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 Abstract: - Mixing processes in the turbulent two-phase jet confined at some distance from the nozzle are 
modeled and examined. Many natural and technical phenomena deal with the turbulent mixing and heat 
transfer in the jet of mutually immiscible liquids, which represent an important class of the modern multiphase 
systems dynamics. The differential equations for axially symmetrical two-dimensional stationary flow and the 
integral correlations in a cylindrical coordinate system are considered for the free heterogeneous jet confined at 
its initial or ground part in the cylindrical channel. Algorithm and the results obtained may be of interest for the 
research and industrial tasks, where the calculations of the turbulent mixing and heat transfer in multiphase jet 
devices are of importance. 
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1 Development of the Mathematical 

Model for Confined Two-Phase Jet  
 
1.1 Introduction to the Model of Turbulent 

Two-Phase Confined Jet  
The free jet can be confined at its initial or ground 
part like it is done in a number of the jet devices for 
different thermal hydraulic applications, depending 
on the physical situation [1-9].  

Let us start description of the physical situation 
and mathematical model developed with the general 
view of the turbulent two-phase jet flow shown in 
Fig. 1 [1]: 

 
Fig. 1 General view of the multiphase turbulent jet 

in the pool of other immiscible liquid 

and schematic representation for the two-phase 
turbulent jet confined by cylindrical channel at the 
distance xg on its initial part (Fig. 2) or its ground 
part (Fig. 3) [5]: 

 
Fig. 2 Turbulent two-phase jet confined in 

cylindrical channel on its initial part 

The structural scheme for the mixing process in 
Figs 2,3 is simplified: the initial part of the length xi 
with the approximately linear boundaries for the 
conical surface (in cylindrical coordinate system) of 
the internal core of a first phase and mixing zone 
between internal and external boundaries of the jet. 
The turbulent zone contains fragments of the phases 
as far as immiscible liquids have behaviors like the 
separate phases, with their interfacial multiple 
surfaces. The first phase in a potential core is totally 
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spent in an initial part of the mixing zone. Then a 
short transit area follows. Afterwards the ground 
part of the two-phase jet begins, with the two phases 
well mixed across the entire layer of a jet. 

 
Fig. 3 Turbulent two-phase jet confined in 

cylindrical channel on its ground part, at the 
distance x=xg [1, 5] 

The external boundary of a mixing zone in a free 
jet [1-3, 6, 7], before its confining by cylindrical 
channel, is determined by zero longitudinal velocity 
of the second phase and zero transversal velocity of 
the first phase (the second phase is sucked from an 
immovable surrounding into a mixing zone). The 
function-indicator of the first phase B1(t) is zero at 
the external interface because it is absent in 
surrounding medium. Similar, the function-indicator 
B2(t) is zero on the boundary of the potential core, 
the interface of the first phase flowing from the 
nozzle. In a first approach, an influence of the mass, 
viscous and capillary forces are neglected.  

Modeling and numerical simulation for the free 
turbulent two-phase flow was considered in [1, 2], 
for the confined jets - in [4, 5]. The equation array 
for two-phase flow is used according to the method 
of Prof. Nakorchevskii [1] for multiphase flows 
based on introduction of the function-indicator.  

The function-indicator ( )iB t  is introduced for 
the phases in multiphase flow by the next rule: 

1, phase occupies elementary volume V  
( )

0, phase outside elementary  volume Vi

i
B t

i














 

all parameters ( )la t  (density of liquid, flow 
velocity, temperature, etc.) of a mixture in the 
turbulent multiphase flow are considered as follows: 

1
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The analog of the Navier-Stokes equations in a 
boundary layer approach is done in the form [1]: 
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where the stationary equations (1) for the flow of 
incompressible liquids are written in a cylindrical 
coordinate system. Here are: p- pressure, ρ- density, 
u, v - the longitudinal and transversal velocity 
components by x and y, respectively, i - turbulent 
stress in an i-phase.  

The mathematical modeling and computer 
numerical simulation for the free two-phase jet were 
considered in [6, 7]. This paper is continuing them 
for the case of the jet confined by cylindrical 
channel. 

 
 
1.2 Mathematical Model for the Turbulent 

Two-Phase Confined Jet  
 
 
1.2.1 Basic Equations for the Confined Jet Flow 

For the jet confined at its initial part (Fig. 2), in its 
potential core, the Bernoulli equation is satisfied 

              2 2
1 1 0 1 010.5 0.5cp u p u     ,               (2) 

where uci is velocity of the i-th phase in a jet’s core, 
xc- initial cross-section of the confining channel, p0 - 
pressure in a free jet. From the (2) follows  

   1 01 1cu u p  ,     2
0 1 012 /p p p u  .     (3) 

Using the transversal velocities of the phases 
from the first two equations (1), with account of the 
zero transversal velocities at the axis due to 
symmetry of a flow and at the wall of a channel due 
to its impermeability, we can get 

 
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2 2
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where R(x) is the radius of the confining channel, 
equal to the radius of a free jet at the cross section 
x=xc. Indexes c and w belong to x=xc and to the wall 
of a channel, respectively. Star assigns the values at 
y=y*<δ, e.g. y*=0.5δ. The third integral correlation 
in (4) was derived with account of the following two 
equations got from the first two equations of (4): 

  
0

2
1 1 1 0 1 1 0

1
2

R

c

y

d d

dx dx
B u y y dy u y   ,    

              
0

2 2 2 0 0
R

y

d

dx
B u y y dy  .                (5) 

The equation array (4) contains two equations of 
the mass conservation for the first and second phase 
and the integral correlations of momentum – by total 
cross-section and by part of it. Thus, two algebraic 
and two ordinary differential equations represent the 
model of the confined two-phase jet for cx x , 

where by ix x , y0=0, and the function-indicator of 
the first phase is not constant at the axis of a jet 
(channel): Bm1=B m1(x).  

If similarly to the free jet, an assumption is 
accepted about the correlation   

           u2c /u1c = um2 / um1 = s0 = const,                 (6) 

then the system (4) is reduced to the following 
dimensionless form: 
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The correlation (6) means that slip of the two phases 
is constant at least at the axis of the axially 
symmetrical flow, which may be rough for the big 
density ratio of liquid phases. 
 
1.2.2 The Boundary Conditions for Confined Jet  

The equations (4) satisfy the following boundary 
conditions 

 cx x ,  0 0cy y ,   p=p0,   ui =uic,   B1 = B1c.    (8) 

At the x>xi, i i miu u u  is. Then the boundary 
conditions are: 

0x  , i icu u , i icB B , 0 0cy y , c  , 0p  . (9) 

But at the initial confined part of a jet, when
 ,c ix x x , there is also added 

                 0  ,  1iu  ,  1 1mB  .                 (10) 

 
1.2.3 The Jet Confined at Its Initial Part 

After the end of the potential core (or in case a jet is 
confined at its initial part), x>xi, the regularities of a 
jet’s spreading are described by the system of mixed 
algebraic-differential equations: 

1
2

1 1
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1.2.4 The Jet Confined at Its Ground Part 

If a jet is confined at its ground part, the basic 
equations are derived similarly to the above. In a 
dimension form:  

 
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Further investigation of the stationary 2-D 
axially symmetrical heterogeneous two-phase 
turbulent jets in a confined domain is reasonable to 
conduct on some simplified models to reveal the 
basic features of such flows. The main problem with 
multiphase flows consists in closeness of the 
equation array.  

The “new Prandtl formula” is used as before for 
the free jet flows. Peculiarity of the confined jet is 
an appearance of the boundary layer near the wall of 
a channel [8], which complicates the structure of a 
flow substantially. If a character of a jet flow is 
assumed inside a channel up to the wall, the both 
phases have slip on the wall. Then the structural 
scheme is considered similar to the proposed in [8] 
for the homogeneous jet, and η* is chosen the one 
corresponding to a developed jet flow.  

Then the profiles of the parameters are 

          i mi wi ic wiu u u u u   ,   1, 2i  ,      (13) 

 1 1 1 1 1m w wB B B B B   ,   2 11B B  ,                        

where 1cu , 2cu , 1B  are determined according to the 
above-considered method of two-phase flow. 

The mathematical model developed allows 
considering the mutual interaction of the two-phase 
turbulent jet with the confining cylindrical channel. 
The main parameters are: um1(x), uw1(x), Bm1(x), 
Bw1(x), p(x) and R(x), one of which can be stated as 
the optimal in a desired way. For example, for the 
grading of a smooth stabilization channel, in case of 
jet’s confining at its ground part, dp/dx=0 is put in 
(12). Then the functions um1(x), uw1(x), Bm1(x), Bw1(x) 
and R(x) are determined according to the task stated.  

For the stabilized flow, when um1=uw1=u1∞, Bm1= 
Bw1= B1∞, the mathematical model yields: 
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From (2) follows that 2
1R u   independently on 

1,R B   is determined by  

              
1

2
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.                        

And the pressure correlation with a form of the 
confining channel is as follows 

   
2

0 0
1 1 0 4

1

1m c

m c

i C
p B B i const

B R
   
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 
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where 
cR RR , 1 1 1m cu u u  , index   means a 

value of a parameter for the totally stabilized flow, 
0wi   according to the accepted scheme. 

 
 

1.3 Equations for Jet Confined at Initial Part 
If a jet is confined at its initial part, with a 
simplification h=hc=const, it is described by the 
following equations.  

For a jet’s initial part (Bm1=1, 1
1 0

i

mi cu u s


 ): 
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*
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


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  
    

    

 
2

0 00.25
dp

R y y
d




    
. 

 
1.3.1 The Boundary Conditions 

Boundary conditions for the equation array (17) are 
stated as follows: 

0  , 0cy y ,  h=hc,  Bw1=0, 1 1c cB B , 

              cR R , 1 0wu  , 0p  .                    (18) 

Here are: 1x  , 21 2 1/ .     
The conditions (18) mean that at the beginning of 

the confined jet its radius afterwards is constant and 
equal to the radius of the channel. The function h is 
assumed constant in the channel, Function-indicator 
of the first phase equal to zero (absence of the first 
phase at the external boundary of the mixing layer). 
Velocity at the wall is zero due to nonslip at it.  
 
1.3.2 The Momentum Equation Added by ix x  

By ix x , when the initial part of a jet ends, also 
the momentum equation at the axis is added:   

 
1

2
1 1 1 1

0

2 1 m w i wpR B B B B       

 1 1 11 1,w c wu u u d        

 
1

2
1 1 1 1

0

1 1w m i wpR B B B B        

   
1

2
1 2 1 1 2

0

1 1 ,w c w i i cu u u d R B u d          
 

 

   
1

0 1 1 1 1
0

1 w w m iB B B Bi        

  
1

2
1 2 1 1

0

1 w c w w iu u u d B    

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


            
   

2
1 1 1 1 11 1w i i w i c w iB B u u u d             

 

       
1

22
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0

0.5 1 1w c w w c wy R y B B B u u u R y y d               

       
1

22
0 0 1 1 1 1 1 1 0 0

0

0.5 1 1w c w w c wy R y B B B u u u R y y d               

   
1

2
1 1 1 1 1 1 1

0

1m w i w w c wB B B B u u u d           
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   
1

2
0 1 2 1 1

0

1 1w i c w i w ii u u u B          

 
 

2

1 1 21
4 1

,i i
w i i

p p R
B B d

p R
 


  




 

     (19) 

   
*
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R p y B B B B

d




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    
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  
*

* 2
1 1 1 1

0

1 1 1w c w w

d
p u u u R p B

d




          

   1 1 1 1 1 11m w i w c wB B B u u u d          

  
*

* 2
0 1 2 1

0

1 1 1 1w c w

d
i p u u u pR

d




          

   1 1 1 1 1 2 11w m w i w c wB B B B u u u d           

     22 * *
1 1 1 1 11 1 w m w i wp R u B B B B         
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u
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     

 
 

 
*

2* 22 0.25 ,cd dp
R

d d

u


 


  
  
    

   
221

1 1 0 1 1 11 2 1m
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d
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 
2 2

1 2
1 0 21 12 2

0 0

1
1

2
c c

m m

d u d u dp
B i B

d d d


  
  

    
    
      . 

 
1.3.3 Boundary Conditions by ix x  

The boundary conditions are: 

0  ,  Bm1=1,  Bw1= Bw1i,  1 1w w iu u ,   

                  1 1m c iu u ,  ip p .                       (20) 

where 1 1( )i iB B x , 1 1( )w i w iB B x ,  i ip p x , 

 1 0/ix x r   , 1 1 01/m mu u u , 1 1c i iu p  . 

The derived systems (17)-(20) of the mixed type 
equations and boundary conditions represent the 
mathematical model for two-phase turbulent jet of 

the immiscible liquids confined by the cylindrical 
channel. 

In assumption of a slip on the wall of channel, 
the profiles of the main parameters in the form (14) 
are adopted with the following assignments: 

mi mi micu u u , wi wi micu u u , 1 1 1m m c mB B B ,  

1 1 1w m c wB B B , 1 1 1c m c cB B B . 

The pressure in a free jet is p0.  
 
 
1.4 The Jet Confined at its Ground Part 
Then assuming similar to a free jet um2=um1s0, 
uw2=uw1s0, the next dimensionless equation array for 
the jet confined at its ground part yields: 

 
1 1
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0 0

m m w c c w cB u u B u d u B d    
 

 
 

   

 
1 1

1 1 1 1 1 1
0 0
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d u d u
u B i B

d d


 
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    
      . 

The boundary conditions are: 

0x  , 1 0wu  , 1 0wB  , 1 1mu  , 1 1mB  .    (22) 

The mathematical models developed for the 
confined jets have been implemented for computer 
simulation. 

 
 

2 Numerical Simulation of Turbulent 

Two-Phase Confined Jet  
Numerical solution of the boundary-value problem 
(21), (22) has been done for a wide range of the 
varying parameters. The results are given in Fig. 4.  

From the algebraic subsystem of the equation 
array (21), the parameters 1mB , 1wB , p  were 
expressed as functions of the velocity components at 
the axis and at the wall: 1mu , 1wu . Then the system 
of two ordinary differential equations for the 
functions  1mu x ,  1wu x  was solved numerically.  
 

    

    

  

   Fig. 4 Velocities, pressure and functions-
indicators for the axis and wall of the channel:             

i0=0.3, Bm1c=0.6, um1c=0.8, 21 =3.6,  

two variants: 2- 1 =0.006, 3- 1 =0.008. 
 
 
2.1 Analysis of Peculiarities of the Confined 

Two-Phase Jet 
Velocity of the confined jet at the axis of channel is 
slightly falling down (approximately 0.4-0.6) and 
growing at the wall (up to 0.08-0.12). Pressure in a 
channel is growing intensively at the entrance and 
slowly afterwards, nearly linearly. The most 
interesting is peculiarity of the functions-indicators 
at the axis and at the wall.  

As clearly seen from the Fig. 4, the turbulent 
mixing in a first phase determines a length of the 
function variation with the longitudinal coordinate 
but not the function’s character.  

The higher is a turbulent mixing, the shorter is a 
distance of the varying process but the character and 
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even the value is the same. The first phase at the 
axis is decreasing shortly at the entrance of the 
channel approximately 20%, but then it recovers to 
the previous level (100% first phase at the axis). 
Correspondingly, the first phase at the wall is 
growing on the same distance from 0 up to 10% and 
then falls down below 5%.  

This calculation was done for the case of lower 
density of a second phase. Thus, the heavier first 
phase at the beginning of the channel is distributed a 
little across the channel. But then it is nearly totally 
collected around the axis in the center of channel, 
which an interesting feature for the practice. 

Numerical simulation revealed peculiarities 
different from the earlier considered free two-phase 
jet flow [1-3, 6, 7]. The functions 1mu , 1wu  have 

strong influence on the 1mB , 1wB , especially strong 

as concern to 1wB . This causes fast growing of the 

calculations’ inaccuracy because the values 1mu , 

1wu by small errors in numerical solution lead to the 

increased errors in 1mB , 1wB , which are strongly 
inside the interval from 0 to 1. Such peculiarities of 
the interconnection of the computed parameters 
cause serious impediments in computer simulations.  
 
 
2.2 The Equilibrium Two-Phase Flow 

Confined in Cyndrical Channel 
It is interesting to consider the equilibrium flow in a 
channel. As far as the inverse influence of 1mB , 1wB  

to the values 1mu , 1wu  is small, we can write:  

x  , 1 1 1m wB B B   , 1 1 1m wu u u   . (23) 

The condition (11) is about total uniform 
distribution of the phases and their parameters in a 
cross-section of a chamber, which may be not 
achievable. But we can study this question. The 
following piecewise-linear approximations satisfy 
the following conditions: 

 
1 1

1

1 1 1 2
1 1

1 1 1
m m
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m k l
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B B b bx x





 
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2 2

1
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1
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j i
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j l

B B t tx x





 

 
 
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 

  ,           (24) 

where b1k, b2l, t1j, t2i are constants computed from 
the equations (21). In general, their number is 2(m1+ 

m2). As far as the above task of finding the 
coefficients is very cumbersome already in a first 

approach, it was proposed accounting a weak 
influence of the 1mB , 1wB  on 1mu , 1wu , adopt for 

the functions 1mB , 1wB  the following simple 
approximations: 

  1
1 1

2

1 1
1m

b x
B B

b x
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
,  1

1 1
21w

x
B B

t x

t



. (25) 

We stated the following conditions: 

                   x =1, 1 1 1m wB B B   ,                 (26)   

x =0.5,   1 11.01mB B  ,  1 10.99wB B  ;                           

where x x ,  0 , ,ci xx   is some empirical 

function, e.g.  0 , ci x  = const, in particular. 
Then the following assignments were introduced: 
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1

1 1
0

c cB u d  , AI8=
1

1
0

cu d  , AI11=
1

2
1

0
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2
1 1

0
c cB u d  , AI15=

1
2

1 2
0

c cB u d  , AI16=      

          
1

1 2
0

c cB u d  ,  AEP=
1

2
2

0
cu d  ,             (27) 

BT=
1

2
0

cu d  ,  PL=
1

1
0

cB d  . 

Now from the first 3 equations (21), the 
following expressions yield for the introduced 
parameters: 

1u  =2[BT+Bm1c(AI5-AI16)], 1B  =2AI5/ 1u  , 1mu

=(1-F2 1wu ) ,  1wu =(F1F5 - F3)/( F1F4 – F2F3) ,           

  1 0 14 AI14 AEP/ AI15m c m cp B i B     

     
2

1 1 1 1 0 AI15 AI14m w m wB B u u i    
      2

1 1 1 0 0 12 AI16 AI15 1 PLm w w wu u u i i u     
  

     
   

2
1 1 1 0 AEP AI11w m wB u u i   
         (28) 

     2
1 1 1 0 0 12 BT AI8 0.5 1w m w wu u u ui i     

 

   
2

20 1
1 1 1 1 1

1

AEP 2 BT
2
w

m w w m w

m c

u
u u u u u

B

i
 

 
    

  , 

where are:  

F5= 1AI16 BT/ m cB , F4=  1 P L AI16mB    
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   1 10.5 P L BT AI16 BT 0.5 / ,w m cB B      
F3=  1 1 1AI16 BT AI16 BTm w m cB B B  ,  

F1=  1 1 AI8 / AI5 1m wB B  , F2= 1mB 

   1PL / AI5 1 1 0.5 PL AI8 AI5/wB        . 
 
 
2.3 Empirical Constants in the Solution 
The obtained numerical solution of the boundary 
problem (21), (22) depends only on one empirical 
constant or function  , which is multiplayer in the 
variable x x  and does not depend on the 
constants of turbulent mixing in the phases i . 
Therefore, it does not require introduction of any 
hypotheses concerning the turbulent shear stress.  

The correlation of   with empirical constants of 
the turbulent mixing i  is easily computed from the 
solution of the two last equations (21).  
 
 
2.4 Parameters of Totally Stabilized Flow 
The parameters of the totally stabilized flow of 
confined two-phase turbulent jet of two immiscible 
liquids (e.g. 1B   and the others) computed from the 
first three equations (21) are shown in Figs 5-7. 
Constants ti, bi determined from substitution of (25) 
into (26), are given in the Table 1. 

The three cases i0=0.3, Bm1c=0.6, um1c=0.8, were 
analyzed as previously. Dimensionless velocity of 
the totally stabilized flow independently of i0 and 
other parameters is close to 0.2, while the function-
indicator of the phase is substantially depending on 
the parameter i0 (density ratio multiplied by square 
of the slip ratio for the phases).  

Table 1. Parameters of the stabilized confined jet 

 

 

Fig. 5 Jet flow velocity in channel at axis 1mu  and at 

wall 1wu  against axial coordinate x x  for i0=0.3 
and i0=8.0: 1- Bm1c=1.0, 2- Bm1c=0.8, 3- Bm1c=0.6 

  

Fig. 6 Velocity of jet flow in channel at axis 1mu  

and at wall 1wu  against axial coordinate x x  for 
i0=1.0: 1-Bm1c=1.0, 2- Bm1c=0.8, 3- Bm1c=0.6 

 
Fig. 7 Pressure of a jet flow in the cylindrical 

channel against axial coordinate for i0=0.3, 1.0, 8.0 
and: 1-Bm1c=1.0, 2- Bm1c=0.8, 3- Bm1c=0.6 

The velocities of flow and pressure are presented 
in Figs 5-7 against axis of the channel. It is clearly 
observed that the most intensive mixing is 
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performed in the region by 0.1x  . Afterwards it is 
going slower and slower, especially concerning the 
pressure. Maximum of the recoverable pressure by a 
high density ratio allows deciding, in a frame of the 
model, in a first approach, about the rational length 
of the stabilizing channel. 

Dimensionless pressure depends a little on a 
density ratio, which abruptly increases only by big 
density ratio and a small velocity of the jet’s 
entrainment into a channel. The last case may 
evidence a possibility for the jamming a jet in a 
confining channel.  
 
 
3 Validation of the results obtained 
The results obtained by numerical solution of the 
boundary problem (21), (22) and its approximate 
solution was done with the known experimental 
data. By two-phase flows such data are absent; 
therefore, a comparison of the experiments by a 
turbulent mixing in the jet devices working on 
homogeneous flows of incompressible liquids is 
presented in Fig. 8: 

 

Fig. 6 Comparison of the solutions obtained  
against experimental data 

For  =0.005, the correspondence of the results 
obtained with experimental data [9] is quite good. 
And it might be even slightly improved with 
choosing the function  x  for the best correlation 
in each specific case. 

The method was successfully applied to 
modeling and simulation of the complex two-phase 
flows for the corium cooling during severe accidents 

at NPP [7] and to calculation of the parameters for 
the new jet type machines for steel melting [10]. 

 

 

4 Short review of recent papers 
As far as this is the third paper in our series on the 
heterogeneous jets of mutually immiscible liquids, 
which we did not find analogues in the literature, we 
have to conclude with a short review of recent 
papers, which may be of interest to some partial 
phenomena considered by us and to further study. 

The detailed measurements in confined coaxial 
turbulent jets were performed in [11] with a laser 
Doppler anemometer, especially in the initial 
mixing region, in order to study the physical 
phenomena and the existence of organized flow 
structures. The performance of the two-equation 
turbulence model was tested for selected previous 
experimental data.   

The induced flow in a long cylinder by the axial 
round turbulent jet was investigated experimentally 
with applications to crude oil storage [12]. It was 
found that the flow does not reach a true steady state 
but vacillates periodically. Digital video recordings 
and particle image velocimetry were used, and the 
frequency of jet switching, jet stopping distance, 
turbulence characteristics, and the influence of end-
wall boundary conditions were inferred. 

A systematic search for combined axial and 
helical forcing of a round jet that maximize mixing 
was described in [13], which concentrated on  
optimization of jets at higher Reynolds numbers 
using large eddy simulation.  

The paper [15] presented study of the stochastic 
Lagrangian agglomeration model applied in the 
classical Euler-Lagrange approach. The main focus 
was on a modelling of the turbulent particle 
transport and particle collision and agglomeration. 
The dynamic equation of the individual particle 
motion was solved in the Lagrangian approach, 
while the particulate phase properties were given by 
the ensemble average in a number of particles.  

Then the paper [16] identifies the mechanisms in 
the wall region and particle segregation in the 
viscous sublayer in the regions with streamwise 
fluid velocity lower than the mean ones, which is of 
paramount importance for many technological and 
environmental problems. The results from a direct 
numerical simulation of the passive transport of 
solid particles by a fully developed turbulent 
channel flow with a Reynolds number of 180 based 
on the friction velocity and the channel half-width 
has been presented in [17]. 

The mathematical model for the phenomenon of 
preferential concentration of inertial particles in a 
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turbulent field was done in [18]. Various scaling 
limits of interest have been studied together with the 
effect of particle collisions. The effect of collisions 
was estimated negligible but in some cases particles 
may decrease diffusion. 

The effect of spatial correlation between the 
particle velocities was investigated in two-phase 
turbulent flows [19] using the statistical model built 
on the joint probability distribution of the fluid and 
particles. Some singularities of utilization of LDA 
for study a structure of the gas-solid particles 
heterogeneous flows were considered [20], where 
revealed the behaviours of particles moving in a gas 
flow and their effect on the parameters of the carrier 
flow.  
 
 
5 Conclusion 
The results obtained may be useful in a number of 
chemical technology and other engineering fields, 
where the jet hydraulic machines are applied. 
Mathematical model developed for the free and 
confined jets of two-phase flows and the 
approximate correlations proposed from analysis are 
available for implementation into the research and 
engineering calculations.  

Account of the phase spatial and temporal 
distribution in the mixing multiphase flows is 
important for deep understanding and optimization 
of the mixing processes. The model and 
experimental technique for the investigation of the 
multiphase turbulent jet of mutually immiscible 
liquids (metal melt-slag, oil-water, etc.), when two 
or more liquids in a mixed flow have their own 
dynamically changing interfaces, is unique and  may 
be of interest in the mentioned cases. 

The application of the method has some 
limitations in touch with approximations of the 
function-indicator and numerical solution of the 
boundary problems, which were detail investigated 
and the advices to fight them were developed. 
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