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1 Introduction 
 Immiscible fluid displacement in 

porous media is fundamental for many 

environmental processes, including 

infiltration of water in soils, groundwater 

remediation, enhanced recovery of 

hydrocarbons and carbon geosequestration.  

Microstructural heterogeneity, in particular of 

particle sizes, can significantly impact 

immiscible displacement. For instance, it 

may led to unstable flow and preferential 

displacement patterns. The displacement 

process involving two immiscible fluids is of 

considerable importance in ground water 

hydrology and reservoir engineering. The 

nature of immiscible flow in a porous 

medium is different from that in the Hele-

Shaw cell. Unlike the Hele-Shaw cell, where 

the interfacial tension acts at a single 

interface (Homsy [1]), the capillary forces in 

a porous medium act on a multitude of 

microscopic interfaces, giving rise to a single 

dispersed interface at the macroscopic level 

(Lake [2], Yortsos and Hickernell [3]). 

Additionally, the mobility of individual 

phases within the pore space is governed by 

the wettability properties of the porous 

medium (Bear [4], Scheidegger 

[5]). Therefore, the dynamics of immiscible 

displacements in porous media is represented 

by Darcy’s law for each phase with an 

associated relative permeability function 

(Lake [2]). In the case in which the injected 

fluid is of higher mobility than the resident 

fluid, the displacement becomes unstable and 

results in macroscopic viscous fingers. These 

fingers are different from the microscopic 

fractal structure that occurs in the limit of 

vanishing capillary number and 

infinite viscosity ratio, modeled, respectively, 

by invasion percolation and diffusion-limited 

aggregation (Sahimi [6]). The regime of 

geological fluid flow, which falls between 

these limiting cases, e.g., 

with viscosity ratio ∼100−102∼100−102 and 

capillary number ∼100−103∼100−103, can 

be represented by the Darcy equation based 

on local averages (Blunt and King [7], 

Yortsos et al. [8]. 

                        A theoretical and experimental 

investigation of the occurrence of 

macroscopic instabilities in the displacement 

of one viscous liquid by another immiscible 

one through a uniform porous medium was 

made by Chuoke et al. [9]. The theoretical 

description of the instability of fluid 

displacements in permeable media is 

immensely complex due to gross 

inhomogeneities of porous media. However, 

a quantitative prediction of finger-spacing is 
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possible in a porous medium known to be 

macroscopically homogeneous and isotropic 

throughout. The fluid displacement between 

closely spaced parallel plates is two-

dimensional, involves only microscopic 

fluid-fluid interface and has been shown to be 

mathematically analogous to two-

dimensional flow in a porous medium, by 

Saffman and Taylor [10]. The displacements 

in a porous medium are three-dimensional 

and the macroscopic interface represents 

many moving microscopic fluid-fluid 

interfaces. The results for the parallel-plate 

system can be considered a specialization of 

those for porous media, as the formal 

mechanics of theory are the same. 

 Certain assumptions and limitations 

of Chuoke et al. [9] theory should be 

mentioned. In analogy with the actual 

interfacial tension, the assumption of 

`effective interfacial tension` across the 

macroscopic interface has been made. No 

good agreement has been found between 

calculated and observed finger spacing 

between parallel plates, as well as transparent 

glass powder pack experiments. When pure 

water was injected to displace oil from 

preferentially water-wet porous medium 

containing connate water, it was found that 

the fingering observations could not test the 

theory quantitatively. Scheideggar [11] 

studied the stability of displacement fronts in 

porous media. Payatakes et al. [12] studied 

oil ganglion dynamics during immiscible 

displacements. Ekwere and Donald [13] 

studied the onset of instability during two-

phase immiscible displacements in porous 

media. They extended the work of Chuoke et 

al. [9] by means of a stability analysis, a 

universal dimensionless scaling group and its 

critical value for predicting the onset of 

instability during immiscible displacement in 

porous media. Stability analysis of 

immiscible displacement problems has been 

carried out among others, by Cruz and 

Spanos [14], Maloy et al. [15], Lenormand et 

al. [16], Hilfer and Oren [17] and Rao et al. 

[18].  

 In many reservoirs, the oils naturally 

occurring beneath the surface of the earth are 

found to exhibit some non-Newtonian 

behavior (Allen and Boger [19]). The 

consideration of the viscoelastic nature of 

fluid to be displaced is closer to field 

reservoirs and therefore to primary oil 

recovery processes. Oldroyd [20] proposed a 

theoretical model for a class of viscoelastic 

fluids. Since viscoelastic fluids play an 

important role in polymers and 

electrochemical industry, the studies of 

waves and stability in different viscoelastic 

fluid dynamical configuration has been 

carried out by several researchers in the past. 

The nature of instability and some factors 

may have different effects on viscoelastic 

fluids as compared to the Newtonian fluids. 

For example, Bhatia and Steiner [21] have 

considered the effect of a uniform rotation on 

the thermal instability of a Maxwell fluid and 

have found that the rotation has a 

destabilizing influence, for a certain 

numerical range, in contrast to the stabilizing 

effect on Newtonian fluid. In another study, 

Bhatia and Steiner [22] have studied the 

problem of thermal instability of a 

viscoelastic fluid in hydromagnetics and have 

found that the magnetic field has the 

stabilizing influence on Maxwell fluid just as 

in the case of Newtonian fluid. The 

thermosolutal instability in a Maxwellian 

viscoelastic fluid in porous medium to 

include the Hall effect has been considered 

by Sharma and Kumar [23]. In another study, 

Kumar and Singh [24] have considered the 

instability of the plane interface between two 

viscoelastic (Maxwellian) superposed fluids 

in porous medium in the presence of uniform 

rotation and variable magnetic field. For 

stable density stratification, the system is 

found to be stable for disturbances of all 

wave numbers and the magnetic field 

stabilizes the potentially unstable 
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stratification for small wave-length 

perturbations which are otherwise unstable. 

Kazachkov [25] has studied the development 

and analysis of the mathematical model for 

mixing and heat transfer in the two-fluid 

turbulent heterogeneous jet of mutually 

immiscible liquids.        

            Keeping in mind the immiscible 

displacements process for primary oil 

recovery in field reservoirs and the 

viscoelastic nature of the fluid to be displaced 

(e.g. oil), a theoretical study has been made 

of the immiscible displacement of 

viscoelastic (Maxwellian) fluid by another 

viscoelastic fluid of similar nature in 

permeable media. 

 

 

2 Formulation of the Problem and 

Basic Equations 
 Here we consider the configuration of 

two Maxwellian viscoelastic fluids, labeled 1 

and 2, each of infinite extent, with a plane 

macroscopic interface moving slowly 

through a uniform permeable medium with 

velocity 𝑊, normal to the interface. A 

viscoelastic fluid 1 displaces another 

viscoelastic fluid 2 with velocity 𝑊 in the 

positive 𝑧 − direction, which is normal to the 

plane, macroscopic interface between the 

two. The vertically upward direction is 

chosen as the 𝑧′ − axis of a fixed system of 

co-ordinates. If fluid 1 is displacing fluid 2, 

𝑊 is a positive   quantity.  The 𝑧-component   

of   the    gravitational   acceleration is 

−𝑔𝑐𝑜𝑠(𝑧𝑧′). The porous medium is assumed 

to be homogeneous and isotropic. 

The Maxwellian viscoelastic fluid is 

described by the constitutive relations:  

Γ𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  ,                                      

(1 + 𝜆
𝑑

𝑑𝑡
) 𝜏𝑖𝑗 = 2𝜇𝑒𝑖𝑗   ,                                     

𝑒𝑖𝑗 =
1

2
(
𝜕𝑣𝑖

𝜕𝑥𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
) ,                                (1)   

where 
ji  

ji  
jie  

ji     p vi  xi and 

dt

d
 denote, respectively the stress tensor, the 

shear stress tensor, the rate-of-strain tensor, 

the Kronecker delta, the viscosity, the stress 

relaxation time, the isotropic pressure, the 

velocity vector, the position vector and the 

convective derivative. 

 For flows through porous media, the 

Brinkman and viscous derivative terms are 

very small in magnitude as compared to the 

Darcian term, which is retained here. Using 

the volume averaging procedure, a derivation 

of the equations of motion and continuity for 

viscoelastic fluids and the dominance of 

Darcian term as the resistance term has been 

shown by Slattery ([26], [27]). The linearized 

macroscopic equations of motion and 

continuity for incompressible, Maxwellian 

viscoelastic fluid, a set for each fluid, are 

 

𝑉⃗ = −𝑔𝑟𝑎𝑑 [
(1 + 𝜆𝑇)

𝜌
𝜀
(𝑇 + 𝜆𝑇2) +

𝜇
𝑘′

{𝑝

+ 𝜌𝑔𝑧 𝑐𝑜𝑠(𝑧𝑧′)}

+ 𝑊𝑧]  ,                              (2) 

or 

𝑉⃗ = −𝑔𝑟𝑎𝑑 𝜒   ,                                             (3) 

where  

𝜒 = [
(1 + 𝜆𝑇)

𝜌
𝜀
(𝑇 + 𝜆𝑇2) +

𝜇
𝑘′

{𝑝 + 𝜌𝑔𝑧 𝑐𝑜𝑠(𝑧𝑧′)}

+ 𝑊𝑧] 

and 

𝑑𝑖𝑣 𝑉⃗ = −∇2𝜒 = 0  ,                                   (4) 

where  p  g,  , 𝑘′ and 𝑉⃗ (𝑢, 𝑣, 𝑤) with 

the subscripts 1 and 2 distinguishing the two 

fluids, stand for density, pressure, viscosity, 

acceleration due to gravity, medium porosity, 

effective medium permeability and 
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perturbation in velocity, respectively and 

t
T




 . 

The above equations describe the viscoelastic 

fluid motion in a coordinate system moving 

with velocity W in which the unperturbed 

interface is at rest. Equations (2) and (3) 

possess the integrals  

𝑝2 = {

𝜌2

𝜀
(𝑇 + 𝜆𝑇2) +

𝜇2

𝑘2
′

(1 + 𝜆𝑇)
} (𝜒2 − 𝑊𝑧)

− 𝜌2𝑔𝑧 𝑐𝑜𝑠(𝑧𝑧′)
+ 𝑃2(𝑡)  ,                      (5) 

𝑝1 = {

𝜌1

𝜀
(𝑇 + 𝜆𝑇2) +

𝜇1

𝑘1
′

(1 + 𝜆𝑇)
} (𝜒1 − 𝑊𝑧)

− 𝜌1𝑔𝑧 𝑐𝑜𝑠(𝑧𝑧′)
+ 𝑃1(𝑡)  ,                        (6) 

 

where 𝑃2(𝑡) and 𝑃1(𝑡) are arbitrary functions 

of time.  

 

 

3 Criteria for Stability and 

Discussion 
 Let us take 𝜁(𝑥, 𝑦, 𝑡) to be the 

arbitrary deformation of the macroscopic 

interface and assume its Fourier 

decomposition of the form 

𝜁 = 𝜀1𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑛𝑡  ,                               (7)                            

where 𝑘𝑥 , 𝑘𝑦 are wave numbers along 𝑥 , 𝑦 

directions; 𝑘⃗ = 𝑖̂𝑘𝑥 + 𝑗̂𝑘𝑦 is the resultant 

wave vector of magnitude 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)
1 2⁄

, 

𝑛  is in general complex and 𝜀1 = 𝜀1(𝑘). 

The kinematic conditions to be satisfied at 

the interface 𝑧 = 𝜁 are 
𝜕𝜁

𝜕𝑡
= (−

𝜕𝜒1

𝜕𝑧
)
𝑧=𝜁

= (−
𝜕𝜒2

𝜕𝑧
)
𝑧=𝜁

  .               (8) 

Since 1  and 2  must satisfy (8) and since 

the 𝑧-components of the perturbation velocity 

must vanish at 𝑧 → ∓∞, the solutions of (4) 

are 

𝜒1 = −
𝑛

𝑘
𝜀1𝑒

𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑛𝑡+𝑘𝑧   ,                (9)  

for fluid 1, and 

𝜒2 = +
𝑛

𝑘
𝜀1𝑒

𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)+𝑛𝑡−𝑘𝑧   ,            (10) 

for fluid 2. Here k  is assumed small under 

the first-order theory. 

At each point of the macroscopic interface 

there is conceived to be a pressure 

discontinuity consisting of two types of 

terms, i.e., 

(𝑝1 − 𝑝2)𝑧=𝜁 = 𝑇∗(𝑐1 + 𝑐2)

+ 𝑃𝑐(𝑡)  ,                              (11) 

where 𝑃𝑐(𝑡) is independent of curvature of 

the macroscopic interface but may be a 

function of time and is related to the capillary 

pressure drops across the microscopic fluid-

fluid interfaces underlying the macroscopic 

interface, whereas 𝑇∗ is an effective 

interfacial tension and 𝑐1 , 𝑐2 are the signed 

principal curvatures of the macroscopic 

interface, to be taken as negative when the 

respective center of curvature falls in the 

domain of fluid 2. 

Using (5) and (6) in relation (11), we obtain 

{

𝜌2

𝜀
(𝑇 + 𝜆𝑇2) +

𝜇2

𝑘2
′

(1 + 𝜆𝑇)
} (𝜒2 − 𝑊𝑧)𝑧=𝜁

− {

𝜌1

𝜀
(𝑇 + 𝜆𝑇2) +

𝜇1

𝑘1
′

(1 + 𝜆𝑇)
} (𝜒1

− 𝑊𝑧)𝑧=𝜁

− [(𝜌2 − 𝜌1)𝑔 𝑐𝑜𝑠(𝑧𝑧′)]𝜁
+ 𝑃2(𝑡) − 𝑃1(𝑡) + 𝑃𝑐(𝑡)

− 𝑇∗ (
𝜕2𝜁

𝜕𝑥2
+

𝜕2𝜁

𝜕𝑥2
) = 0, (12) 

where 

𝑐1~ −
𝜕2𝜁

𝜕𝑥2
 𝑎𝑛𝑑 𝑐2~ −

𝜕2𝜁

𝜕𝑦2
 .                    

Using (7), (9) and (10), (12) yields 

𝑃1(𝑡) − 𝑃2(𝑡) = 𝑃𝑐(𝑡)  ,                             (13) 

and the characteristic equation 
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[
1

𝜀
(𝜌1 + 𝜌2)𝜆] 𝑛

3

+ [
1

𝜀
(𝜌1 + 𝜌2)

−
𝑘𝜆

𝜀
(𝜌2 − 𝜌1)𝑊]𝑛2

+ [(
𝜇2

𝑘2
′ +

𝜇1

𝑘1
′)

− (𝜌2 − 𝜌1)
𝑘𝑊

𝜀
+ 𝑘3𝑇∗𝜆

− (𝜌2 − 𝜌1)𝑔 cos(𝑧𝑧′)𝑘𝜆] 𝑛

− [(
𝜇2

𝑘2
′ −

𝜇1

𝑘1
′)𝑊

+ (𝜌2 − 𝜌1)𝑔 cos(𝑧𝑧′)

− 𝑘2𝑇∗] 𝑘

= 0 .                                  (14) 

Equation (14) determines 𝑛 as a function of 

wave number 𝑘 and yields the kinematics of 

early growth.  

For 𝑘 > 0, it is evident from equation (14) 

that the necessary and sufficient criterion for 

instability, i.e., for 𝑛 to be positive, is given 

by 

(
𝜇2

𝑘2
′ −

𝜇1

𝑘1
′)𝑊 + (𝜌2 − 𝜌1)𝑔 cos(𝑧𝑧′) − 𝑘2𝑇∗

> 0  .                               (15) 

Now, introducing the volumetric velocity 𝑈, 

we may say that instability will occur for all 

velocities 𝑈 > 𝑈𝑐, where 𝑈𝑐 is a critical 

velocity defined by 

(
𝜇2

𝑘2
′ −

𝜇1

𝑘1
′)𝑈𝑐 + (𝜌2 − 𝜌1)𝑔 cos(𝑧𝑧′)

= 0    ,                               (16) 
provided the perturbation contains 

wavelength 𝜆 (=
2𝜋

𝑘
) greater than a critical 

wavelength 𝜆𝑐 , defined by 

𝜆𝑐 = 2𝜋 [
𝑇∗

(
𝜇2

𝑘2
′ −

𝜇1

𝑘1
′) (𝑈 − 𝑈𝑐)

]

1 2⁄

.  (17) 

Equation (14) admits of no positive root if 

the constant term and the coefficients of 𝑛, 𝑛2 

and 𝑛3 are all positive. The stability criteria 

(i.e. conditions to check fingering phenomena 

on the macroscopic scale), which are of 

fundamental importance in oil recovery 

processes, are then 

𝜌1 > 𝜌2 𝑎𝑛𝑑 
𝑘1

′

𝜇1
<

𝑘2
′

𝜇2
  .                           (18) 

 

Physically, the Necessary and Sufficient 

Criteria for Stability are: 

      (i)  the displacing fluid is denser than the 

fluid to be displaced, 

and (ii)  the less mobile fluid displaces the 

more mobile one. 

 The criteria for instability and critical 

wavelength for the case of Maxwellian 

viscoelastic liquid-liquid displacements in 

permeable media remain the same as those 

for ordinary viscous liquid-liquid 

displacements in permeable media. 

 

 

4 Conclusions 
            The flow of viscous incompressible 

fluids in the presence of porous bodies seems  

to have generated a great deal of interest 

among researchers, because of its 

applications in numerous Scientific and 

Industrial fields like Lubrication of Porous 

Bearings, Ground Water Hydrology, 

Petroleum Industries, Industrial filteration 

and Agricultural Engineering etc. Stability 

analysis of immiscible displacement 

problems has been carried out by different 

researchers in the past and in particular, a 

theoretical and experimental investigation of 

the stability of two slow, immiscible, viscous 

liquid-liquid displacements in porous media 

has been given by Chouke et al. [9]. Since in 

many reservoirs, the oils naturally occurring 

beneath the surface of the earth are found to 

exhibit some non-Newtonian behavior and 

keeping in mind the immiscible 

displacements process for primary oil 
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recovery in field reservoirs and the 

viscoelastic nature of the fluids, a theoretical 

study of the generalization of Chouke et al.’s 

work has been made in the present paper by 

considering slow, immiscible viscoelastic 

(Maxwellian) liquid-liquid displacements in 

permeable medium.       

             The necessary and sufficient stability 

conditions which are of fundamental 

importance in oil recovery processes are 

obtained and are that the displacing fluid is 

denser and less mobile than the displaced 

fluid. The instability criteria and critical wave 

length are found to be the same as those for 

ordinary viscous liquid-liquid displacements 

in permeable media. 
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