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1 Introduction 
The diffusion coefficient [1] can be assumed to be a 
constant in many situations. In particular, the 
constant diffusion coefficient hypothesis seems to 
be a good assumption when we study the diffusion 
of gases. 
       Nevertheless, when denser fluids are involved, 
the constant diffusion coefficient hypothesis may lie 
far from the reality [2,3,4]. 
       In particular, when the molecular interactions 
between the diffusing components are not 
negligible, the diffusion coefficient becomes 
dependent on the concentration, in a way that the 
relationship between them should be taken into 
account.  
       The main subject of this work is the Fick’s 
second law [5,6] in a context in which the diffusion 
coefficient D  is a function of the concentration c . 
       It is to be noticed that Fick’s Second Law and 
its mathematical analysis is an issue each time more 
frequent in the current literature. Botar and Ruff [7] 
treats the diffusion as a random walk on a cubic 
lattice. Jou et al. [8] consider a higher order 
hydrodynamics for material motion in a medium 
under arbitrary nonequilibrium conditions. Van 
Milligen et al. [9] study the laws of Fick and of 
Fokker-Planck and present some numerical results. 
Sasaki et al. [10] investigate the confidence 
concerning Fick’s Law in soils. In reference [11], 
authored by Zhang et al., it is considered the 
variation of the diffusion coefficient with the time. 

Siepmann and Siepmann [12] present a study of the 
diffusion process applied to the drug delivery 
process. Guenneau and Puvirajesinghe [13] consider  
phenomena involving anisotropic diffusion. 
       In this paper we will restrict our attention to 
phenomena described by the following nonlinear 
parabolic partial differential equation [14] 

      c c c c
D D D

t x x y y z z

          
      

          
      (1) 

in which  
                                 ˆ 0D D c                           (2) 
       The nonlinear partial differential equation 
represented by equation (1) is subjected to initial 
data and to boundary conditions [15].  
       The unknown is the concentration c , which 
may depend on the position  , ,x y z and on the time. 
 

2 The Kirchhoff Transformation 
The Kirchhoff transformation is a largely employed 
tool for helping the description of heat transfer 
problems in which the thermal conductivity depends 
on the temperature [16-26]. 
       Let us introduce the Kirchhoff transformation, 
within the mass transfer context, as follows 

     
0 0

1 ˆ ˆˆ ,
c

c D d D D c
D

             (3) 

in which the constant 0D  could, for instance, 
represent the diffusion coefficient when the 
concentration is zero (but not necessarily). 
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       It is easy to see that 

                 
0 00

1 ˆ
c

D c
D d

x x D D x
 

  
 

               (4) 

and, consequently,  

                          
2

2
0

1 c
D

x D x x

    
  

   
                            (5) 

The same holds for the derivatives with respect to y  
and to z . 
       In addition,  

                  
0 00

1 ˆ
c

D c
D d

t t D D t
 

  
 

              (6) 

       With the above definition, we have that 

                       

0

2

0 2

2

0 2

2

0 2

Dc

t D t

c
D D

x x x

c
D D

y y y

c
D D

z z z

 


 

    
 

   

    
 

   

    
 

   

                      (7) 

and, so, equation (1) may be rewritten as 

                  
2 2 2

2 2 2

1
D t x y z

      
  

   
                 (6) 

in which the diffusion coefficient is, now, regarded 
as a function of  . The functional relationship 
between the diffusion coefficient and the function 
 is ensured, provided the diffusion coefficient is 
always greater than a given positive constant. In 
other words, if there exists a constant 0  such 
that, for any concentration,  
                             ˆ 0D D c                           (9) 
       One of the challenges in this work is to present 
an user friendly relationship between the diffusion 
coefficient and the concentration, providing an easy 
way for reaching the concentration c  once the 
function   is known. 
       Now, with the use of the Kirchhoff 
transformation, the only nonlinearity will be the one 
due to the diffusivity appearing in the transient term. 
It is to be noticed that the Kirchhoff transformation 
works well with discontinuous functions. 
       This fact induces us to consider piecewise 
constant relationships between the diffusion 
coefficient and the concentration. 
 

3 Piecewise Constant Approximation 
The relationship between the diffusion coefficient 
and the concentration is established from discrete 
experimental data. So it is always reasonable to 

consider the diffusion coefficient as a piecewise 
constant function of the concentration. This is 
illustrated in figures 1, 2 and 3. 

 
Fig. 1 – A typical curve fitted for seven given  
values. 
 

 
Fig. 2 – A typical piecewise linear approximation 
for the same values given in figure 1. 
 

 
Fig. 3 – Illustration of a possible piecewise constant 
approximation for the same values given in figure 1. 
        
       All approximations illustrated in the previous 
figures are valid, but not necessarily equivalent, 
since, when building a curve from sparse points, (for 
instance by means of the least squares method), it is 
possible to find functions for which the inversion of 
the Kirchhoff transformation is very complicated. 
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The same can be said for the piecewise linear 
continuous approximation, whose inversion is 
usually complicated. 
        The piecewise constant approximation, on the 
other hand, has two undeniable advantages: 
1- it always allows closed-form analytical inversion 
(as it will be shown later by equations (12) and (13))  
2- there is no precision limit, as long as there are 
enough points to be employed. In other words, we 
may use all the available data in an exact way. This 
becomes clear in equation (10).  
       These facts were fundamental for choosing to 
represent the diffusion coefficient D  as a piecewise 
constant function of the concentration c . 
       The piecewise constant approximation is given 
by 

 
1 1

1

1

    for    c
ˆ     for    c , 1

    para    c
i i i

N N

D c

D D c D c c i N

D c








     
 

  (10) 

in which 1 2, ,..., ND D D  and 1 2 1, ,..., Nc c c 
 are positive 

constants 
       Assuming that the diffusion coefficient is given 
by (10), the Kirchhoff  transformation is given by 

  

   

  

1
1

0

2 1 1 1 2 1
0

1 1 1 2
0

2 2 1 1 1 1

,     if   c

1 ,     if   c

1

... ,     if   c

N N N N N

N

D
c c

D

D c c D c c c
D

D c c D c c
D

D c c D c c

   









   


  
                 




   

    

    (11) 

       The above relation yields 

            
 

  

1
0

1 1 1
20

1
2

1
2

N

N

i i i i

i

D D c
D

D D c c c
D

  



   

 
    

 


     (12) 

       Defining the (nonnegative) constants 1 , 2 , 
3 , …, 1N  as follows 

      1 0
1 0

, 1 1,   c 0
i

j

i j j

j

D
c c i N

D




        (13) 

the inverse of the Kirchhoff transformation is 
unique and explicitly given by 

    

 

0

1

 1  1
2 1

1 1
2

1 1         

N

N

i i

i i i

D
c

D D

D D
 

 

 
    

 

  
      

  


   (14) 

       The above relationship holds for any piecewise 
constant approximation and, thus, it is completely 
general. 
       For instance, when 2N  , we have [18] 

                   1 1

2 1

    for   cˆ
    for    c

D c
D D c

D c


  


            (15) 

 
Fig. 4 – An approximation with two steps ( 2N  ). 
 

       In such case we have 

 1 2 2 1
1 1

0 0 0 0

1
2

D D D D
c c c c

D D D D

     
          

     
(16) 

while the inverse is given by 

        

0 0

1 2

0 0 1 1
1 1

2 1 0 0

1
2

D D
c

D D

D D D D
c c

D D D D

 
    

 

   
       
   

       (17) 

       For instance, when 10N  , we have  

            

1 1

2 2 1

3 3 2

4 4 3

5 5 4

6 6 5

7 7 6

8 8 7

9 9 8

10

    for    c
    for    c
    for    c
    for    c
    for    ˆ
    for    
    for    
    for    
    for    

    for    

D c

D c c

D c c

D c c

D c c c
D D c

D c c c

D c c c

D c c c

D c c c

D c c



 

 

 

 
 

 

 

 

 

 9

















          (18) 

and the following associated figure. 
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Fig. 5 – An approximation with ten steps ( 10N  ). 
 
 
4 An Error Estimate 
Let us assume that the diffusion coefficient is 
known within the range MIN MAXc c c   and given 
by means of the function  ˆD D c such that  

                    ˆ , MIN MAXD D c c c c                (19) 
       Let us consider a piecewise constant 
approximation in which 1 MINc c , 1N MAXc c  , 

 1
ˆ

MIND D c ,  ˆ
N MAXD D c  and 1 1i i ic c c    , 

as suggested in figure 6. 
 

 
Fig. 6 – A scheme for helping the error estimate. 
 

       So, the exact Kirchhoff transformation, denoted 
here by EXACT , is the area below the curve (called 
exact), between zero and c , divided by 0D , given 
by  

   
   

   

1

2

1 1

0 00 0

0 0

1 1ˆ ˆ

1 1ˆ ˆ...
j

cc

EXACT

c c

c c

D d D d
D D

D d D d
D D

   

   



   

  

 

 

     (20) 

       The approximate Kirchhoff transformation, 
obtained with the piecewise constant approximation, 
is the area of the rectangles between zero and c  
(divided by 0D ), given by 

     1 2
1 2 1 1

0 0 0

... j

APPROX j

DD D
c c c c c

D D D
          (21) 

      Choosing the constants jD  as (mean value)  

       
1 11

1 1ˆ ˆ
i i

i i

c c

i

i i c c

D D d D d
c c c

   

 

 
         (22)   

the difference between the exact and the 
approximate value of the Kirchhoff transformation 
is obtained from  
 

    
   

1 1

1

0 1

1 ˆ ˆ
i

i i

EXACT APPROX

cc

i

i ic c

c c
D d D d

D c c
   

 





  

   
   

   
 

  (23) 

       Hence, for 1ic c   and for ic c  the difference 
is zero. Therefore, the maximum difference will be 
reached when the derivative of EXACT APPROX   
with respect to c  is zero, within the open interval 
 1,i ic c . This derivative is given by 

     

 

   
 

10 0

ˆ1 1ˆ ˆ
i

i

EXACT APPROX

c

i

c

d

dc

D c D
D c D d

D c D
 



  

   
   

  


  (24) 

and, so, the maximum difference (for this interval) 
occurs for c c  such that 
                                 ˆ

iD c D                            (25)                                         
       Defining the error as follows 
 
                   EXACT APPROXERROR               (26) 
the maximum error is reached when c c  at a 
given interval  1,j jc c . In other words,  

            
1 01

ˆ
max
j j

j

MAX j
c c

j N

D D
ERROR c

D



  

 


              (27) 

       Since the difference between the maximum and 
the minimum diffusion coefficient is always 
bounded, the error will decrease as the step width 
decreases. This fact enables us to increase, as 
desired, the degree of accuracy.   
       The computational implementation of the 
formulas is very fast and easy and, therefore, N  can 
be increased as much as required in order to 
minimize the error. 
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5 Numerical Scheme 
In order to present some results, we shall consider a 
semi-implicit algorithm. 
       The use of the Kirchhoff transformation enables 
us to advance from time nt  to time 1nt   considering 

the term 
2 2 2

2 2 2x y z

     
 

  
 evaluated at the time 

1nt  . The only quantity evaluated at the time nt  will 
be the diffusivity coefficient D .  

This semi-implicit algorithm for advancing 
from nt  to 1nt   can be summarized as follows 

             
11 2 2 2

2 2 2

n
n n

nD t x y z


         

   
    

           (28) 

in which the superscript n  indicates that the 
quantity is evaluated at the time nt . 

In the above equation nD  depends on n . So, 
the approximation at 1nt   is obtained from a linear 
problem, especially when we have Dirichlet and/or 
Neumann boundary conditions. 

If we employ a centered finite difference 
approximation, equation (28) becomes 

        

 

 

 

1 1 1 1
, , , , 1, , , , 1, ,

2

1 1 1
, 1, , , , 1,

2

1 1 1
, , 1 , , , , 1

2

2

2

2

n n n n n

i j k i j k i j k i j k i j k

n

n n n

i j k i j k i j k

n n n

i j k i j k i j k

D t x

y

z

   

 

  

 

  

 

     
 

 

   
 



   




(29) 

in which , ,
n

i j k  represents the approximation for   

at the spatial point  , ,i j kx y z  at the time nt . The 
spatial coordinates are given by 

     1 ; 1 ; 1i j kx i x y j y z k z          (30) 

and the time nt  is given by 
                                  nt n t                               (31) 
       Equation (29) holds for spatial points 
 , ,i j kx y z  that do not belong to the boundary. 
       Equation (27) represents a semi-implicit scheme 
since the diffusion coefficient is evaluated at the 
time nt  and not at the time 1nt  . 
       Once known , ,

n

i j k , the concentration , ,
n

i j kc  is 
obtained from the inverse of the Kirchhoff 
transformation. Clearly, , ,

n

i j kc  represents the 

concentration at the spatial point  , ,i j kx y z  at the 

time nt . 
 

6 Some One Dimensional Results 
In order to illustrate the proposed procedure 

and the effect of the concentration dependent 
diffusivity coefficient, let us consider the following 
one dimensional problem (with Dirichlet boundary 
conditions [14]) 

 

   

 

 

 

1

2

, 0, , 0

, 1/ 2ˆ
, 1/ 2

0, 0
, 0

0   0, , 0

A

B

c c
D x L t

t x x

D constant c
D D c

D constant c

c C at x t

c C at x L t

c for x L t

   
   

   

 
  

 

  

  

  

     (32) 

 
       With the aid of the Kirchhoff transformation, 
poblem (32) becomes 

       

 

 

 

2

2

1 1

2 1

1 , 0, , 0

,
,

0, 0
, 0

0   0, , 0

A

B

x L t
D t x

D constant
D D

D constant

at x t

at x L t

for x L t

  
  

 

  
   

  

   

   

   

       (33) 

in which, from equation (16) we have  

 

1
1 1

0

1 2 1 2

0 0

1 2 1 2

0 0

1 1
2 2 2 2

1 1
2 2 2 2

A A A

B B B

D
c

D

D D D D
C C

D D

D D D D
C C

D D

 

      
        

    

      
        

    

(34) 

In this case, the numerical scheme may be 
represented as follows (it is remarkable that N  and 
N  have different meanings) 

    
 

1 1 1 1
1 1

2

1
1

1

0

2 , 1

0, 1

n n n n n

i i i i i

n

n

A

n

BN

i

i N
D t x

i N

   

 





     
  

 

 

 

   

 (35) 

in which  

                   
 

1 0

1 ,
1

, 0

i

n n

L
x i x x

N

t t t t

    


   

              (36) 

       Equation (35) represents, for each 0n  , a 
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linear system whose unknowns are the 1n

i

  
( 2,3,4,..., 1i N  ). This system may be 
conveniently rewritten as 

      

   

 

21 1
1 11

2

1
1

1

0

,1
2

0, 1

n n n n

i i in

i n

n

A

n

BN

i

D t x
i N

x D t

i N

 

 





    
   

  

 

 

   

     (37) 

Considering a Neumann boundary condition 
[14] at x L , we have, instead of (32), the 
following  problem  

      

 

 

 

1

2

, 0, , 0

, 1/ 2ˆ
, 1/ 2

0, 0

0 , 0

0   0, , 0

A

c c
D x L t

t x x

D constant c
D D c

D constant c

c C at x t

c
at x L t

x

c for x L t

   
   

   

 
  

 

  


  



  

  (38) 

In this case, the numerical scheme may be 
represented as follows 

   

 

21 1
1 11

2

1
1

1 1
1

0

,1
2

0, 1

n n n n

i i in

i n

n

A

n n

N N

i

D t x
i N

x D t

i N

 

 



 



    
   

  

 

 

   

(39) 

in which the unknowns are the 1n

i

 . 
       Figures 7 and 8 present some results for 
problem (33), assuming that 1 25D D  and 1 0.5c  .    
       In these figures we have a direct comparison 
between the constant diffusion coefficient approach 
(in which the diffusion coefficient is given by a 
mean value) and the piecewise constant diffusion 
coefficient, considering 2N  . 
       In figure 7 we have the same boundary 
condition at 0x   and at x L  ( 1A BC C  ) 
while, in figure 8, the boundary condition at 

0x   and at x L  are different 
( 1,   0A BC C  ). 
       In both the figures it is easy to observe the 
jump on the first derivative of the concentration 
when 0.5c  . This fact does not occurs under 
the constant diffusion coefficient hypothesis. 
 

 
 
Fig. 7 – The concentration c  as a function of the 
dimensionless position /x L  at three time 
instants, assuming 1A BC C   and 1 25D D .  
 

 
 
Fig. 8 – The concentration c  as a function of the 
dimensionless position /x L  at three time 
instants, assuming 1,   0A BC C   and 1 25D D .  
 
       Figure 9 presents some results for problem (36), 
assuming that 1 25D D  and 1 0.5c  . As in the 
cases of figures 7 and 8, we have a direct 
comparison between the constant diffusion 
coefficient approach and the piecewise constant 
diffusion coefficient, considering 2N  . 
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Fig. 9 – The concentration c  as a function of the 
dimensionless position /x L  at four time 
instants, assuming 1AC  , / 0c x    at x L  
and 1 25D D .  
 
       In figures 7, 8 and 9 the thin line represents the 
result obtained under the constant diffusion 
coefficient assumption ( 23D D  constant). The 
employed number of nodes was 201N  . 
 
 

 
Fig. 10 – The concentration c  as a function of the 
time t , assuming 1A BC C   and 1 25D D , for  

/x L  0.875 and 0.125 (A and a); 0.75 and 0.25 
(B and b); 0.625 and 0.375 (C and c) and 0.5 (D 
and d).  
 

 
Fig. 11 – The concentration c  as a function of the 
time t ,assuming 1,   0A BC C   and 1 25D D , 
or  /x L  0.875 (A and a); 0.75 (B and b); 0.625 
(C and c); 0.5 (D and d); 0.375 (E and e); 0.25 
(F and f) and 0.125 (G and g).  
 
       In figures 10 and 11 it is presented the 
concentration as a function of time, for seven 
selected spatial points, for problem (32). In figure 
10 we have 1A BC C   (like in figure 7) while in 
figure 11 we have 1AC   and 0BC  , like in 
figure 8.  
       The capital letters A, B, C, D, E, F and G 
indicates the results obtained with 
concentration-dependent diffusion coefficient, 
while the lower case letters a, b, c, d, e, f and g 
indicates the results obtained under the constant 
diffusion coefficient assumption ( 23D D ).  
       The solution of systems (37) and (39) was 
carried out with the aid of a Gauss-Seidel scheme 
[15], by means of a very simple FORTRAN code.     
The figures were constructed with the aid of a 
specific JAVA code, created by the authors. 
 
  
7 Conclusions 

This work presented a powerful tool for describing 
and simulating the Fick’s second law taking into 
account any relationship between the diffusion 
coefficient and the concentration. 
       Besides allowing the representation of any 
functional dependence between the diffusion 
coefficient and the concentration, the use of 
piecewise constant approximation gives rise to very 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2021.16.9 R. M. S. Gama, R. Pazetto S. Gama

E-ISSN: 2224-3461 65 Volume 16, 2021



simple closed form formulas for both the Kirchhoff 
transformations as well as its inverse, by means of 
convenient equations. In addition, there is no limit 
of accuracy for these approximations. 
       The computational implementation of the 
piecewise constant approximation becomes more 
interesting when it is taken into account that it does 
not require the use of any sophisticated function. It 
is needed only the basic math operations and the 
calculation of the absolute value of a real number. 
       It was presented a numerical scheme for 
carrying out numerical simulations as well as some 
typical results. 
       It must be (again) pointed out that the 
considered methodology has no limit of accuracy 
and is computationally cheap and easy to be 
implemented. These advantages make the proposed 
approach the first choice for simulating problems 
with concentration-dependent diffusion coefficient. 
       In fact, the procedure considered in this work is 
not restricted to Fick’s second law. Transient heat 
transfer phenomena with temperature-dependent 
thermal diffusivity (and temperature-dependent 
thermal conductivity) may be simulated by means of 
the protocol presented here. In addition, any partial 
differential equation with similar structure is eligible 
to be numerically solved with the aid of the tools 
presented here. 
       As a first hint for future research, we could 
consider the use of Robin boundary conditions 
and/or Dirichlet boundary conditions varying in 
time. 
       Besides, some transient problems, modelled 
under the Continuum Mixture Theory viewpoint 
[27,28], could be simulated with the tools presented 
in this work. 
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