
Abstract:- Free surface flow of water over a shallow rough bed is characteristically turbulent due to
disturbances generated by the bed resistance and diverse causes. The paper presents a derivation of the
basic equations in two dimensions and their numerical solution by an extension of the method devel-
oped earlier for flow in one dimension. Starting from the three dimensional Reynolds Averaged Navier
Stokes (RANS) equations, the equations of continuity and horizontal momenta are depth averaged to
derive three equations for the free surface elevation ζ and the horizontal, depth averaged velocity com-
ponents (U, V ). Certain closure assumptions are required for derivation of the equations. Principally,
the viscous stresses are neglected, while the Reynolds stresses are assumed to depend on the vertical
coordinate z only for the shearing flow over the x, y - plane representing the plane bed. Secondly, it
is assumed that the instantaneous horizontal components of velocity (u, v) follow the 1/pth (p = 7)
power law of variation in the z - direction, in liu of the the logarithmic law of the wall. For numerical
solution of the three nonlinear equations of continuity and momenta, the equations are reformulated in
terms of the primitive “discharge” components (Q, R) of the velocity (U, V ), showing that Q and R
can be functions of ζ alone. The transformed equation of continuity is treated by the Lax-Richtmyer
method. The two momentum equations on the other hand, transform in to two coupled second degree
equations in the derivatives of Q and R, which decouple in the important case of quasilinear straight
crested waves on the water surface. The decoupled equations are numerically solved by the iterative
modified Euler method, and illustrated by application to an initial elevation of a model for tsunami
propagation.
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1 Introduction

Shallow water equations in two dimensions are
useful in oceanic and atmospheric flows as the as-
pect ratio of the horizontal spread to vertical height
is very large. In the development of the equations,
for oceanic flows such as tsunamis, tides, storm
surges and oceanic circulations, the fluid pressure
at a point is considered hydrostatic, even though
the free surface may have vertical motion. The gov-
erning equations of mass conservation and the hor-
izontal components of momentum are formally in
terms of the surface elevation ζ and the depth aver-
aged components of the horizontal velocity (U, V ).
The equations neglecting the wind forses on the

free surface of the water are (Mader [1], p. 27), the
equation of continuity

∂ζ

∂t
+
∂(ζU)

∂x
+
∂(ζV )

∂y
= 0 (1)

and the momentum equations in the x, y - direc-
tions as

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+ g

∂ζ

∂x
+ τ0x = 0 (2)

∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+ g

∂ζ

∂y
+ τ0y = 0 (3)

where (τ0x, τ0y) are the components of bed resis-
tance that are usually modeled in the hydraulics
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literature by either the Chezy or by the Manning
empirical formulae of the following forms:

τ0x =
gU
√
U2 + V 2

C2ζ
, τ0y =

gV
√
U2 + V 2

C2ζ
, (Chezy)

(4a)

τ0x =
m2gU

√
U2 + V 2

ζ1/3
, τ0y =

m2gV
√
U2 + V 2

ζ1/3
,

(Manning) (4b)

where C and m are respectively the Chezy and the
Manning coefficients that depend on the roughnes
of the bed, and g the acceleration due to gravity
The nonlinear partial differential equations (1) -
(3) are also treated by Mader [1] using first order
finite differencing and applying them to a number
of applications, in particular to tsunamis.

Among the more advanced methods, Fennema
and Chowdhry [2], [3] have respectively given im-
plicit and explicit type of finite difference methods.
The former is of Beam-Warming type and the lat-
ter of MacCormack-Gobuti type, both being sec-
ond order accurate in space as well as time. On
the other hand, Wilders et. al. [4] and Casulli [5]
develop fully implicit splitting and semi-implicit fi-
nite difference methods for the equations. In recent
years, Ouyang et. al [6] present a MacCormack-
TVD finite difference scheme for solution, where
as Fu and Hodges [7] present a time-centered split-
implicit method, citing some other works. Much
earlier however, Katopodes and Strelkoff [8] treat
the equations differently by the method of char-
acteristic surfaces. Finite volume methods have
also been proposed. Alcrudo and Garcia-Navarro
[9] give a high resolution Godunov type scheme,
while Peng and Tang [10] present a method for
which a Godunov type scheme is used for solving
the Riemann problem. Garcia-Navarro et. al. [11]
have also presented a multidimensional upwind
scheme. Oceanic circulation models based on the
two dimensional shallow water equations are also
commercially available as software packages.

Here, in this paper, the shallow water equa-
tions in two-dimensions are developed taking in
to consideration the turbulence generated by bed
friction and other causes. The methodology is a

generalization of the one given by Bose and Dey
[12] for the case of one dimensional open chan-
nel flows. Beginning with the three dimensional
RANS equations, it is assumed that the Reynolds
stress components at a point depend on the verti-
cal z coordinate of the point only in a flow, which
is essentially of shearing type parallel to the bed.
It is then argued following Schlichting [13] that
the horizontal components of the time averaged
instantaneous velocity (u, v) vary as z1/p where
p = 7. The proportionality constants appearing
in the expressions for u and v are then written in
terms of the respective depth-averaged horizontal
velocities (U, V ), which are functions of the hor-
izontal coordinates (x, y) only. The one-seventh
power law is used here instead of the better known
logarithmic law of the wall, as the former leads to
explicit depth averaged equations for the flow. An
expression for the time averaged vertical velocity w
in terms of U, V and z follows from the equation of
continuity. Similarly, depth averaging of the verti-
cal component of the momentum equation subject
to the assumption of linear variation of the stream
surface with respect to z yields the expression for
the time averaged pressure p̄, which contains apart
from the hydrostatic pressure, nonlinear terms on
account of vertical instantaneous and convective
accelerations. Depth averaging of the continuity
and the two horizontal momentum equations then
yield the depth averaged continuity and momen-
tum equations in terms of ζ, U and V . Numerical
treatment of the nonlinear equations is then de-
veloped generalizing that given by Bose (2018) for
one dimensional flows. Expressing the three equa-
tions in terms of “discharge” components Q = ζU
and R = ζV parallel to the x and y axes, it is
shown that the two quantities can be functions of
ζ alone, that is to say, Q = F (ζ) and R = G(ζ).
The two nonlinear momentum equations then re-
duce to two coupled second degree equations in
F ′(ζ) and G′(ζ), where the prime denotes differ-
entiation with respect to ζ. In the important case
of quasi-linear nearly straight crested waves par-
allel to the y-axis, the equations decouple in to a
quadratic equation in F ′(ζ) and an explicit equa-
tion for G′(ζ). The averaged continuity equation
on the other hand reduces to a standard form con-
servation equation , which is treated by the second
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order Lax-Richtmyer method [16], where in the
first order pair of ordinary differential equations
fot F (ζ) and G(ζ) is solved by the second order
iterative modified Euler method (Bose [15]. The
method is illustrated by application to an initial
elevation form proposed in Howe [17], for a model
tsunami propagation problem.

2 The Turbulent 2D Shallow Water Equa-
tions

The two-dimensional turbulent shallow-water free-
surface flow over a plane horizontal bed is governed
by the general RANS equations. As the free surface
in general, can be undulating during the flow, the
plane bed is conveniently chosen as the x, y-plane
with the z-axis drawn vertically upwards, with a
mean water depth of h units. Due to turbulence,
the velocity at a point (x, y, z) in the fluid consists
of the time averaged components (u, v, w) and in-
stantaneous fluctuations (u′, v′, w′). The time av-
eraged components satisfy the RANS equation of
continuity

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (5)

for incompressible fluids. The fluctuating veloc-
ity components satisfy a similar equation. The
RANS momentum equations (Schlichting [13], p.
562) contain contributions of (u, v, w), that of the
pressure p̄, and the viscous and Reynolds stresses.
Moreover, as the motion over the horizontal bed
is essentially of shearing type, the viscous and
Reynolds stress components become practically in-
dependent of x and y. Hence, neglecting the contri-
bution of the normal viscous stress in the vertical
direction, the RANS momentum equations read as

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
= − 1

ρ

∂p̄

∂x
+

1

ρ

∂τzx
∂z

+
µ

ρ

∂2u

∂z2

(6)
∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
= − 1

ρ

∂p̄

∂y
+

1

ρ

∂τzy
∂z

+
µ

ρ

∂2v

∂z2

(7)

∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
= −g− 1

ρ

∂p̄

∂z
−∂w

′2

∂z
(8)

where ρ = density, µ = dynamical coefficient
of viscosity, g = acceleration due to gravity, and
τzx = −ρw′u′, τzy = −ρw′v′ are Reynolds stresses

in which the overbars denote time averages. The
Eqs. (5) - (8) describing the flow is under deter-
mined, and so additional conditions have to be
incorporated.

3 The 1/pth Power Law

For open channel flow in one direction only, say the
x-direction, it is known that u varies slowly as z1/p,
where p = 7 (Schlichting [13], p. 590; Bose and Dey
[12]). Similarly, in the present generalization, one
can assume that

u =
p+ 1

p
U(x, y, t)

(z
ζ

)1/p
,

v =
p+ 1

p
V (x, y, t)

(z
ζ

)1/p
(9)

where the velocity (U, V ) equals the depth average
of (u, v), and ζ(x, y) is the surface elevation over
the point (x, y) on the bed. Accordingly, from Eq.
(5) by integration

w = −
∫ z

0

(∂u
∂x

+
∂v

∂y

)
dz = −

(∂U
∂x

+
∂V

∂y

)z1/p+1

ζ1/p

(10)
where it is assumed for simplicity that the forward
flux (∂U/∂x, ∂V/∂y) of the flow is much greater
than the slope factor (U/ζ) (∂ζ/∂x, ∂ζ/∂y) of the
free surface, so that the latter terms become in-
significant compared to the term written in equa-
tion (10). Physically, the approxiation (10) implies
that as the rate of expansion ∂U/∂x + ∂V/∂V in-
crases the vertical velocity w decreases, which ap-
parently is quite plausible due to the mass conser-
vation principle. The solution forms (9) and (10)
are next used in equations (5) - (8). The convec-
tive acceleration term in Eq. (8), using Eq. (5)
becomes

u
∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
= u

∂w

∂x
+v

∂w

∂y
−w

(∂u
∂x

+
∂v

∂y

)
= u2

∂

∂x

(w
u

)
+v2

∂

∂y

(w
v

)
= u2

∂2z1
∂x2

+v2
∂2z1
∂y2

(11)

wherein z = z1(x, y) represents the stream surface
passing through the point (x, y, z). The two par-
tial derivatives ∂2z1/∂x

2 and ∂2z1/∂y
2 in equation

(11) are proportional to the curvature of the sur-
face z = z1(x, y) and is assumed to linearly vary
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with z, as in the Boussinesq approximation of open
channel flows. Then,

∂2z1
∂x2

=
z

ζ

∂2ζ

∂x2
,

∂2z1
∂y2

=
z

ζ

∂2ζ

∂y2
(12)

Hence using Eq. (9), the convective acceleration
(11) becomes

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

=
(p+ 1

p

)2 (z
ζ

)2/p+1 (
U2 ∂

2ζ

∂x2
+ V 2∂

2ζ

∂y2

)
(13)

Inserting the expression (13) in equation (8) and
integrating over depth, one gets

p

ρ
= −

∫ z

ζ

∂w

∂t
dz − p+ 1

2p
ζ
{(z

ζ

)2/p+2

− 1
}

×
(
U2 ∂

2ζ

∂x2
+ V 2 ∂

2ζ

∂y2

)
−w′2 − g (z − ζ) +

p̄0
ρ

(14)

where p̄0 is the constant pressure over the free
surface z = ζ. Thus the formal expression for the
pressure is also obtained. In equation (14), the last
two terms represent the ontribution of hydrostatic
pressure and the rest represent the additional con-
tribution due to turbulence.

4 Depth Averaging

As the water depth is shallow, it is appropriate to
consider the depth averages of the continuity and
horizontal momentum equations (5) - (7). Integra-
tion of equation (5) with respect to z over (0, ζ)
yields the depth averaged continuity equation (1).
Treating the momentum equations (6) and (7) in a
similar manner, the former leads to the equation

∂

∂t
(ζU) +

∂

∂x

(∫ ζ

0

u2dz
)

+
∂

∂y

(∫ ζ

0

uv dz
)

+
1

ρ

∫ ζ

0

∂p̄

∂x
dz +

τ0x
ρ

= 0 (15)

where τ0x = bed resistance parallel to the x-axis.
The representations (9) yield for the first two inte-
grals of equation (15) as∫ ζ

0

u2dz = α ζU2,

∫ ζ

0

uv dz = α ζUV (16)

where α = (p+ 1)2/[p(p+ 2)]. On the other hand,

1

ρ

∫ ζ

0

∂p̄

∂x
dz =

∂

∂x

∫ ζ

0

p̄

ρ
dz (17)

as p̄(x, y, ζ) = 0 on the free surface. Hence using
Eq. (10) with Eqs. (5),

1

ρ

∫ ζ

0

∂p̄

∂x
dz = γ

∂

∂x

[
ζ2
(
U2 ∂

2ζ

∂x2
+ V 2∂

2ζ

∂y2

)]
−δ ∂

∂x

[
ζ3

∂

∂t

(∂U
∂x

+
∂V

∂y

)
−ζ

3

p

∂ζ

∂t

(∂U
∂x

+
∂V

∂y

)]
+ g

∂ζ

∂x
(18)

in which, γ = (p+ 1)2/[p(3p+ 2)], δ = p/(3p+ 1),
and the Reynolds normal stress term ∂(w′2)/∂x is
negligiible as assumed earlier. The contribution of
the bed shear term τ0x = −µ (∂u/∂z)z=0 in equa-
tion (15) can only be estimated . Here the Man-
ning’s formula (4b) is adopted as the coefficient m
appearing in the formula has lesser variation with
respect to variation with the roughness of the bed
surface. Equation (15) therefore becomes,

∂

∂t
(ζU) + α

∂

∂x
(ζU2) + α

∂

∂y
(ζUV )

+γ
∂

∂x

[
ζ2
(
U2 ∂

2ζ

∂x2
+ V 2 ∂

2ζ

∂y2

)]
−δ ∂

∂x

[
ζ3
∂

∂t

(∂U
∂x

+
∂V

∂y

)
− ζ2

p

∂ζ

∂t

(∂U
∂x

+
∂V

∂y

)]
+gζ

∂ζ

∂x
+
m2gU

√
U2 + V 2

ζ1/3
= 0 (19)

In a similar manner Eq. (7) leads to the averaged
equation
∂

∂t
(ζV ) + α

∂

∂y
(ζV 2) + α

∂

∂x
(ζUV )

+γ
∂

∂y

[
ζ2
(
U2 ∂

2ζ

∂x2
+ V 2 ∂

2ζ

∂y2

)]
−

δ
∂

∂y

[
ζ3
∂

∂t

(∂U
∂x

+
∂V

∂y

)
− ζ2

p

∂ζ

∂t

(∂U
∂x

+
∂V

∂y

)]
+gζ

∂ζ

∂y
+
m2gV

√
U2 + V 2

ζ1/3
= 0 (20)

Equations (1), (19) and (20) are then the depth
averaged continuity and the x, y components of
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the momentum equation.

5 Simplification for Numerical Solution

Since p = 7 approximately, α = 64/63 ≈
1.01587 · · · ≈ 1, γ = 64/161 = 0.39751 · · · ≈ 0.4 =
2/5, and δ = 7/22. The approximation for α leads
to familiar convective acceleration terms of equa-
tions (2) and (3), as can be seen in the equations
(23) and (24) derived in the following. The ap-
proximation for γ is introduced to bring some el-
egance to the basic equations. The highly nonlin-
ear fifth term in both of the equations (19) and
(20) arise due to the instantaneous vertical accel-
eratio ∂w/∂t. For developing the numerical solu-
tion method, it is first noted that the two terms are
horizontal gradients that need not be large. Hence,
one obtains by iteration of (19) and (20), the first
order approximations

∂U

∂t
≈ −g ∂ζ

∂x
,

∂V

∂t
≈ −g ∂ζ

∂y
and

∂U

∂x
+
∂V

∂y
≈ −1

ζ

∂ζ

∂t
(21)

The left hand side quantities of (21) are then in-
serted in the δ-terms of equations (19) and (20).
Thus equation (19) becomes

ζ
∂U

∂t
−ζU

(∂U
∂x

+
∂V

∂y

)
+
∂

∂x

[
ζ
{
U2− 1

22

(∂ζ
∂t

)2}]

+
∂

∂y
(ζUV ) +

2

5

∂

∂x

[
ζ2
(
U2 ∂

2ζ

∂x2
+ V 2∂

2ζ

∂y2

)]
+

7g

22

∂

∂x

[
ζ3
(∂2ζ
∂x2

+
∂2ζ

∂y2

)]
+ gζ

∂ζ

∂x

+
m2gU

√
U2 + V 2

ζ1/3
= 0 (22)

A further approximation is possible in equation

(22) if one asssumes that U2 >>
1

22

(∂ζ
∂t

)2
, as the

horizontal velocity is much larger than the instan-
taneous vertical velocity of the free surface. With
this assumption, equation (22) simplifies to

∂U

∂t
+U

∂U

∂x
+V

∂U

∂y
+

2

5ζ

∂

∂x

[
ζ2
(
U2 ∂

2ζ

∂x2
+V 2 ∂

2ζ

∂y2

)]

+
7g

22 ζ

∂

∂x

[
ζ3
(∂2ζ
∂x2

+
∂2ζ

∂y2

)]
+ g

∂ζ

∂x

+
m2gU

√
U2 + V 2

ζ/3
= 0 (23)

Similarly equation (20) reduces to

∂V

∂t
+U

∂V

∂x
+V

∂V

∂y
+

2

5ζ

∂

∂y

[
ζ2
(
U2 ∂

2ζ

∂x2
+V 2 ∂

2ζ

∂y2

)]
+

7g

22 ζ

∂

∂y

[
ζ3
(∂2ζ
∂x2

+
∂2ζ

∂y2

)]
+ g

∂ζ

∂y

+
m2gV

√
U2 + V 2

ζ/3
= 0 (24)

The continuity and momentum equations (1)
and (23) - (24) are in physical dimensions. In order
to nondimensionalisze the equations, let the vari-
ables x, y, t, ζ and U, V be temporarily written as
x̂, ŷ, t̂, ζ̂ and Û , V̂ respectively; then writing

x̂ = hx, ŷ = hy, ζ̂ = hζ, t̂ = t
√
h/g, and

Û = U
√
gh, V̂ = V

√
gh (25)

in which h is the mean depth of water; then the
variables x, y, ζ, t and U, V become nondimen-
sional. By the transformations (25), equation (1)
remains unchanged in form, while the factor g
drops out from the equations (23) and (24). Equa-
tion (23) with V = 0 and ∂(·)/∂y = 0 corresponds
to the one dimensional case studied by Bose [14],
but here it is slightly simpler in form.

6 Transformation and Localization Assump-
tion

In order to develop the numerical procedure
for solving the equations (1) and (23) - (24), it is
noted that the continuity equation (1) relates the
instantaneous vertical velocity of the free surface
at (x, y) to the gradient of the discharge (Q, R) in
the x, y - directions defined by

Q := ζ U, R := ζ V (26)

so that equation (1) in compact substricted notoa-
tion for partial derivatives becomes

ζt +Qx +Ry = 0 (27)
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In terms of Q, R one has

U =
Q

ζ
, Ut =

Qt

ζ
+
Q

ζ2
(Qx +Ry),

Ux =
Qx

ζ
− Q

ζ2
ζx, Uy =

Qy

ζ
− Q

ζ2
ζy (28)

V =
R

ζ
, Vt =

Rt

ζ
+
R

ζ2
(Qx +Ry),

Vx =
Rx

ζ
− R

ζ2
ζx, Vy =

Ry

ζ
− R

ζ2
ζy (29)

where in the second equations of (28) and (29), the
transformed form of the continuity equation (27)
is used. In terms of Q and R in place of U and V
respectively, equations (23) and (24) become

ζ2Qt +Q(2ζQx −Qζx + ζRy) +R(ζQy −Qζy)

+
2

5
ζ2(Q2ζxxx +R2ζxyy) +

4

5
ζ2(QQx ζxx +RRx ζyy)

+
7

22
ζ4[ζ(ζxxx + ζxyy) + 3ζx(ζxx + ζyy)]

+ζ3ζx +
m2Q

√
Q2 +R2

ζ1/3
= 0 (30)

and

ζ2Rt + ζ(RQx +QRx + 2RRy)−R(Qζx +Rζy)

+
2

5
ζ2(Q2ζxxy +R2ζyyy) +

4

5
ζ2(QQy ζxx +RRy ζyy)

+
7

22
ζ4[ζ(ζxxy + ζyyy) + 3ζy(ζxx + ζyy)]+

ζ3ζy +
m2R

√
Q2 +R2

ζ1/3
= 0 (31)

For numerically solving the partial differential
equations (29) - (31) an invertibility assumption is
now made as in Bose [14]. Since the solution of
these equations is of the form ζ = ζ(x, y, t), Q =
Q(x, y, t), R = R(x, y, t), if the inverse of
these functions exist then, x = x(ζ, Q, R), y =
y(ζ, Q, R), t = t(ζ, Q, R). A sufficient condi-
tion for the inversion to be possible is that the
Jacobian of the transformation does no vanish at
points within the domain. Under this assump-
tion, Q = Q[x(ζ,Q,R), y(ζ,Q,R), t(ζ,Q,R)]
(a function of ζ, Q, R) and similarly, R =

R[x(ζ,Q,R), y(ζ,Q,R), t(ζ,Q,R)] (also a func-
tion of ζ, Q, R). The fixed point solution of this
pair iterative pair of equations, for each ζ, by elim-
ination of R and Q respectively, is of the form

Q = F (ζ), R = G(ζ) (32)

provided the functios F and G are Lipschitz con-
tinuous. Physically as was observed in Bose [14],
equation (32) implies that the discharge compo-
nents Q and R at a point (x, y) and at time t de-
pends solely on the local elevation ζ at that point
and time, as in the theory of long tidal waves. The
numerical method developed here may therefore be
considered as an extension of that theory to nonlin-
ear turbulent waves. Substituting the forms (32) in
equations (27) yields the linear conservation equa-
tion

ζt + Fx(ζ) +Gy(ζ) = 0 (33)

The same substitution in Eqs. (30), (31) however
yields a pair of coupled second degree equations in
the derivatives F ′(ζ) and G′(ζ) that are difficult to
solve algebraically.

In the important case of almost linear crests
prpagating in the direction of the x-axis however,
|ζy| << 1 and |G| << |F | so that the two equations
can be solved approximately. To the first order of
ζy and G, one gets

aF ′2 − b FF ′ + c = 0 (34)

and

G′ =
1

ζx (ζF ′ − F )

[
ζxF

′G− ζx FG

ζ
+

2

5
ζζxxy

+
4

5
ζζyζxx FF

′ +
7

22
ζ3{ζ (ζxxy + ζyyy) + 3 ζxxζy}

+ζ2ζy +
m2FG sgn(F )

ζ4/3
((35)

where

a = ζ2, b = 2ζ
(

1 +
2

5
ζζxx

)
,

c =
(

1− 2

5
ζ2
ζxxx
ζx
− m2sgn(F )

ζx ζ1/3

)
F 2

− 7

22
ζ4
[ ζ
ζx

(ζxxx + ζxyy) + 3 (ζxx + ζyy)
]
− ζ3 (36)

Equations (33) - (35) are now treated numerically.
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7 The Numerical Procedure

Since the discharge Q or F (ζ) is an increas-
ing function of ζ, the appropriate solution of the
quadratic equation (34) is

F ′ =
bF +

√
b2F 2 − 4ac

2a
(37)

For real solution b2F 2 ≥ 4ac representing undu-
lating flow surface; otherwise F ′ = 0 for steady
discharge. Eq. (37) is inegrated by the trape-
zoidal rule based iterative, second order, modified
Euler method (Bose [15], p. 264). The coeffi-
cients a, b, c given in equation (36) contain par-
tial derivatives of ζ up to the third order partial
derivatives. These derivatives are calculated by
second order finite differences of ζ over a grid of
points x = (m − 1) ∆x, y = (n − 1) ∆y, (m =
1, 2, 3, · · · ; n = 1, 2, 3, · · · ), where ∆x, ∆y are
the grid lengths parallel to the x and y - axes re-
spectively. The value of F and G at the grid points
are then obtained by the modified Euler method by
recursion as:

F (m+1, n) = F (m, n)+∆x× [F ′(m, n) ζx(m, n)]

← 1

2
[F (m, n) + F (m+ 1, n)] (38)

G(m, n+1) = G(m, n)+∆y× [G′(m, n) ζy(m, n)]

← 1

2
[G(m, n) +G(m, n+ 1)] (39)

Equations (38), (39) determine the values of the
functions F and G for a given elevation ζ at a
given time t. The evolution of ζ as solution of equa-
tion (33) is obtained by application of the second
order Lax-Richtmyer scheme for increasing time
t = l∆t, (l = 1, 2, 3, · · · ). According to Richt-
myer and Morton [16], the time evolution of ζ from
given step l is obtained in two steps l+ 1 and l+ 2
:

ζ l+1
m,n =

1

4

(
ζ lm+1,n + ζ lm−1,n + ζ lm,n+1 + ζ lm,n−1

)
− ∆t

2 ∆x

(
F l
m+1,n−F l

m−1,n

)
− ∆t

2 ∆y

(
Gl
m,n+1−Gl

m,n−1

)
(40)

where F l
m,n = F (ζ lm,n), and at the second step

ζ l+2
m,n = ζ lm,n −

∆t

∆x

(
F l+1
m+1,n − F l+1

m−1,n

)
−∆t

∆y

(
Gl+1
m,n+1 −Gl+1

m,n−1

)
(41)

Equation (41) determines the elevation at the next
step. In practice one can take ∆x = ∆y and
∆t = r∆x, where the factor r < 1 is so chosen
that the computation remains stable and conver-
gent for small changes in its value.

8 Application to a model Initial Surface El-
evation

The numerical method of the preceding section
is applied to a model initial surface elevation con-
sidered by Howe [17], p.332 for tsunami propaga-
tion caused by sudden uplifting of the sea bed in
the form of a ridge caused by subduction of the
bed in front. Accordingly the initial elevation of
the sea surface is assumed to follow the dislocated
bed form with a profile given by the equation

ζ = 1 + ζ0

[
1

{1 + [(x+ L)2 + y2]/L2}3/2

− 1

{1 + [(x− L)2 + y2]/L2}3/2

]
(42)

where ζ0 = maximum elevation/depression
above/below the mean surface of water, and 2L
= distance between the highest and the lowest
ponts of the initial free surface. For presentable re-
sults it is assumed that ζ0 = 0.3 and L = 10. The
profile tapers to plane level ζ = 1 as |y| tends to
infinity. The initial value of ζ at t = 0 is computed
for x, y ≥ 0 from Eq. (42), taking ∆x = ∆y = 0.1
and ∆t = r∆x, where r = 1/2. The numerical
scheme is found to yield stable and convergent val-
ues of ζ for small changes in the value of r. The
initial value of the functions F and G are estimated
from the following consideration. Since the crests
are nearly parallel to the y-axis, G is negligible. If
moreover, the crests are assumed to move with a
constant sub-critical velocity c0 to avoid choking
of flow, then following Eq. (33), F ′(ζ) = c0, so
that F (ζ) = c0 ζ. Accoridngly a value of c0 = 0.2
is assumed here to compute F (ζ) at the different
grid points. The spatial derivatives of the function
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ζ are then computed by the second order finite
difference formulae:

ζx =
ζ(x+ ∆x, y)− ζ(x−∆x, y)

(∆x)2
(43)

ζxx =
ζ(x+ ∆x, y)− 2 ζ(x, y) + ζ(x−∆x, y)

(∆x)2

(44)

ζxxx(x, y) =
1

∆x3
[ζ(x+ 2∆x, y)− 3 ζ(x+ ∆x, y)

+3 ζ(x, y)− ζ(x−∆x, y)] (45)

ζxxy(x, y) =
1

2(∆x)3
[ζ(x+ ∆x, y + ∆y)

−ζ(x+∆x, y−∆y)−2ζ(x, y+∆y)+2ζ(x, y−∆y)

+ζ(x−∆x, y + ∆y)− ζ(x−∆x, y −∆y)] (46)

and similar expressions for ζy(x, y),ζyy(x, y),
ζyyy(x, y), and ζxyy(x, y), for x, y > 0 or, m, n ≥ 2.
For x = 0 and y = 0, linear extrapolations

ζx(0, y) = 2 ζx(∆x, y)− ζx(2∆x, y) (47)

ζx(x, 0) = 2 ζx(x, ∆y)− ζx(x, 2∆y) (48)

and similar expressions for the other partial deriva-
tives are used. The time evolution of the elevation
ζ following the Lax-Richtmyer scheme (40), (41)
is then carried out using Eqs. (38), (39). The
corresponding value of the discharge functions F
and G is carried out as at the initial time, i.e.
F = c0 ζ and G = 0. Performing a large number
of iterations over time, the computed results for
ζ at times t = 0, 20, 40 and 60 with respect to x
for the three representative cases y = 0, y = 1

2
x,

and y = x are presented in the figures 1, 2, and
3 respectively. The three cases correspond to the
crests being viewed from the angles 0o, 26.57o and
45o respectively to the crests. It is found in the
computed data that the crest height diminishes
slowly with time with corresponding rise in the
trough depth. This feature diminishes with the
increase in the angle, becoming insignificant in the
third case.

-20 0 20 40 60 80

x

0

0.5

1

1.5



Figure 1. View of propagating surface from 0o angle, at times t = 0, 20, 40, 60...
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Figure 2. View of propagating surfae from 26.57o angle, at times t = 0, 20, 40...
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1.5

-20 0 20 40



Figure 3. View of propagating surface from 45o angle at times t = 0, 20,...

The method can be employed to generate data for
any other cross section.

As a comparison of the computed results pre-
sented above, one may compare these with those
of Howe [17], presented on page 333. The surface
profiles presented there are based on potential sur-
face wave theory according to which the elevation
ζ is given by the Eq. (5.7.7), p. 330 of the text.
The notable qualitative difference between the two
approaches is that while in the theory presented
here, while the wave form realistically leans for-
ward as it propagates, the form does not replicate

this characteristic in the theory presented in Howe
[17].

9. Results and Discussion

In this paper, the turbulent shallow water free
surface flow equations in two dimensions are de-
veloped and numerically integrated by a method
developed in Bose [14]. Following Bose and Dey
[12], the basic equations of continuity and momen-
tum conservation for the flow are developed from
the Raynolds Averaged Navier Stokes equations.
The equations are expressed in terms of the depth
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averaged horizontal velocity (U, V ) and the surface
elevation ζ, all being functions of x, y and time t.
Based on certain assumptions necessitated by the
presence of turbulence, three nonlinear differential
equations are obtained for the determination of
ζ, U and V . For numerical treatment of the equa-
tions, a slight simplification is made in the two hor-
izontal momentum equations where in the terms
arising from instantaneous vertical acceleration,
the quantities ∂U/∂t, ∂V/∂t and ∂U/∂x + ∂V/∂y
are replaced by equivalent expressions in terms of
ζ obtained by linearizing the two equations . A
transformation of the equations is then made by
replacing U and V by discharge components Q
and R respectively. An invertibility argument of
the functions shows that Q and R can be func-
tions of ζ, say Q = F (ζ) and R = G(ζ), as in
the theory of long tidal waves. The method may
therefore be considered an extension of the lin-
ear inviscid long wave theory to nonlinear waves
taking in to account the generated turbulence in
real fluids. Substitution in the continuity equation
leads to a conservation equation of standard form,
while the two momentum equations yield coupled
second degree equations in the derivatives F ′(ζ)
and G′(ζ). In the important case of propagation
of nearly linear crested waves on the water surface
parallel to y-axis, F ′(ζ) is given to a first order
by a decoupled quadratic equation, and G′(ζ) by
an expression containing F (ζ) and F ′(ζ). The
two equations are numerically treated to compute
F (ζ) and G(ζ), following which the standard form
mass conservation equation is numerically solved
by the Lax-Richtmyer scheme. The method is im-
plemented for an almost linear initial bed elevation
model given in Howe [17] for simulating tsunami
propagation. The computed values are shown for
three different angles of view, showing very slowly
decreasing wave height. The method developed in
the paper opens up the possibility of generating
data for creating animation of the moving free sur-
face for greater visual effect.
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