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1   Formulation of the Problems 
We consider the following multidimensional 
fractional heat equation in a half space: 
∂𝑡
𝛼𝑢 − 𝛥𝑢 = 𝑔(𝑥, 𝑦, 𝑡),     𝑡 > 0,

 (𝑥, 𝑦) ∈ ℝ+
𝑛+1,                           (1) 

 
the solution of which satisfies the initial condition 
𝑢(𝑥, 𝑦, 0) = 𝜑(𝑥, 𝑦),  (𝑥, 𝑦) ∈ ℝ+

𝑛+1 ∪ {0}  (2) 
 
and the boundary condition 

𝑢𝑦(𝑥, 0, 𝑡) − ℎ𝑢(𝑥, 0, 𝑡) = 0,        
{ 𝑡 ≥ 0,              𝑥 ∈ ℝ𝑛 ∪ {0}},               (3) 

 
where ℝ+𝑛+1 = {(𝑥, 𝑦) = (𝑥1, 𝑥2,⋯ , 𝑥𝑛, 𝑦) ∈
ℝ𝑛+1|𝑦 > 0}, the Caputo fractional differential 
operator ∂𝑡𝛼 of the order 0 < 𝛼 < 1 is defined by [1, 
pp. 90-99]: 

∂𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) ≔ 𝐼0+

1−𝛼𝑢𝑡(𝑥, 𝑡)

=
1

𝛤(1 − 𝛼)
∫
𝑢𝜏(𝑥, 𝑦, 𝜏)

(𝑡 − 𝜏)𝛼

𝑡

0

𝑑𝜏,   

  ∂𝑡
1𝑢(𝑥, 𝑦, 𝑡) = 𝑢𝑡(𝑥, 𝑦, 𝑡), 

𝐼0+
𝛼 𝑢(𝑥, 𝑦, 𝑡) : =

1

𝛤(𝛼)
∫

𝑢(𝑥, 𝑦, 𝜏)

(𝑡 − 𝜏)1−𝛼

𝑡

0

𝑑𝜏, 

𝐼0+
𝛼 𝑢(𝑥, 𝑦, 𝑡) is the Riemann–Liouville fractional 

integral of the function 𝑢(𝑥, 𝑦, 𝑡) with respect to 𝑡, 𝛥 

is the Laplace operator concerning the variables 𝑥, 𝑦 
and ℎ is a given finite number. 

For the given functions 𝑔(𝑥, 𝑦, 𝑡), 𝜑(𝑥, 𝑦) the 
problem of finding the solution to the initial - 
boundary problem (1) - (3) will be called the direct 

problem. A regular solution of this problem consists 
of determining the function 𝑢(𝑥, 𝑦, 𝑡), such that 
1) 𝑢(𝑥, 𝑦, 𝑡) is twice continuously differentiable in 
𝑥, 𝑦 for each 𝑡 > 0; 

2) for each (𝑥, 𝑦) ∈ ℝ+𝑛+1 function 𝑢(𝑥, 𝑦, 𝑡) is 
continuous in 𝑡 for 𝑡 > 0 and its fractional 
integral 

(𝐼0+
1−𝛼𝑢)(𝑥, 𝑦, 𝑡) =

1

𝛤(1 − 𝛼)
∫
𝑢(𝑥, 𝑦, 𝜏)𝑑𝜏

(𝑡 − 𝜏)𝛼

𝑡

0

 (4) 

 is continuously differentiable in 𝑡 for 𝑡 > 0; 
3) 𝑢(𝑥, 𝑦, 𝑡) satisfies (1)- (3) in classical sense. 
 

In inverse problem, assuming 𝑔(𝑥, 𝑦, 𝑡) =
𝑓(𝑥, 𝑦)𝜙(𝑡) on the right side of (1), where 𝜙(𝑡) is a 
known function, we are interested in finding the 
function 𝑓(𝑥, 𝑦)   (𝑥, 𝑦) ∈ ℝ+𝑛+1, if the solution to 
problem (1)-(3) satisfies the following 
overdetermination condition: 

 
𝑢(𝑥, 0, 𝑡) = 𝐹(𝑥, 𝑡),  𝑡 > 0,  𝑥 ∈ ℝ𝑛, (5) 
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𝐹(𝑥, 𝑡) is a given function. 
 

At the present time, fractional PDEs have been 
found as useful and applicable tools in applied 
sciences. The processes of heat transfer and 
diffusion phenomena in media with a fractal 
structure are called anomalous, [1], [2]. The 
mathematical modeling for describing transport 
processes in such media is well developed based on 
fractional calculus, [1], [2], [3], [4]. 

In the literature, inverse problems for classical 
second order differential equations of parabolic type 
have been studied quite deeply. There are the linear 
inverse source and nonlinear inverse coefficient 
problems for heat equations with different types of 
the initial and initial-boundary problems (direct 
problems) and over-determination conditions, [5]. In 
this direction we note that the works, [6], [7], [8], 
are concerned with inverse memory recovery 
problems in parabolic integro-differential equations 
of the second order with integral terms of 
convolution type. In, [9], [10], there were proven 
that if the kernel of convolution integral in a 
classical integro–differential diffusion equation 
coincides with the two parametric Mittag–Leffler 
function of the special argument then this equation 
describes the anomalously diffusive transport of 
solute in heterogeneous porous media, [11]. The 
methods for solving various initial-boundary value 
problems for differential equations with fractional 
time derivatives in the sense of Riemann-Liouville 
and Caputo using functions of the Mittag-Leffler 
type are given in the well-known monograph, [3], 
and article, [12].  

In recent years, fractional differential equations 
have attracted much attention and some analytical 
methods for solutions of the initial and initial-
boundary problems for such equations have been 
proposed, [13], [14], [15], [16], [17], [18], [19], 
[20]. In works, [21], [22], the author obtained the 
exact solution of the fractional diffusion equation in 
half-space with the Dirichlet boundary condition. In, 
[23], the fractional diffusion equation in half-space 
was subject to the homogeneous Dirichlet boundary 
condition and the homogeneous Neumann boundary 
condition. The fractional diffusion equation in half-
space with the Robin boundary condition was 
considered in, [24]. Using the integral transform 
methods, including the Laplace transform and the 
Fourier transform it was obtained the exact solution 
of the problem. 

Among the inverse problems for the fractional 
diffusion equation with Riemann-Liouville and 
Caputo type derivatives, the very common are 
inverse source problems with different over-

determination conditions, [25], [26], [27], [28], [29], 
[30], [31], and the literature in them). In the work, 
[29], there also were only obtained the uniqueness 
theorem for the inverse problem of determining the 
various time-independent smooth coefficients 
appearing in time fractional diffusion equations, 
from measurements of the solution on a certain 
subset at fixed time. 

The inverse problem discussed here can be 
treated as that of determining the density of heat 
sources, which is described by the function 𝑓(𝑥, 𝑦), 
acting in the semispace 𝑦 ≥ 0. This problem has a 
very definite physical sense in applications: if the 
function 𝜙 to take as 𝜙(𝑡) = 𝑒−𝜆𝑡, it is associated 
with problem of finding the density of radioactive 
heat sources by the thermal radiation on the Earth’s 
surface (condition (5)). In this case the number 𝜆 
defines the half-life of a radioactive element. 

In this work, we construct the exact solution of 
the multidimensional fractional heat (diffusion) 
equation in half space with Robin type boundary 
conditions. This formula is obtained by the 
continuation method used in the theory of PDEs 
with integer derivatives. The Green’s function of the 
problem is constructed in terms of the Fox 𝐻 − 
function, [32]. Using these results we prove the 
uniqueness of the solution to the inverse problem. 

 
 

2 Cauchy Problem and Auxiliary 

Lemma 
In the beginning, we will deal with determining a 
solution to the following Cauchy problem: 
 

∂𝑡
𝛼𝑣 − 𝛥𝑣 = 𝑔(𝑥, 𝑦, 𝑡), 

 𝑡 > 0,  (𝑥, 𝑦) ∈ ℝ𝑛+1, (6) 
 

𝑣(𝑥, 𝑦, 0) = 𝜑(𝑥, 𝑦),    (𝑥, 𝑦) ∈ ℝ𝑛+1.    (7) 
 

The solution to the problem (6) and (7) is 
determined by the formula, [17], [33]: 

𝑣(𝑥, 𝑡) = 

= ∫ 𝐺𝛼,1
ℝ𝑛+1

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡)𝜑(𝜉, 𝜂)𝑑𝜉𝑑𝜂 

+∫ ∫𝐺𝛼,𝛼
ℝ

𝑡

0

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡 − 𝜏) ∙ 

∙ 𝑔(𝜉, 𝜂, 𝜏)𝑑𝜉𝑑𝜂𝑑𝜏, 
 𝑡 > 0,  (𝑥, 𝑦) ∈ ℝ𝑛+1,          (8) 

 
where 𝑑𝜉 = 𝑑𝜉1⋯𝑑𝜉𝑛 , 
 

𝐺𝛼,𝛽(𝑥, 𝑦, 𝑡) = 
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𝑡𝛽−1

(√𝜋(|𝑥|2 + 𝑦2))
𝑛+1𝐻1,2

2,0 [
|𝑥|2 + 𝑦2

4𝑡𝛼
|
(
𝑛+1

2
,1),(1,1)

(𝛽,𝛼)
] (9) 

 
is the fundamental solution of the fractional 

diffusion operator ∂𝑡𝛼 − 𝛥, 𝐻𝑝,𝑞
𝑚,𝑛 [𝑧|

(𝑏𝑗,𝐵𝑗)1
𝑞

(𝑎𝑗,𝐴𝑗)1
𝑝

] is the 

generalized hypergeometric 𝐻 − function (Fox 𝐻 − 
function). For the definition and properties of this 
function, [29]. 

The function 𝐺𝛼,𝛽 is infinitely differentiable at 
(𝑥, 𝑦) ≠ 0 for 𝑡 > 0. The regularity of the function 
𝐺𝛼,𝛽 and some of its derivatives at (𝑥, 𝑦) ≠ 0 is 
determined by the regularity of the 𝐻 − function 
and its derivatives. The appearance of singularities 
of the fundamental solution and its derivatives for 
(𝑥, 𝑦) = 0 is an essential difference between the 
fractional diffusion equation and the classical 
equations of parabolic type. 

From the asymptotic behavior of the 𝐻 − 
function for large values of the argument and the 
formulas of differentiation 𝐻 − functions, [17], 
[19], [21], [32]. 

 
if |𝑥|2 + 𝑦2 ≥ 𝑡𝛼 , then 

|𝐷𝑥,𝑦
𝑚 𝐺𝛼,𝛽(𝑥, 𝑡)| ≤ 𝐶𝑡

𝛽−1−
(𝑛+𝑚+1)𝛼

2 ∙ 

∙ exp (−𝜎𝑡−
𝛼

2−𝛼(|𝑥|2 + 𝑦2)
1

2−𝛼)    |𝑚| ≤ 2.  (10) 
 
Here the letters 𝐶,  𝜎 denote various positive 

constants and 𝐷𝑥,𝑦𝑚 : =
∂|𝑚|

∂𝑥1
𝑚1⋯∂𝑥𝑛

𝑚𝑛 ∂𝑦𝑚0
, |𝑚| = 𝑚0 +

𝑚1 +⋯+𝑚𝑛. 
 
The following statement is true: 
Lemma 1. Let the function 𝛷(𝑥, 𝑦) be defined and 

have bounded derivatives up to the 2 order 

inclusive, for (𝑥, 𝑦) ∈ ℝ𝑛+1, and a linear 

combination ∑ 𝑎𝑘
2
𝑘=0

∂𝑘𝛷

∂𝑦
(𝑥, 𝑦), where 𝑎𝑘 = 𝑐𝑜𝑛𝑠𝑡, 

is odd with respect to the point 𝑦 = 0 for a fixed 𝑥 ∈
ℝ𝑛. Then the function 

𝑢(𝑥, 𝑦, 𝑡) = 

= ∫ 𝐺𝛼,𝛽
ℝ𝑛+1

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡)𝛷(𝜉, 𝜂)𝑑𝜉𝑑𝜂  (11) 

satisfies the condition  

∑𝑎𝑘

2

𝑘=0

∂𝑘𝑢(𝑥, 𝑦, 𝑡)

∂𝑦𝑘
|𝑦=0 = 0.           (12) 

 
To prove this, we note that the following equalities 
are true: 

∂𝑘𝐺𝛼,𝛽

∂𝑦𝑘
(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) = 

(−1)𝑘
∂𝑘𝐺𝛼,𝛽

∂𝜂𝑘
(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡). 

 
In view of (10) and the conditions of the lemma, 

one can differentiate (11)  2 times under the integral 
sign. As a result, we get: 

∑𝑎𝑘

𝑛

𝑘=0

∂𝑘𝑢(𝑥, 𝑦, 𝑡)

∂𝑦𝑘
= 

∑𝑎𝑘

𝑛

𝑘=0

∫ (−1)𝑘

ℝ𝑛+1

∂𝑘𝐺𝛼,𝛽

∂𝑦𝑘
(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) ∙ 

∙ 𝛷(𝜉, 𝜂)𝑑𝜉𝑑𝜂. 
 

Integrating by parts on the right side of this 
equality, we “throw over” the derivatives ∂

𝑘

∂𝜂𝑘
 to the 

function 𝛷(𝜉, 𝜂). At the same time, taking into 
account that the non-integral terms vanish in 
accordance with (10), we obtain: 
 

∑𝑎𝑘

2

𝑘=0

∂𝑘𝑢(𝑥, 𝑦, 𝑡)

∂𝑦𝑘
= ∫ 𝐺𝛼,𝛽

ℝ𝑛+1

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) 

∙ ∑ 𝑎𝑘

2

𝑘=0

∂𝑘𝛷(𝜉, 𝜂)

∂𝜂𝑘
𝑑𝜉𝑑𝜂. 

 
Under the conditions of lemma the integrand in 

the last formula is odd with respect to 𝜂 = 0 at 𝑦 =
0. Therefore, the relation (12) is valid. 
 
 
3   Solution of the Direct Problem  
Lemma 1 allows us to solve the problem for the 
homogeneous heat equation: 
 

∂𝑡
𝛼𝑢 − 𝛥𝑢 = 0,  𝑡 > 0, (𝑥, 𝑦) ∈ ℝ+

𝑛+1,     (13) 
 
with the initial condition: 
 

𝑢(𝑥, 𝑦, 0) = 𝜑(𝑥, 𝑦),    (𝑥, 𝑦) ∈ ℝ+
𝑛+1,   (14)  

 
and a homogeneous boundary condition of the form 

∑𝑎𝑘

2

𝑘=0

∂𝑘𝑢(𝑥, 𝑦, 𝑡)

∂𝑦𝑘
|𝑦=0 = 0.              (15) 

 
To do this, we continue the function 𝜑(𝑥, 𝑦) for 

𝑦 < 0, defining a new function 𝛷(𝑥, 𝑦), which 
satisfies conditions 
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𝛷(𝑥, 𝑦) = 

 {

𝜑(𝑥, 𝑦)    at    𝑦 ≥ 0,

∑𝑎𝑘

2

𝑘=0

∂𝑘𝛷(𝑥, 𝑦)

∂𝑦𝑘
= −∑𝑎𝑘

2

𝑘=0

∂𝑘𝜑𝑘(𝑥, 𝑠)

∂𝑠𝑘
|𝑠=−𝑦     at    𝑦 ≤ 0

 

(16) 
 
and is continuous together with derivatives up to the 
2 −th order inclusive on ℝ at every fixed 𝑥 ∈ ℝ𝑛. 

We note that in the case of the homogeneous 
boundary condition (3), in the formula (16) there 
will be 𝑎0 = −ℎ, 𝑎1 = 1 and 𝑎2 = 0. 

Suppose that the function 𝜑(𝑥, 𝑦) satisfies the 
matching condition: 𝜑𝑦(𝑥, 0) − ℎ𝜑(𝑥, 0) = 0. 
According to Lemma 1, it is necessary to continue 
the function 𝜑(𝑥, 𝑦) for 𝑦 ≤ 0 in such a way that 
the function 𝛷𝑦(𝑥, 𝑦) − ℎ𝛷(𝑥, 𝑦) (at every fixed 
𝑥 ∈ ℝ𝑛) is odd with respect to 𝑦, where 𝛷(𝑥, 𝑦) is 
the continuation of the function 𝜑(𝑥, 𝑦) on ℝ𝑛+1. 
Obviously 𝛷(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) for (𝑥, 𝑦) ∈ ℝ+𝑛+1. For 
determining the function 𝛷(𝑥, 𝑦) for 𝑦 < 0 we 
obtain the Cauchy problem for the following 
differential equation: 

 

{
𝛷𝑦(𝑥, 𝑦) − ℎ𝛷(𝑥, 𝑦) = 𝜆(𝑥, 𝑦)        𝑦 < 0,

𝛷(𝑥, 0) = 𝜑(𝑥, 0),
 

 
where 𝜆(𝑥, 𝑦) := −𝜑𝑦(𝑥, −𝑦) + ℎ𝜑(𝑥,−𝑦). 
Solving this problem, we find 𝛷(𝑥, 𝑦) for 𝑦 ≤ 0 

𝛷(𝑥, 𝑦) = 𝜑(𝑥, −𝑦) + 2ℎ∫ 𝑒ℎ(𝑦−𝑧)

𝑦

0

𝜑(𝑥,−𝑧)𝑑𝑧. 

Thus, the 𝜑(𝑥, 𝑦) function continues as follows: 
𝛷(𝑥, 𝑦) = 

{
 

 
𝜑(𝑥, 𝑦)        𝑦 ≥ 0,

𝜑(𝑥,−𝑦) + 2ℎ∫ 𝑒ℎ(𝑦−𝑧)

𝑦

0

𝜑(𝑥,−𝑧)𝑑𝑧,      𝑦 ≤ 0.
(17) 

Writing now the solution to the problem 
∂𝑡
𝛼𝑢 − 𝛥𝑢 = 0,  𝑡 > 0, (𝑥, 𝑦) ∈ ℝ𝑛+1,     
 𝑢(𝑥, 𝑦, 0) = 𝛷(𝑥, 𝑦),    (𝑥, 𝑦) ∈ ℝ𝑛+1, 

 
in the form of an analog of formula (8), where the 
function 𝛷(𝑥, 𝑦) is determined by the formula (17): 

𝑢(𝑥, 𝑦, 𝑡) = 

∫ 𝐺𝛼,1
ℝ𝑛+1

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡)𝛷(𝜉, 𝜂)𝑑𝜉𝑑𝜂 

= ∫ ∫𝐺𝛼,1
ℝ𝑛

∞

0

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡)𝜑(𝜉, 𝜂)𝑑𝜉𝑑𝜂 

+ ∫ ∫𝐺𝛼,1
ℝ𝑛

0

−∞

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡)𝜑(𝜉, −𝜂)𝑑𝜉𝑑𝜂 

+2ℎ ∫ ∫𝐺𝛼,1
ℝ𝑛

0

−∞

(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) ∙ 

∙ ∫ 𝑒ℎ(𝜂−𝑧)

𝜂

0

𝜑(𝜉,−𝑧)𝑑𝑧𝑑𝜉𝑑𝜂, 

after transformations, we get 
𝑢(𝑥, 𝑦, 𝑡) = 

∫ ∫[

ℝ𝑛

∞

0

𝐺𝛼,1(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) + 𝐺𝛼,1(𝑥 − 𝜉, 𝑦 + 𝜂, 𝑡) 

−2ℎ∫ 𝐺𝛼,1

∞

0

(𝑥 − 𝜉, 𝑦 + 𝜂 + 𝑧, 𝑡)𝑒−ℎ𝑧𝑑𝑧] 

∙ 𝜑(𝜉, 𝜂)𝑑𝜉𝑑𝜂. 
As a result, we obtain an expression for the Green’s 
function of the Robin problem for the fractional heat 
equation on the half-line: 

𝐺𝛼,1
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡) = 

𝐺𝛼,1(𝑥 − 𝜉, 𝑦 − 𝜂, 𝑡) + 𝐺𝛼,1(𝑥 − 𝜉, 𝑦 + 𝜂, 𝑡) 

−2ℎ∫ 𝐺𝛼,1

∞

0

(𝑥 − 𝜉, 𝑦 + 𝜂 + 𝑧, 𝑡)𝑒−ℎ𝑧𝑑𝑧. 

or, taking into account the formula (9) 
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𝐺𝛼,1
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡)

=
1

(√𝜋(|𝑥 − 𝜉|2 + (𝑦 − 𝜂)2))
𝑛+1𝐻1,2

2,0 [
|𝑥 − 𝜉|2 + (𝑦 − 𝜂)2

4𝑡𝛼
|
(
𝑛+1

2
,1),(1,1)

(1,𝛼)
]

+
1

(√𝜋(|𝑥 − 𝜉|2 + (𝑦 + 𝜂)2))
𝑛+1𝐻1,2

2,0 [
|𝑥 − 𝜉|2 + (𝑦 + 𝜂)2

4𝑡𝛼
|
(
𝑛+1

2
,1),(1,1)

(1,𝛼)
] 

−2ℎ∫
1

(√𝜋(|𝑥 − 𝜉|2 + (𝑦 + 𝜂 + 𝑧)2))
𝑛+1

∞

0

𝐻1,2
2,0 [

|𝑥 − 𝜉|2 + (𝑦 + 𝜂 + 𝑧)2

4𝑡𝛼
|
(
𝑛+1

2
,1),(1,1)

(1,𝛼)
] 𝑒−ℎ𝑧𝑑𝑧. 

(18) 
 

Using the Duhamel’s principle the constructed 
above Green’s function 𝐺𝛼,1𝐷 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡), one can 
find a solution to the problem (1)-(3) (on the 
Duhamel’s principle for the fractional diffusion 
equation see, for example, [34]): 

𝑢(𝑥, 𝑦, 𝑡) = ∫ 𝐺𝛼,1
𝑅

∞

0

(𝑥 − 𝜉, 𝑦, 𝜂, 𝑡)𝜑(𝜉)𝑑𝜉𝑑𝜂 

+∫∫(𝑡 − 𝜏)𝛼−1
∞

0

𝑡

0

𝐺𝛼,𝛼
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡 − 𝜏) 

∙ 𝑔(𝜉, 𝜂, 𝜏)𝑑𝜉𝑑𝜂𝑑𝜏.            (19) 
where 

𝐺𝛼,𝛼
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡 − 𝜏) = 

(𝑡 − 𝜏)𝛽−1𝐺𝛼,1
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡 − 𝜏).         (20) 

 
 
4 Particular Case of the Green’s 

Function 
Representing the 𝐻 − function by means of a 
Mellin-Barnes type integral in the following form, 
[32]: 

𝐻1,2
2,0 [

|𝑥|2 + 𝑦2

4𝑡𝛼
|
(
𝑛+1

2
,1),(1,1)

(𝛽,𝛼)
] = 

1

2𝜋𝑖
∫

𝛤 (
𝑛+1

2
+ 𝑠)𝛤(1 + 𝑠)

𝛤(𝛽 + 𝛼𝑠)

𝜎+𝑖∞

𝜎−𝑖∞

(
|𝑥|2 + 𝑦2

4𝑡𝛼
)

−𝑠

𝑑𝑠 

 
with 𝜎 ∈ (−𝛼, 1), the fundamental solution (9) can 
be rewritten as 

𝐺𝛼,𝛽(𝑥, 𝑡) =
𝑡𝛽−1

(√𝜋(|𝑥|2 + 𝑦2))
𝑛+1 ⋅ 

1

2𝜋𝑖
∫

𝛤 (
𝑛+1

2
+ 𝑠)𝛤(1 + 𝑠)

𝛤(𝛽 + 𝛼𝑠)

𝜎+𝑖∞

𝜎−𝑖∞

(
|𝑥|2 + 𝑦2

4𝑡𝛼
)

−𝑠

𝑑𝑠. 

(21) 
 
In particular, 𝛼 = 𝛽 = 1 (classical heat equation) 
the representation (21) takes the form 

𝐺1,1(𝑥, 𝑦, 𝑡) =
1

(√𝜋(|𝑥|2 + 𝑦2))
𝑛+1 ⋅ 

1

2𝜋𝑖
∫ 𝛤
𝜎+𝑖∞

𝜎−𝑖∞

(
𝑛 + 1

2
+ 𝑠)(

|𝑥|2 + 𝑦2

4𝑡
)

−𝑠

𝑑𝑠 

=
1

(2√𝜋𝑡)
𝑛+1

⋅
1

2𝜋𝑖
∫ 𝛤
𝜎∗+𝑖∞

𝜎∗−𝑖∞

(𝑠) (
|𝑥|2 + 𝑦2

4𝑡
)

−𝑠

𝑑𝑠,  𝜎∗ > 0. 

 
The contour of integration in the integral of the 

last formula can be transformed to the loop 𝐿−∞, 
which is started and ended at −∞, encircling all 
poles 𝑠𝑗 = −𝑗,  𝑗 = 0,1,2,⋯ of the function 𝛤(𝑠). In 
view of the Jordan lemma, the Cauchy residue 
theorem and the formula 𝑟𝑒𝑠𝑠=−𝑗𝛤(𝑠) =

(−1)𝑗/(𝑗!),  𝑗 = 0,1,2,⋯, we get the following 
equality: 

𝐺1,1(𝑥, 𝑦, 𝑡) =
1

(2√𝜋𝑡)
𝑛+1 ⋅ 

1

2𝜋𝑖
∫ 𝛤
𝜎∗+𝑖∞

𝜎∗−𝑖∞

(𝑠) (
|𝑥|2 + 𝑦2

4𝑡
)

−𝑠

𝑑𝑠

=
1

(2√𝜋𝑡)
𝑛+1∑

(−1)𝑗

𝑗!

∞

𝑗=0

(
|𝑥|2 + 𝑦2

4𝑡
)

−𝑗

. 

 
Thus the fundamental solution 𝐺1,1 to the heat 

equation takes its classical form 
𝐺1,1(𝑥, 𝑦, 𝑡) = 

1

(2√𝜋𝑡)
𝑛+1∑

(−1)𝑗

𝑗!

∞

𝑗=0

(
|𝑥|2 + 𝑦2

4𝑡
)

−𝑗

= 

1

(2√𝜋𝑡)
𝑛+1 exp (−

|𝑥|2 + 𝑦2

4𝑡
). 

 
Then, as follow from the formula (20) the Green 

function of the problem (1)-(3) in the case of 𝛼 = 1 
(i.e. (1) is a multidimensional classical 
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inhomogeneous heat equation) has the following 
form: 

𝐺1,1
𝑅 (𝑥 − 𝜉, 𝑦, 𝜂, 𝑡 − 𝜏) = 

1

(2√𝜋𝑡)
𝑛+1 [exp(−

|𝑥 − 𝜉|2 + (𝑦 − 𝜂)2

4(𝑡 − 𝜏)
) 

+exp(−
|𝑥 − 𝜉|2 + (𝑦 + 𝜂)2

4(𝑡 − 𝜏)
) − 

−2ℎ∫ exp

∞

0

(−
(|𝑥 − 𝜉|2 + (𝑦 + 𝜂 + 𝑧)2

4(𝑡 − 𝜏)

− ℎ𝑧)𝑑𝑧]. 

 
 
5   Investigation of Inverse Problem 
Let 𝑔(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦)𝜙(𝑡). There holds the 
following statement about the uniqueness of the 
solution of the inverse problem. 
Theorem. Let 𝜙(𝑡) ≠ 0, 𝑡 ∈ [0,∞), is a bounded 

function, 𝑓(𝑥, 𝑦) is a bounded function, having at 

every 𝑦 a finite Fourier transform  

𝑓(𝜈, 𝑦) = ∫𝑓

ℝ𝑛

(𝑥, 𝑦)𝑒𝑖(𝜈,𝑥)𝑑𝑥,    

 𝜈 = (𝜈1, . . . , 𝜈𝑛) 
depending on 𝑦 in a continuous way. In this case the 

function 𝑓(𝑥, 𝑦) is uniquely defined by the given 

function 𝐹(𝑥, 𝑦). 
 

Proof. Under fulfilling the conditions of Theorem, 
the solution to the direct problem (1) - (3) 
accordance with the formula (19) on based of the 
estimates (10) satisfies the conditions of 
applicability the Fourier-Laplace transform: 

𝑢̃(𝜈, 𝑦, 𝑠) = ∫𝑑

ℝ𝑛

𝑥∫ 𝑢

∞

0

(𝑥, 𝑦, 𝑡)𝑒𝑖(𝜈,𝑥)−𝑠𝑡𝑑𝑡,     𝑅𝑒(𝑠)

> 0. 
After applying this transformation, the equations (1) 
- (3) and (5) are reduced to the form 

𝑢̃𝑦𝑦 − (𝑠
𝛼 + |𝜈|2)𝑢̃ + 

+𝑠𝛼−1𝜑̃(𝜈, 𝑦) + 𝜙̃(𝑠)𝑓(𝜈, 𝑦) = 0,  
 𝑡 > 0,  𝑦 > 0,  (𝑢̃𝑦 + ℎ𝑢̃)𝑦=0 = 0, (22) 

 
𝑢̃|𝑦=0 = 𝐹̃(𝜈, 𝑦),    𝑡 ≥ 0,        (23) 

 
where 𝜙̃(𝑠) is the Laplace transform of the function 
𝜙(𝑡): 

𝜙̃(𝑠) = ∫ 𝜙

∞

0

(𝑡)𝑒−𝑠𝑡𝑑𝑡,     𝑅𝑒(𝑠) > 0. 

At every fixed value of the parameters 𝑠 and 𝜈 
(22) is a boundary value problem for an ordinary 
differential equation with respect to 𝑦. A bounded 
solution to this problem can be easily constructed 
using the Green’s function 𝐺(𝑦, 𝜂, 𝜇),   𝜇 =

√𝑠𝛼 + |𝜈|2 for problem (22). With respect to the 
variable 𝑦 this function is continuous and bounded 
on the segment [0,∞] and satisfies (in the 
generalized sense) the relations: 
 

𝐺𝑦𝑦 − 𝜇
2𝐺 = 𝛿(𝑦 − 𝜂),   

 (𝐺𝑦 + ℎ𝐺)𝑦=0
= 0,   

 𝐺𝑦|𝑦=𝜂+0 − 𝐺𝑦|𝑦=𝜂−0 = 1, 
 
where 𝛿(⋅) is Dirac’s delta function. 
 
One can easily show that the function 𝐺(𝑦, 𝜂, 𝜇) has 
the form 

𝐺(𝑦, 𝜂, 𝜇) = 

1

ℎ − 𝜇

{
 

 (cosh𝜇𝑦 − ℎ
sinh𝜇𝑦

𝜇
) 𝑒−𝜇𝜂 ,    0 ≤ 𝑦 ≤ 𝜂,

(cosh𝜇𝜂 − ℎ
sinh𝜇𝜂

𝜇
) 𝑒−𝜇𝑦,    𝜂 ≤ 𝑦.

(24) 

 
In view of Green’s function the solution to the 

inverse problem (22), (23) is written in the 
following form 

𝑢̃(𝜈, 𝑦, 𝑠) = ∫ 𝐺

∞

0

(𝑦, 𝜂, 𝜇)[𝑠𝛼−1𝜑̃(𝜈, 𝜂)

+ 𝜙̃(𝑠)𝑓(𝜈, 𝜂)]𝑑𝜂. 
Setting here 𝑦 = 0, we obtain the Laplas equation 
for 𝑓(𝜈, 𝑦) 

𝐹̃(𝜈, 𝑠) =
1

ℎ − √𝑠𝛼 + |𝜈|2
 

∫ 𝑒−𝜂√𝑠
𝛼+|𝜈|2

∞

0

[𝑠𝛼−1𝜑̃(𝜈, 𝜂) + 𝜙̃(𝑠)𝑓(𝜈, 𝜂)]𝑑𝜂,    

 𝑅𝑒(𝑠) > 0.     (25) 
 

In this equation 𝜈 is as a parameter. The 
function 𝜙̃(𝑠) being analytical in the domain 
𝑅𝑒(𝑠) > 0, it can be zero only at isolated points. 
Therefore (25) can be rewritten in the following 
form 

∫ 𝑒−𝜇𝑦
∞

0

𝑓(𝜈, 𝑦)𝑑𝑦 = 𝛷(𝜈, 𝜇),          (26) 

 
where the function 
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𝛷(𝜈, 𝜇) =
1

𝜙̃ ((𝜇2 − |𝜈|2)
1

𝛼)
 

∙ [(ℎ − 𝜇)𝐹̃ (𝜈, ((𝜇2 − |𝜈|2)1/𝛼))

−∫ 𝑒−𝜇𝑦
∞

0

𝜑̃(𝜈, 𝑦)𝑑𝑦], 

 
is known in the domain 𝐺(𝜈) = {𝜇:  𝑅𝑒((𝜇2 −
|𝜈|2)1/𝛼) > 0,   𝑅𝑒(𝜇) > 0}. 

The function 𝛷(𝜈, 𝜇) as we can see from (26), at 
every fixed 𝜈 is a Laplace transform with respect to 
the variable 𝑦 of the function 𝑓(𝜈, 𝑦). But the 
function 𝑓(𝜈, 𝑦) is uniquely determined by the 
Laplace transform values within the domain 𝐺(𝜈), 
for instance, it can be found by the formula, [35]. 

𝑓(𝜈, 𝑦) = 

lim
𝑛→∞

{[
(−1)𝑛

𝑛!
𝑠𝑛+1

∂𝑛

∂𝑠𝑛
𝛷(𝜈, 𝑠)]

𝑠=𝑛/𝑦

}. 

 
Since 𝑓(𝜈, 𝑦),   𝜈 ∈ ℝ𝑛 uniquely defines 𝑓(𝑥, 𝑦), 
then Theorem is proven. 
 
 
6   Conclusion 
In this paper, the technique of the continuation 
method of the solution from the infinite axis was 
applied to derive an explicit solution to the third 
initial-boundary problems for multidimensional 
time-fractional heat equation with the Caputo 
fractional derivative of the order 𝛼 (0 < 𝛼 < 1). 
This formula for solution contains the Green’s 
function Robin boundary condition. The Green’s 
function of the problem is constructed in terms of 
the Fox 𝐻 − function, which is popular in the theory 
of fractional calculus. It is shown, the obtained 
formula coincides with the well-known formula for 
solving the corresponding problem for 𝛼 → 1 −. 
Based on the results of solving a direct problem and 
the overdetermination condition, a uniqueness 
theorem for the definition of the spatial part of the 
multidimensional source function is proved. 

It is of interest both theoretically and practically 
to obtain exact formulas for solutions to the 
multidimensional time- and space-fractional 
diffusion-wave equations (in the case of the 
fractional Laplacian (−𝛥)𝛼/2 with 0 < 𝛼 ≤ 2) in 
half-space with the Dirichlet, Neumann, Robin 
boundary conditions. So far, such problems are 
open. 
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