity.

A The Discretisation of the Flow
Problem

Let W = H1
0 (Ω) be the closure of C∞

0 (Ω), i.e.,
the space of infinitely differentiable functions having
compact support in Ω, with respect to the norm
in H1(Ω). Let Q = L2

0(Ω) be the space of
square integrable functions with null average, i.e.,
L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω q = 0

}
. Let ui ∈

H1
0 (Ω), i = 1, 2, 3, and P ∈ L2

0(Ω). We need
to define the finite-dimensional spaces correspondent
to these spaces, in order to apply the Galerkin
discretisation to the problem (1)-(6). Let h > 0
andWh,Qh finite-dimensional subspaces ofW ,Q of
dimension NN , NK , respectively. Furthermore, we
assume thatWh and Qh are compatible spaces, [34],
that is their functions satisfy the compatibility
(or Ladyzhenskaya-Babuška-Brezzi) condition. Let
ψj , j ∈ J , be a basis of Wh and ϕk, k ∈ K,
be a basis for Qh. In particular, ψj(vl) = δj,l
for all j, l ∈ J , and ϕk(vl) = δk,l for all k, l ∈
K, thus ψj has compact support in the tetrahedra
containing the node vj and ϕk has compact support
in the tetrahedra containing the vertex vk. For each
t ∈ [0, t̄], let ũ(·, t) = (ũ1(·, t), ũ2(·, t), ũ3(·, t))T ,
with ũi ∈Wh, i = 1, 2, 3, an approximation of u(x, t)
and p̃(·, t) ∈ Qh an approximation of P (·, t), having
the following forms:

ũi(x, t) = ũi,∂(x, t) +
∑
h∈H

uhi (t)ψh(x),

i = 1, 2, 3, (18)

ũi,∂(x, t) =
∑
b∈B

ubi(t)ψb(x), i = 1, 2, 3, (19)

p̃(x, t) =
∑
k∈K

P k(t)ϕk(x), (20)

where x ∈ Ω̄, 0 ≤ t ≤ t̄, ubi(t) = βi(vb) when
b ∈ B and vb ∈ Γin, ubi(t) = 0 when b ∈ B and
vb ∈ Γw, whereas uhi (t), h ∈ H , and P k(t), k ∈ K,
are unknown coefficients.

The semi-discrete Galerkin approximation of
problem (1),(2) reads:∫

Ω

(
∂ũ(·, t)
∂t

− 1

Re
∆ũ(·, t) + (ũ(·, t) · ∇)ũ(·, t)+

+∇p̃(·, t)
)
ψh dx = 0, h ∈ H, (21)∫

Ω
∇ · ũ(·, t) ϕk dx = 0, k ∈ K, (22)

where test functions ψh, h ∈ H , are used for
the momentum equations and ϕk, k ∈ K for the
continuity equation. To obtain the full discretised
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problem, Eq. (21) needs the discretisation of the time
derivative and the linearisation procedure. Let Nt >
0 and∆t = t̄/Nt be the time step, let tn = n∆t, n =
0, 1, ..., Nt. We apply the time advancing by the finite
difference method. In more detail, the n + 1 time
step, system (21),(22) is evaluated at t = tn+1 and
the time derivative is approximated with a backward
finite difference quotient, that is

∂ũ(·, tn+1)

∂t
≈ ũ(·, tn+1)− ũ(·, tn)

∆t
,

providing a procedure resembling the implicit Euler
scheme. The non linear term in Eq. (21) is linearised
by means of the classical technique for Oseen
problems:

(ũ(x, tn+1) · ∇) ũ(x, tn+1) ψh(x) ≈
(ũ(x, tn) · ∇) ũ(x, tn+1) ψh(x).

(23)

The resulting algebraic form of problem (21),(22)
is obtained by substituting formulas (18)-(20) in the
integral equations, then we apply the Green’s first
identity to the Laplacian term and the divergence
Theorem to the pressure gradient in Eq. (21). Hence,
from the property ψh(x) = ϕg(x) = 0, x ∈
Γ ∖ Γout, h ∈ H, g ∈ G, and the boundary
condition (4), a system of linear equations for the
unknowns uhi (tn+1), h ∈ H , and P k(tn+1), k ∈ K,
is obtained for each n = 0, 1, . . . , Nt − 1,∑

l∈H
(Mh,l + Sh,lNh,l(tn))u

l
i(tn+1)+

+
∑
k∈K

(
LT
i

)
h,k
P k(tn+1) =

−
∑
b∈B

(Mh,b + Sh,b +N(tn)h,b)u
b
i(tn+1)+

+
∑
j∈J

Mh,ju
j
i (tn), i = 1, 2, 3, (24)

3∑
i=1

∑
l∈H

(Li)k,l u
l
i(tn+1) =

−
3∑

i=1

∑
b∈B

(Li)k,b u
b
i(tn+1), (25)

where the unknown vectors are

uHi (tn) = (uh1

i (tn), ..., u
hNH

i (tn))
T , (26)

P(tn) = (P k1(tn), ..., P
kNK (tn))

T , (27)

while the known term gathers the contribution of
the previous time step and the Dirichlet boundary

conditions, and it is made of

ui(tn) = (uh1

i (tn), ..., u
hNH

i (tn),

ub1i (tn), ..., u
bNB

i (tn))
T , (28)

uBi (tn) = (ub1i (tn), ..., u
bNB

i (tn))
T . (29)

In addition, the followingmatrices are defined for h ∈
H, j ∈ J, k ∈ K,

Mh,j =
1

∆t

∫
Ω
ψhψj dx, M = (MH ,MB), (30)

Sh,j =
1

Re

∫
Ω
∇ψh · ∇ψj dx, S = (SH , SB), (31)

Nh,j(tn) =
∑
l∈J

3∑
s=1

uls(tn)

∫
Ω

∂ψj

∂xs
ψhψl dx,

N(tn) = (NH(tn), N
B(tn)), (32)

(Li)k,j = −
∫
Ω

∂ψj

∂xi
ϕk dx,

Li = (LH
i , L

B
i ), i = 1, 2, 3. (33)

We note that, at the right-hand side of
formulas (30)-(33) it is defined a column-partition
of the corresponding matrix with respect to the two
disjoint sets of indices H and B.

B Proof of Theorem 1

Proof. Adding and subtracting to each addendum of
the Tikhonov functional (11) the action of the relative
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matrix over the minimiser x̄, we obtain

∥Ax− b∥2 + ∥Λ1J1x∥2 + ∥Λ2J2x∥2

= ∥Ax− b±Ax̄∥2 + ∥Λ1J1x± Λ1J1x̄∥2

+ ∥Λ2J2x± Λ2J2x̄∥2

= (Ax̄+A(x− x̄)− b, Ax̄+A(x− x̄)− b)
+ (Λ1J1x̄+ Λ1J1(x− x̄),Λ1J1x̄+ Λ1J1(x− x̄))
+ (Λ2J2x̄+ Λ2J2(x− x̄),Λ2J2x̄+ Λ2J2(x− x̄))
= ∥Ax̄− b∥2 + ∥Λ1J1x̄∥2 + ∥Λ2J2x̄∥2

+ ∥A(x− x̄)∥2 + ∥Λ1J1(x− x̄)∥2 + ∥Λ2J2(x− x̄)∥2

+ (Ax̄− b, A(x− x̄)) + (A(x− x̄), Ax̄− b)
+ (Λ1J1x,Λ1J1(x− x̄)) + (Λ1J1(x− x̄),Λ1J1x)
+ (Λ2J2x,Λ2J2(x− x̄)) + (Λ2J2(x− x̄),Λ2J2x)
= ∥Ax̄− b∥2 + ∥Λ1J1x̄∥2 + ∥Λ2J2x̄∥2

+ ∥A(x− x̄)∥2 + ∥Λ1J1(x− x̄)∥2 + ∥Λ2J2(x− x̄)∥2

+ 2
(
x− x̄, ATAx̄−ATb

)
+ 2

(
x− x̄, JT

1 Λ
T
1 Λ1J1x̄

)
+ 2

(
x− x̄, JT

2 Λ
T
2 Λ2J2x̄

)
= ∥Ax̄− b∥2 + ∥Λ1J1x̄∥2 + ∥Λ2J2x̄∥2

+ ∥A(x− x̄)∥2 + ∥Λ1J1(x− x̄)∥2 + ∥Λ2J2(x− x̄)∥2

+ 2
(
x− x̄, ATAx̄+ JT

1 (Λ1)
2 J1x̄

+ JT
2 (Λ2)

2 J2x̄−ATb
)
,

where the inner product (·, ·) is in the real field. We
observe that equation (16) is condition necessary and
sufficient for x̄ to minimise the Tikhonov functional.
The existence of a unique solution of (16) is due to the
non-singularity of the coefficient matrix, which can
be easily shown to be a symmetric positive definite
matrix and so its minimum eigenvalue is greater than
zero.

Acknowledgment:
Nadaniela Egidi, Josephin Giacomini and Pierluigi
Maponi are members of the Gruppo Nazionale
Calcolo Scientifico-Istituto Nazionale di Alta
Matematica (GNCS-INdAM).

References:
[1] Simone Angeloni et al. “Computer Percolation

Models for Espresso Coffee: State of the Art,
Results and Future Perspectives”. In: Applied
Sciences 13.4 (2023), p. 2688.

[2] Yonghui Qiao et al. “Numerical simulation of
two-phase non-Newtonian blood flow with
fluid-structure interaction in aortic
dissection”. In: Computer methods in
biomechanics and biomedical engineering
22.6 (2019), pp. 620–630.

[3] Nadaniela Egidi, Josephin Giacomini, and
Pierluigi Maponi. “Mathematical model to
analyze the flow and heat transfer problem in
U-shaped geothermal exchangers”. In:
Applied Mathematical Modelling 61 (2018),
pp. 83–106. DOI: https:
//doi.org/10.1016/j.apm.2018.03.024

[4] Xiaohua Wu and Parviz Moin. “A direct
numerical simulation study on the mean
velocity characteristics in turbulent pipe
flow”. In: Journal of Fluid Mechanics 608
(2008), pp. 81–112.

[5] Kerstin Avila et al. “The Onset of Turbulence
in Pipe Flow”. In: Science 333 (2011),
pp. 192–196.

[6] L Hadj-Taı�eb and E Hadj-Taı�eb. “Numerical
simulation of transient flows in viscoelastic
pipes with vapour cavitation”. In:
International Journal of Modelling and
Simulation 29.2 (2009), pp. 206–213

[7] Alexandre K Soares, Dídia IC Covas, and
Nelson JG Carriço. “Transient vaporous
cavitation in viscoelastic pipes”. In: Journal of
Hydraulic Research 50.2 (2012), pp. 228–235

[8] Lin Wu, Kui-sheng Chen, and Yuan Guo.
“Research on cavitation phenomena in pilot
stage of jet pipe servo-valve with a
rectangular nozzle based on large-eddy
simulations”. In: AIP Advances 9.2 (2019),
p. 025109.

[9] David N. Ku. “Blood flow in arteries”. In:
Annual Review of Fluid Mechanics 29 (1997),
pp. 399–434.

[10] S Bandyopadhyay and GC Layek. “Study of
magnetohydrodynamic pulsatile flow in a
constricted channel”. In: Communications in
Nonlinear Science and Numerical Simulation
17.6 (2012), pp. 2434–2446.

[11] João A Isler, Rafael S Gioria, and
Bruno S Carmo. “Pulsatile flow in a
constricted channel: flow behaviour and
equilibrium states”. In: Journal of Fluid
Mechanics 866 (2019).

[12] AE Catania, A Ferrari, and E Spessa.
“Temperature variations in the simulation of
high-pressure injection-system transient flows
under cavitation”. In: International Journal of
Heat and Mass Transfer 51.7-8 (2008),
pp. 2090–2107.

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2025.20.3 Nadaniela Egidi, Josephin Giacomini, Pierluigi Maponi

E-ISSN: 2224-347X 29 Volume 20, 2025

https://doi.org/https://doi.org/10.1016/j.apm.2018.03.024
https://doi.org/https://doi.org/10.1016/j.apm.2018.03.024


[13] Huan-Feng Duan et al. “Influence of nonlinear
turbulent friction on the system frequency
response in transient pipe flow modelling and
analysis”. In: Journal of Hydraulic Research
56.4 (2018), pp. 451–463.

[14] HongGuang Sun et al. “A space fractional
constitutive equation model for
non-Newtonian fluid flow”. In:
Communications in Nonlinear Science and
Numerical Simulation 62 (2018), pp. 409–417.

[15] Mark Orazem. Underground pipeline
corrosion. 63. Elsevier, 2014.

[16] Umangkumar Bharatiya et al. “Effect of
corrosion on crude oil and natural gas pipeline
with emphasis on prevention by ecofriendly
corrosion inhibitors: a comprehensive
review”. In: Journal of Bio-and
Tribo-Corrosion 5.2 (2019), pp. 1–12.

[17] EV Moskvicheva, PA Sidyakin, and
DV Shitov. “Method of corrosion prevention
in steel pressure pipelines in sewerage
systems”. In: Procedia Engineering 150
(2016), pp. 2381–2386.

[18] Mehdi Davoudi et al. “Chemical injection
policy for internal corrosion prevention of
South Pars sea-pipeline: A case study”. In:
Journal of Natural Gas Science and
Engineering 21 (2014), pp. 592–599.

[19] Vikas Kannojiya, Arup Kumar Das, and
Prasanta Kumar Das. “Simulation of blood as
fluid: A review from rheological aspects”. In:
IEEE Reviews in Biomedical Engineering 14
(2020), pp. 327–341.

[20] Hamidreza Gharahi et al. “Computational
fluid dynamic simulation of human carotid
artery bifurcation based on anatomy and
volumetric blood flow rate measured with
magnetic resonance imaging”. In:
International journal of advances in
engineering sciences and applied mathematics
8.1 (2016), pp. 46–60.

[21] Josephin Giacomini et al. “Testing a model of
flow and heat transfer for u-shaped
geothermal exchangers”. In: Adv. Model.
Anal. A 55.3 (2018), pp. 151–157.

[22] Cristina Sàez Blàzquez et al. “Efficiency
Analysis of the Main Components of a
Vertical Closed-Loop System in a Borehole
Heat Exchanger”. In: Energies 10.2 (Feb.

2017), p. 201. DOI: 10.3390/en10020201.
[23] Nadaniela Egidi, Josephin Giacomini, and

Pierluigi Maponi. “Inverse heat conduction to
model and optimise a geothermal field”. In:
Journal of Computational and Applied
Mathematics 423 (2023), p. 114957.

[24] Peter Bayer, Michael de Paly, and
Marcus Beck. “Strategic optimization of
borehole heat exchanger field for seasonal
geothermal heating and cooling”. In: Applied
Energy 136 (2014), pp. 445–453.

[25] Enzo Zanchini, Stefano Lazzari, and
Antonella Priarone. “Long-term performance
of large borehole heat exchanger fields with
unbalanced seasonal loads and groundwater
flow”. In: Energy 38 (2012), pp. 66–77.

[26] C. D. Argyropoulos and N. C. Markatos.
“Recent advances on the numerical modelling
of turbulent flows”. In: Applied Mathematical
Modelling 39 (2015), pp. 693–732.

[27] S. Vijiapurapu and J. Cui. “Performance of
turbulence models for flows through rough
pipes”. In: Applied Mathematical Modelling
34 (2010), pp. 1458–1466.

[28] R. Friedrich et al. “Direct numerical
simulation of incompressible turbulent flows”.
In: Computers & Fluids 30 (2001),
pp. 555–579.

[29] Nilanjan Chakraborty, E Mastorakos, and
RS Cant. “Effects of turbulence on spark
ignition in inhomogeneous mixtures: a direct
numerical simulation (DNS) study”. In:
Combustion science and technology 179.1-2
(2007), pp. 293–317.

[30] Gary N Coleman and Richard D Sandberg. A
primer on direct numerical simulation of
turbulence-methods, procedures and
guidelines. Tech. rep. SO17 1BJ, UK:
University of Southampton, 2010.

[31] Lin Zhang et al. “A stability condition for
turbulence model: From EMMS model to
EMMS-based turbulence model”. In:
Particuology 16 (2014), pp. 142–154.

[32] Josephin Giacomini. “RBFs preconditioning
via Fourier decomposition method”. In:
American Institute of Physics Conference
Series. Vol. 3094. 1. 2024, p. 320005.

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2025.20.3 Nadaniela Egidi, Josephin Giacomini, Pierluigi Maponi

E-ISSN: 2224-347X 30 Volume 20, 2025

https://doi.org/10.3390/en10020201


[33] D. Colton and R. Kress. Inverse Acoustic and
Electromagnetic Scatting Theory.
Springer-Verlag, 1998.

[34] Alfio Quarteroni and Alberto Valli. Numerical
Approximation of Partial Differential
Equations. Springer, 1994.

[35] Roger Temam. Navier-Stokes equations.
North-Holland Publishing Company, 1977.

[36] Charles Hirsch. Numerical Computation of
Internal & External Flows. Second.
Butterworth-Heinemann, 2007.

[37] Andreas Kirsch et al. An introduction to the
mathematical theory of inverse problems.
Vol. 120. Springer, 2011.

[38] Vladimir Alekseevich Morozov.
Regularization Methods for Ill-Posed
Problems. CRC Press, 1993.

[39] C. Cuvelier, A. Segal, and
A.A. Van Steenhoven. Finite Element
Methods and Navier Stokes equations. D.
Reidel Publishing Company, 1977.

[40] A. Bejan. Convection Heat Transfer. John
Wiley & Sons, Inc., 2004.

[41] J.H. Ferziger and M. Perić. Computational
Methods for Fluid Dynamics. Springer, 2002.

[42] Yunus A. Çengel and Jhon M. Cimbala. Fluid
Mechanics: Fundamentals and Applications.
Third. McGraw-Hill, 2014.

[43] Len G Margolin. “The reality of artificial
viscosity”. In: Shock Waves 29.1 (2019),
pp. 27–35.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
This research received partial funding from the
Unione Europea - FSE, Pon Ricerca e Innovazione
2014-2020 (Decreto Ministeriale 1062 - 10/08/2021).

Conflicts of Interest
The authors have no conflicts of interest to
declare that are relevant to the content of this
article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2025.20.3 Nadaniela Egidi, Josephin Giacomini, Pierluigi Maponi

E-ISSN: 2224-347X 31 Volume 20, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	The pipe flow problem
	The formulation of the flow problem
	The numerical solution of the flow problem

	The stabilisation strategy
	Numerical results
	Numerical framework
	Results and discussion

	Conclusions
	The discretisation of the flow problem
	Proof of Theorem 1



