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Abstract: - There were many past climate reconstructions based on the borehole measurements.  The measured 
temperature-depth profiles both in rock and glaciers present the input data for solutions of the inverse problems 
for determination of the boundary conditions at the surface. However, the properties of such solutions have not 
been derived with mathematical point of view. We find out that the solution of this problem is not unique and 
stable. The uniqueness and stability properties take place for the inverse problems that assume solution in the 
form of the finite segments of the Fourier series for the temperature. We formulate the algorithm that provides 
reliable temperature reconstructions. 
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1 Introduction 
The climate global changes in many aspects 
influence on economy and global politics [1], [2]. 
That is why knowledge of the surface temperature 
changes is important problem. The development of 
methods for the past surface temperature 
reconstructions can give a key in understanding 
these changes. The systematic instrumental 
temperature measurements took place no more than 
two centuries. Thus, indirect estimations of the past 
temperatures present main information on the past 
climate. There are two different sources of 
information about paleotemperatures. These are the 
boreholes [3], [4] and the high-resolution proxy 
climate indicators, for example, the tree rings [5], 
[6], lake varved sediments [7], [8], corals and 
sclerosponges [9], speleothems [10], [11] etc. The 
most reliable data are kept in the measured borehole 
temperatures that present response to the surface 
temperature history. 

The underground temperature distribution is 
mainly determined by two types of processes [3]. 
The first is the surface temperature changes and the 
second is the heat flux from the Earth that is 
subjected to the long-time geological processes. The 
surface temperature changes take place at relatively 
smaller time scale. Therefore, the measured 
temperature-depth profiles in the borehole contain 
information on the climatic changes at the surface. 
The seasonal temperature variations at the surface 
are noticeable at depth about 10-15 meters while the 
climatic oscillations reach several hundred meters 

and more. Thus, the boreholes of several hundred 
meters can contain information on the past surface 
temperatures for several hundred years. 

The heat and mass transfer in rocks is described 
by the one-dimensional thermal diffusivity equation 
[3]. The past surface temperature reconstruction is 
the inverse problem that contains additional re-
determination condition. The measured temperature-
depth profile presents such condition. We found out 
that this problem has not the unique and stable 
solution in general case. 

There are several well-known methods of the 
past surface temperature reconstructions: the Monte-
Carlo method [12], [13]; the least-squares inversion 
method [3]; the singular value decomposition 
method [14], [15] and the control method [16]. We 
show that these temperature reconstructions are not 
unique and stable algorithms with mathematical 
point of view. Some examples are considered in the 
paper to demonstrate the algorithm of the past 
surface temperature reconstructions. 
 
 
2 Mathematical Model 
The mathematical statement of the inverse problem 
consists of the one-dimensional thermal 
conductivity equation, the initial condition, the 
boundary condition at the bottom of borehole and 
the measured-temperature-depth profile. The former 
is used as the re-determination condition, χ(z), 
where z is vertical coordinate. Then the inverse 
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problem to find the temperature in the past is the 
solution of the following problem: 
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where H is the borehole depth, a2 is the thermal 
diffusivity, k is the thermal conductivity, q is the 
geothermal heat flux at the bottom of borehole, U(z) 
is the steady-state temperature profile associated 
with this flux, Us is the initial temperature, which 
characterizes the average temperature that was on 
the surface in the past before the beginning of sharp 
temperature variations on the surface, μ(t) is 
temperature variations on the surface in time with 
respect to its initial value Us from the moment t=0 
to the time of measurements of the borehole 
temperature profile tf , μ(0)=0. 

Let us represent the borehole temperature T(z,t) 
in the form of the superposition of two temperature 
profiles: the steady-state temperature profile U(z) 
associated with the geothermal heat flow from the 
Earth and the residual temperature profile V(z,t) 
associated with temperature variations on the 
surface: 

 
( , ) ( ) ( , )T z t U z V z t= + . (2) 
 
Then, the steady-state temperature profile: 
 

( ) ( / )sU z U q k z= − ⋅  (3) 
 
Let us denote ( ) ( ) ( )z z U zθ χ= − is deviation of 

the measured temperature profile from the steady-
state one. This deviation is associated with the 
surface temperature changes. Thus, the problem of 
finding surface temperature history is reduced to the 
solution of the problem: 
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3 Properties of Solution 

Let us show that the inverse problem (4) in the 
general case has no the unique solution. 

Lemma 1. 
In addition to the trivial solution ( ( ), 0;V z t ≡

( ) 0tµ ≡ ), the inverse problem  
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has a nontrivial solution (V(z,t); μ(t)). 

Proof. 
Let us assume that μ(0)= μ(tf)=0 and 

( ) ( )
1

sin /m f
m

t mt tµ α π
∞

=

= ⋅∑ , 

where αm are unknown coefficients. Let V(m)(z,t) be a 
solution of the direct problem specified as 
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The solution of this problem can be obtained in 

the form 
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where 
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n n
nn

I e z dz
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= =∫ , 

sin( )n ne zλ= and ( )22 2 2/ 1 / 2n a H nλ π= ⋅ −  are 
the eigen functions and eigen values, respectively, 
of the following Sturm–Liouville problem: 
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The asymptotic behaviour of the eigenvalues is 

2~ ,n C n nλ ⋅ →∞ . Therefore, the series 
1
1 / n

n
λ

∞

=
∑  

converges. Then, the set of the functions { }
1

nt

n
eλ ∞

=
 is 

incomplete in 2 (0, )fL t . This is a corollary of 
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Müntz's theorem [17]. Thus, there is a nonzero 
function F(t) specified at [0, ]ft t∈  such that F(t) is 

orthogonal to { }
1

nt

n
eλ ∞

=
 in 2 (0, )fL t . Let us expand 

F(t) into the Fourier series at [0, ]ft t∈ : 

( )
1

( ) sin /m f
m

F t mt tβ π
∞

=

= ⋅∑ . Let us prove that 

( ) ( )( )

1
, ,m

m
V z t V z t

∞

=

=∑  is a solution of the problem 

specified by Eqs. (5) and ( ) ( )t F tµ = , αm=βm. 
Indeed, ( ),V z t  satisfies the first of Eqs. (5), as well 
as the initial and boundary conditions. Let us verify 
the last condition in Eqs. (5): 
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The integration of Eq. (9) by parts yields 
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Since the inner series in Eq. 10 is identically 

equal to F(τ) and is orthogonal to { }
1

nt

n
eλ ∞

=
, 

( ), 0fV z t = . Thus, we find the nontrivial solution 

( ),V z t  and the lemma is proved. 
Thus, the solution of the problem (4) without 

additional constraints is not unique. 
 
 
4 Uniqueness and Stability 
Let us assume that ( ) exp( 2 / )

m

k f
k m

t i kt tµ µ π
=−

= ⋅∑  is 

a finite segment of the Fourier series. Let us show 
that in this case the uniqueness of the function ( )tµ  
can be proved. 

Let us represent ( ),V z t  from problem (4) as 

( ), ( ) ( , )V z t t W z tµ= + , then the problem of finding 
surface temperature history can be represented in 
the form 
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Where ( ) ( )f t tµ′=  and ( ) ( ) ( )fs z z tθ µ= − . The 
solution of the problem (11) is presented by the 
equation 
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where en(z) and λn are the eigen functions and eigen 
values, respectively, of the Sturm–Liouville 
problem (8).  

Since μ(t) is a finite segment of the Fourier 
series, f(t) is a finite segment of the Fourier series 

too, and ( ) exp( 2 / )
m

k f
k m

f t f i kt tπ
=−

= ⋅∑ .  

Since ( ) ( ); (0) 0f t tµ µ′= = , the function μ(t) is 
uniquely determined from ( ) C[0, ]ff t t∈ . If the 
uniqueness of the function f(t) is proved, then the 
uniqueness of the function μ(t) can be proved too. 

To prove uniqueness of the problem (11) it is 
sufficient to show that ( ), 0W z t ≡  and ( ) 0f t ≡ if 

( ) 0s z = . 

It is known that ( ){ } 1n n
e z

∞

=
 is the complete 

orthonormalized set, and
0, R, ,n n nI nλ λ≠ ∈ →∞ →∞ . From the condition 

that ( ), 0fW z t = , it follows that 
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f
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t
tn e f dλ τ τ τ− −∀ ∈ ⋅ =∫ . 

Thus, the integer function 
0

( ) ( )
ft

F e f dλτλ τ τ= ⋅∫  

has the infinite number of zeros. This is possible 
only for ( ) 0f t ≡ , because f(t) is a finite segment of 
a Fourier series. Therefore, ( ) 0tµ ≡ , and the 
uniqueness property is proved. 

Let us show that this solution is stable. Let two 
solutions ( )1 ,W z t , ( )1f t  and ( )2 ,W z t , ( )2f t  of the 
problem (11) correspond to the close re-
determination functions ( )1s z  and ( )2s z , 
respectively. Let us show that if ( )f t  is a finite 
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segment of a Fourier series, then these solutions are 
closed each other. 

From Eq. (12) and the determination condition 
( ), ( )fW z t s z= , it follows that: 
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linear operator. 
Eq. (13) is the Fredholm integral equation of the 

first kind. This is a classical ill-posed problem. If 
( )f t  is a finite segment of a Fourier series, the 

uniqueness theorem is proved for Eq. (13); i.e., from 
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, 0, 1, 2,...kf k m= ± ± ± are unknowns. 
The number of the equations is infinite, whereas 

the number of unknowns is 2m+1, therefore, the 
system in the general case has no solution at 
arbitrary sn values. Thus, the problem under 
investigation is reduced to the solution of the system 
of the algebraic equations of the form: Af=s, where 
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where 1,2...; 1,2...,2 1p q m= = + . 

We have proved the uniqueness theorem. 
Therefore, the homogeneous problem has only the 
trivial solution. Let us prove that this problem has 
the stability property in the following meaning. Let 
two solutions (1)f  and (2)f  correspond to two 
columns (1)s and (2)s , respectively, so that

(1) (2) (1) (2)sup i i
i N

s s
∈

− = −s s .Then these solutions (1)f  

and (2)f  are close each other by the norm. 
Let us find the image Im A  of the linear operator 

A that specifies the transformation 0
nR C→ , where 

C0 is the space of the number sequences 
1( , ..., ,...)ns s  converging to zero because the Fourier 

coefficients tend to zero. Let us denote A  as the 
matrix of the linear operator A in a certain basis. 

 
Statement. 
If 1, , ne e

 constitute a basis in nR , then the 
vectors 1A , ,A ne e

 constitute a basis in Im A . 
 
Proof. 
Let us consider an arbitrary vector Im A∈z . 

Then nR∃ ∈x  such that Ax=z. 
Let us expand the vector x in the basis 1, , ne e

: 

1 1 2 2 n nx x x= + + +x e e e
. Then, since the operator 

A is linear, 1 1 2 2A A A An nx x x= = + + +z x e e e
. 

Therefore, such an expansion exists. 
Let us prove the uniqueness of this expansion, 

i.e., linear independence of the elements 1A , ,A ne e

. 
If 1 1 2 2A A A 0n nα α α+ + + =e e e

then 

1 1 2 2A( ) 0n nα α α+ + + =e e e
, owing to linearity; 

since the kernel of the operator is zero, we have 
1 1 2 2 0n nα α α+ + + =e e e

; therefore 

1 2 0nα α α= = = =
 because 1, , ne e

 are linearly 
independent; thus, the statement is proved. 

 
Corollary. 
Im A is a finite-dimensional (n- dimensional) 

subspace of C0. 
The linear operator A transforms nR  to 

Im AnV =  and has zero kernel. Therefore, the 
operator A has the inverse operator A-1 that specifies 
the transformation n

nV R→  and is a linear bounded 
operator. 

If ( ) ( )l lΑ =f s , l=1,2, then ( ) 1 ( )l l−= Αf s , l=1,2, 
therefore, (2) (1) 1 (2) (1)( )−− = Α −f f s s . Moreover, the 
estimation (2) (1) 1 (2) (1)−− ≤ Α ⋅ −f f s s  is valid for 
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the stability of the inverse problem becausethe 
operator A-1 is bounded. 

Thus, the solutions of the inverse problem in the 
form of the segments of the Fourier series are close 
if the redetermination functions are close each other 
by the norm.Therefore, in that case, stability of the 
surface temperature history reconstruction is proved. 
 
 
5 Method of paleotemperature 
reconstruction  
The boundary condition at the surface has to be 
written in form of a finite segment of the Fourier 
series to build the unique and stable reconstruction 
of the past surface temperature. 

We will use the dominant periods of temperature 
variations that are contained in the high-resolution 
proxy climate indicators of the studied region. For 
example, we can use these data based on thetree 
rings, corals and sclerosponges, speleothems and 
lake varved sediments. For glacier boreholes the 
periods can be derived from the oxygen or hydrogen 
isotopic ratios. 

To find out the periods in the proxy climate 
indicators we apply the wavelet analysis [18], [19]. 
The wavelet analysis allows us to determine both 
the periods of the climate changes and  the time 
intervals in the past when these changes took place. 

Thus, the following algorithm of the 
paleotemperature reconstructions from the borehole 
data can be formulated. 

1. It is needed to search the high-resolution 
proxy climate indicators near the borehole region. 

2. The relationships between the proxy indicators 
and instrumental climate data at the nearest meteo-
stations have to be derived. 

3. The dominant periods of the proxydata for the 
studied region have to be found out by the wavelet 
analysis. 

4. The unknown past surface temperature is 
looking for in form of the finite segment of the 
Fourier series consisted of the set of the dominant 
periods. 

In fact this algorithm combines two different 
proxy climate indicators that contain both long-term 
and short-term trends of the temperature changes 
kept in the borehole temperature-depth profile and 
in the high-resolution proxy climate indicators, 
respectively. Indeed, information in the 
temperature-depth profile is reflection of factual 
changes of temperature at the surface. 
Unfortunately, this information on the past 
temperatures becomes worse when we consider 
relatively big time intervals. However, this 

deficiency of information is compensated by data 
containing in the high-resolution proxy climate 
indicators. 
 
 
6 Reconstruction of past temperatures 
Let us consider some examples of the past surface 
temperature reconstructions. We use the input data 
about the borehole temperature according to NCDC 
database [20]. Consider region of Bogatyrevo 
located in Kazakhstan (Longitude: 84.330, Latitude: 
49.830). The depth of the borehole RU-
Bogatyrevo3096 is 500 m. The measurements were 
done in 1977. The measured temperature-depth 
profile is shown in Fig. 1. The steady-state 
temperature profile is determined by Eq. (3) and 
also shown in Fig.1. Then we can determine 
parameters Us and q/k taking into account that the 
bottom part of the measured temperature-depth 
profile is in the steady-state condition; Us=6.46 0C; 
q/k=0.0165 0C ⋅m−1.  
 

 
Fig. 1.Borehole temperature profiles (1 is measured 

temperature profile, 2 is steady state temperature 
profile, 3 is reconstructed temperature profile) 

 
Many authors reconstruct the past surface 

temperatures by search of temperature in the form of 
the step-wise-function [14], [15]. Here we show that 
such reconstructions do not possess property of 
uniqueness. To demonstrate it we apply the Monte-
Carlo method. This method tests randomly chosen 
variations in the surface temperature using them as 
the input data for the direct problem (4) and taking 
into account the consistency degree between the 
calculated and measured temperature profiles. Set of 
possible reconstructions and the most likely one are 
shown in Fig. 2. One can see the significant 
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difference in the possible reconstructed 
temperatures.  

 

 
Fig. 2.Set of the possible past surface temperature 

reconstructions and the most likely one (solid curve) 
 

 

 
Fig. 3.Tree-ring chronology (a); wavelet power 

spectrum (b) and global wavelet (c) 
 

Let us apply the developed algorithm of the 
paleotemperature reconstructions for the borehole 
data. The nearest tree-ring chronologies are used as 
the high-resolution proxy climate indicator [20].The 
wavelet analysis allows us to derive that the 
dominant periods of 70, 40, 23 and 14 years are 
contained in the tree-ring chronologies for the 
studied region. We also take into account the 
dominant period of 200 years that observed in the 
long-term chronologies. The results of the wavelet 
analys are shown in Fig. 3. The dominant periods of 
23 and 14 years are observed at the nearest 
meteostation Kokpekty [21], and correlate with 
wavelet analysis results. Three other dominant 
periods could not be observed at this station due to 
short observation time. 

The Tikhonov method is applied to determine the 
past surface temperatures [22]. The Tikhonov 
regularization method is the determination of the 
boundary temperature μ(t) minimizing a smoothing 
functional consisting of the difference and stabilizer: 
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where { }( )R tµ is the solution of the direct problem 
(4) represented in the operator form,α  is the 
regularization parameter matched with the accuracy 
of the input data. The functional { }( )tµΩ  is called 
the stabilizing functional or stabilizer: 
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j j
j

dt q dt
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µµ
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where r is the stabilizer order, 0jq ≥ , and 0rq > . 
The procedure of the minimization of the smoothing 
functional Ψ  can be performed by means of the 
gradient method and is an iteration procedure. The 
iteration procedure is carried out until the functional 
Ψ  reaches a minimum with a given accuracy, 
which corresponds to the optimal solution of the 
inverse problem. 

Let us write the surface temperature in the form 
of finite set of the Fourier series: 

 
5

0

1
( ) cos(2 / ) sin(2 / )

2 m m m m
m

at a t T b t Tµ π π
=

= + +∑ (17) 

 
The minimization procedure for functional Ψ  

can be carried out by the iteration process. The 
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initial Fourier coefficients are given in the first 
iteration step while the next n-th iterations are 
determinated by the following equations: 
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where 0nγ >  is the gradient step. The derivatives of 
the functional in Eqs. (18) with respect to the 
corresponding Fourier coefficients are given by the 
expressions: 
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Here, the profiles 

0
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are the solutions of the problem specified by Eqs. 
(4) with the boundary conditions on the surface 

( ) 1 / 2tµ = , ( ) cos(2 / )mt t Tµ π= , and 
( ) sin(2 / )mt t Tµ π= , respectively. It is easy to show 

that the term with the stabilizer in Eq. (15) when the 
boundary condition on the surface ( )tµ  has the 
form of the segment of the trigonometric Fourier 

series has the form: 
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Thus, to determine the Fourier coefficients of the 

boundary condition given by Eq. (17), the iteration 

procedure specified by Eqs. (18) is performed with 
the use of Eqs. (19) and (20). 

There construction is shown in Fig. 4. The 
reconstructed temperature correlates with the annual 
temperature of the North Hemisphere registered in 
1850-1977. The correlation coefficient equals to 
0.75. The calculated temperature-depth profile is 
shown in Fig. 1 (curve 3). 
 

 
Fig. 4. Past surface temperature reconstruction 

 
 
7 Conclusion 
It is found out the conditions when the past surface 
temperature reconstructions are based on solutions 
possessing the uniqueness and stability properties 
with mathematical point of view. The unknown past 
surface temperature has to be presented as a finite 
segment of Fourier series with dominant periods. 
These periods can be found out in the high-
resolution proxy climate indicators such as the tree 
rings, corals, sclerosponges, speleothems, and lake 
varved sediments. In practices, the measured 
borehole temperature contains continuous set of 
harmonics. It is due to both errors of measurements 
and unknown nature of climatic changes. It means 
that the problem of the past surface temperature 
reconstruction based on the measured borehole 
temperature has not the uniqueness and stability 
properties. 
In fact all previous reconstructions of the past 
surface temperatures implicitly assume that the 
retrieval surface temperatures can be presented by 
the finite set of harmonics. In these cases the 
amplitudes of the harmonics can be found and the 
solutions are unique and stable. 
Moreover, the approach based on the additional 
information can improve an accuracy of the past 
surface temperature reconstructions. 
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