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Abstract: - The study of the simultaneously developing pipe flow requires facing nonlinear systems of partial 
differential equations. In this framework, the aim of this paper is to demonstrate that the integral method can be 
an effective procedure to obtain analytic-approximate solutions that are easy to handle while allowing the 
recovery of a satisfactory accordance with the exact solution. To prove the above statement this paper will 
present a comparison between the approximate solution and the corresponding numerical solution in the 
entrance region of Newtonian pipe flow. Third-kind thermal boundary conditions are included, while velocity 
and temperature profiles at the inlet are assumed uniform. Numerical results demonstrate that the proposed 
approximate solution is quite accurate and readily implemented, both in terms of developing velocity and 
temperature profiles. Moreover, the expected functional dependence on the main parameters of the problem at 
hand is retained. As a consequence, the developing Fanning friction coefficient and Nusselt curves are 
satisfactory and accurate for different thermal boundary conditions at the wall. 
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1  Introduction 
Most realistic systems of ordinary differential 
equations do not have exact analytic solutions, so 
approximation or numerical techniques must be 
used.  Numeric solutions of the Navier-Stokes 
equations are extremely time-consuming, while 
integral schemes to solve the boundary layer 
equations are simple to treat and practically most 
often used: the schemes by Pohlhausen and v. 
Karman are much studied, that turning in reduced 
efforts required for computing time as well as for 
low memory consumption. The Kármán–
Pohlhausen (KP) momentum-integral approach, 
introduced in [1] and [2], is widely used in 
boundary-layer analysis, [3], [4], [5], [6], [7]. Its 
popularity relies on its effectiveness in providing a 
wealth of useful details for boundary layers in both 
low and high Reynolds number flows, [8], [9], [10]. 

Despite its simplicity, the KP approach continues to 
play a pivotal role in several monographs that 
devote themselves to boundary-layer theory, [11].  

In this context, the aim of this study is to extend 
the use of the integral method having in mind 
several processing operations where fluids are 
forced through short, confined channels, [12], [13]. 
In situations like this one, velocity and temperature 
profiles are still developing without reaching the 
respective asymptotic shapes. Therefore, viscous 
shear and heat transfer rates at the wall turn out to 
be greater than the respective fully developed 
values. Heat transfer in simultaneously developing 
flow has to be solved essentially by numerical 
methods: available solutions for Newtonian fluids 
are summarized in [14], while a wide treatment for 
non-Newtonian fluids can be found in [15], [16], 
[17]. Besides these seminal contributions, other 
applications are available in the Literature, 
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involving a plethora of applications.  In [18], as 
an example, the authors investigated the heat 
transfer of both Newtonian and Non-Newtonian 
flow in a tube in tube shape the mean of 
the Numerical approach. In [19], authors 
investigated the heat transfer phenomena of a more 
peculiar shape, also validating the numerical model 
with experiments. In [20], the numerical approach 
was pursued to study heat transfer in an artery in 
Newtonian and Non-Newtonian conditions, so to 
investigate heat phenomena in blood circulation. 

In this framework, the integral method is 
particularly valuable as a tool for scientists and 
applied mathematicians. This method performs 
conservation of mass, momentum, and energy 
across the boundary-layer thickness with a given 
differential element in the x- direction instead of 
performing mass, momentum, and energy balances 
through a differential fluid element inside the 
boundary layer, as with the similarity method, the 
integral method. It should be reiterated for fluids 
with a Prandtl number different from unity, such as 
gases, water, and oils, the hydrodynamic boundary-
layer thickness is different from the thermal 
boundary layer, [21]. For this reason, particular care 
was given to the choice for the appropriate profile. 

In this paper, the approximate method is 
implemented to derive approximate solutions to the 
Navier Stokes systems of partial differential 
equations. It is important to underline how, despite 
the undeniable advantages of the integral methods, 
the quality of the achieved results depends on the 
assumption of the chosen basic profiles. The goal of 
obtaining a solution that is both simple and accurate 
is achieved through an appropriate selection of the 
basic shape functions, which must consider all 
information relevant to the problem under study, 
with particular reference to the limiting cases, 
namely the asymptotic solutions in the regions near 
the entrance and those that are fully developed. As 
a final remark of this contribution, to assess the 
accuracy of the approximate solution, a numerical 
comparison with the Finite Element Method (FEM) 
was carried out with commercial software. 
Ultimately, the results showed that the approximate 
analytical method can be considered a valid 
alternative to the classical methods available in the 
literature, in order to obtain accurate results that 
preserve the functional dependence of more 
elaborate solutions. 
 

 

2  Analysis of the Method 
In the present study, velocity and temperature fields 
are derived as approximate analytical solutions by 

using the integral approach. The flow is assumed to 
be at a steady state for a Newtonian fluid in 
incompressible laminar pipe flow in the entrance 
region. The developing velocity flow problem 
cannot be strictly considered a boundary layer 
problem, as the axial diffusion of momentum and 
the radial pressure gradient are not negligible very 
close to the inlet. Despite this, the boundary layer 
approach provides a good approximation for the 
velocity field and significantly simplifies the 
momentum equations, [22]. Therefore, assuming a 
flow with a large Reynolds number, the 
simplifications from boundary layer theory are 
applied in the following scheme.  

The boundary conditions at the tube inlet 
provide uniform velocity and temperature profiles. 
The thermal condition at the wall is of heat flux 
linearly depending on the wall temperature, thereby 
allowing for the recovery of both constant wall 
temperature and heat flux as limiting cases.  

To overcome the difficulty connected with 
heavy numerical computations and to have a simple 
and handful solution, analytical approximate 
methods can be applied. The developing velocity 
and temperature profiles are obtained using the 
integral method, [23], [24], [25], which garners 
particular attention due to its ease of implementation 
and lower computational cost compared to the FEM. 
This makes it an attractive option when a fast 
solution is needed to provide quick insights or 
estimates of the problem at hand, such as in the case 
of a preliminary engineering approach. 
Additionally, the integral method reduces the 
problem to a more manageable form, maintaining 
the functional dependence of the solution on key 
parameters, provided that the basic profiles are 
selected appropriately. Often, as will be 
demonstrated, it facilitates closed-form solutions or 
expressions that yield more direct physical insights 
into the system's behaviour. Furthermore, FEM's 
high sensitivity to mesh quality can affect both the 
accuracy and stability of the solution, which 
underscores the robustness of the integral method in 
certain contexts. 

In the subsequent analysis, the unknown 
velocity profile is represented as an expansion in 
terms of a similarity variable, which incorporates 
both the radial and axial spatial coordinates as 
independent variables. This choice seems suitable 
since both the Leveque solution near the inlet and 
the fully developed solution are recovered, as will 
be demonstrated later. To explicitly derive the 
unknown velocity shape functions, the integral form 
of the mass and momentum conservation equations 
is employed in conjunction with an additional 
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equation: the momentum equation weighted by the 
similarity variable. These ordinary differential 
equations involve only the axial variable as the 
independent variable. They constitute a system of 
two differential equations with two unknowns, 
which can be readily solved numerically to 
characterize the fundamental shape functions and, 
consequently, the velocity profile and axial pressure 
gradient. 

Following a similar approach, to explicitly 
derive the unknown temperature shape functions, a 
set of two first-order differential equations is 
employed: the first is the integral energy balance 
equation, and the second is derived from the first by 
applying the moment method, with the similarity 
variable used as the weight function. Then, the 
calculation of the wall heat transfer is enabled. 

Results are presented and discussed in 
dimensionless form, both in terms of the wall 
friction factor and the Nusselt number, for selected 
Biot and Prandtl numbers. 
 

 

3  Basic Equations 
To predict the fluid flow and wall heat transfer in a 
circular pipe, a two-dimensional axisymmetric 
model is employed. The velocity and temperature 
fields in the entrance region for incompressible, 
steady-state laminar flow, are determined by 
neglecting axial diffusion, assuming constant 
properties and no thermal energy sources. Uniform 
inlet profiles are considered, and Newtonian 
behaviour is assumed. 
 
3.1  Velocity Field 
The mass and momentum equations and the related 
boundary conditions can be written in dimensionless 
form as:  

r ux + (v r)r = 0 (1) 
u ux + v ur= -px + (r ur)r/r (2) 

v(x,1) = 0; v(0,r) = 0 (3) 
u(x,1) = 0; u(0,r) = 1; ur(x,0) = 0 (4) 

 
The dimensionless variables are: 

x =X/ R0/ ReR ; r =R/ R0 ; u = U/U0 ; 
v = V/U0 ReR ;  p =P/ U0

2); 
ReR = (U0 R0)/ 

(5) 

 
where: X and R are the axial and the radial 
coordinates; U and V the axial and radial velocity 
components; P the pressure; R0 the tube radius; U0 
the inlet velocity, the density;  the viscosity. The 

lower-case symbols indicate the respective 
dimensionless parameters.  
Since the above equations are to be solved by the 
integral method, the basic velocity profile is to be 
specified by explicitly featuring its radial functional 
dependence. Considering the asymptotic solutions, 
it is sought as follows: 

u(x,r) = ua(x) (1-r 2/(x)) (6) 
 
where ua(x) and ( )x  are two unknown shape 
functions, turning out to be the velocity on the axis 
and a measure of the momentum boundary layer 
thickness, respectively. The group  = r 2/(x) can be 
identified as a similarity variable that incorporates 
both the axial and radial independent variables. 
Satisfying the boundary conditions and the integral 
mass balance imposes restrictions on the shape 
functions. In particular, the integral form of the 
mass balance equation 

1

0
d 1/ 2r u r   (7) 

 
gives a simple relationship among the two unknown 
velocity functions: 

a ( ) 1 ( )u x x   (8) 
 

To satisfy the boundary condition at the tube 
entrance, it is required that (x0)=0. The wall and 
on-axis conditions are satisfied if: 0 < (x) < 2. As 
expected, a singular point in the velocity profile 
occurs for x = and r The unknown pressure 
axial gradient requires a further balance equation.  
To this purpose, it seemed convenient to employ the 
moment method, using the variable r(x)/4 as the 
weighting function, [26]. The exponent of the power 
function was chosen to minimize the error in the 
pressure decay in the inlet region and was 
determined based on subsequent analysis. 
Finally, the two integral balance equations turn out 
to be:  

1 2
r x x0
( ,1) 2 ( ) d / 2u x r u r p   (9) 

1 1/4 /4 2
r x x0 0

4d ( ) / 2 d
8

r u v r r u r p 


  

   

1 /4
r0

( ) drr r u r   
(10) 

 
The subscript 'w' indicates the duct wall, i.e. r = 

1. 
The previous set of two equations reveals two 
unknown functions, i.e. the shape function δ(x) and 
the longitudinal pressure gradient px(x). Since the 
first equation is independent of the second, it can be 
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solved separately to derive an ordinary differential 
equation for the shape function: 

    
24 2 3 2

a

4 1 10 24 16
2

( )
d
d fx

    

 

  




 
  

9 8 7 6 5
a ( ) 32 472 3360 13248f             

4 3 238784 85504 113664 73728 16384         

(11) 

 
By examining this equation, it is immediately 

evident that the asymptotic solution for the fully 
developed region is fully recovered when 
δ(x→∞)=1. Notably, the last equation allows for an 
immediate implicit solution in the form x=x(δ). 
Once δ(x) is determined, the axial velocity can be 
derived using Eq. (6). The axial pressure gradient 
can be obtained through numerical integration of 
Eq. (10). The radial velocity can be determined by 
applying the local mass balance, Eq. (1), which 
results in: 

 2/ ( )( ) ( ( ) 2 log( )) d ( )
2 ( d

,
)

( )
x

v
r

x r
x

x r x r x

x

  




 
 

(11’) 

 
3.2  Temperature Field 
The dimensionless energy balance equation and the 
boundary conditions are: 

r u tx  + r v tr = (r tr)r/(Pr) (12) 

t(0,r) = 1 (13) 

 tr(x,0) = 0 (14) 

tr(x,1) = -Bi t(x,1) (15) 
 
where: t = (T – Ts)/(T0 – Ts), Ts and T0 being the 
temperatures of the ambient surrounding the tube 
and of the fluid at pipe inlet; Pr is the Prandtl 
number; Bi =(heq R)/k is the Biot number, 1/heq 
being the thermal resistance of the wall which 
includes the resistances of the wall and the tube-
ambient, respectively. The limiting case of 
prescribed wall temperature and wall heat flux are 
recovered for Bi  and Bi 0, respectively. 
The basic temperature profile is expressed similarly 
to the velocity profile, i.e. a series expansion in 
terms of a similarity variable, T2/ ( )

T
x

r
  , (x) 

being the temperature shape function, a measure of 
the temperature boundary layer. By considering the 
exact solution for fully developed flow with a 
second-kind boundary condition at the wall, the 
profile is chosen as follows: 

 w a w T T( , ) ( ) ( ( ) ( )) 1 ((1 ( )) ( )t x r t x t x t x c x c x        (16) 
 

where ta(x) and tw(x) are the unknown temperature 
shape functions, i.e. the temperatures on the axis 
and at the tube wall, respectively.  

Imposing that the approximate solution satisfies 
the energy balance equation at the collocation point 
r = 1, one gets c(x) = 4/3. This result makes it 
possible to assert that the exact solution for constant 
wall heat flux is recovered provided that 

T ( ) 1x   . 
The boundary condition at the wall gives an 

algebraic relation for the unknown temperature 
functions: 

ta(x)/tw(x) = 1+(3/4) Bi T(x) (17) 
 

The boundary condition at the tube entrance 
gives the initial values for the wall temperature and 
the shape function: (x0)=0 and tw(x0)=1. The 
assumed temperature profile allows recovering the 
asymptotic behaviour in the developed temperature 
region, if (x) reaches a constant value. The 
two unknown functions, T(x) and tw(x), are 
derived by using two integral equations: the energy 
balance equation and the energy balance weighted 
with the temperature similarity variable T . The two 
first-order differential equations are numerically 
solved by a fourth-order Runge-Kutta scheme. 
 
3.3  The FEM Model 
In addition to the above, the mass, momentum, and 
energy equations are solved using 
commercial CFD software COMSOL Multiphysics 
v 6.1 along with the associated boundary conditions, 
[27]. Therefore, a 2D numerical model, FEM based, 
was developed to simulate heat transfer in 
simultaneously developing flow and, therefore, to 
realize a reference useful to verify the accuracy of 
the approximate solution. A pipe geometry 
consisting of 1 mm i.d. and 0.6 m long was 
considered. The domain was discretized using a 
mapped grid of 152 600 elements. To determine 
such a result, grid convergence tests were performed 
using a series of grids with progressively finer 
resolutions. Temperature error norms were 
evaluated at selected points, continuing until the 
errors stabilized and became negligible with further 
grid refinement. A particularly advantageous feature 
of the mapped mesh is its excellent control over 
element size, quality, and growth rate, although it 
may require additional effort to prescribe the 
optimal distributions along all edges where 
geometrical discontinuities make meshing critical. 
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4  Results and Discussion 
 

4.1  Behaviour Close to the Tube Inlet 
A first way to verify the goodness of the proposed 
solution consists in comparing it with Blasius' well-
known solution close to the tube inlet in the limit 
x0. It is well known from the numerical solution 
of the Blasius equation that the boundary layer over 
a semi-infinite flat plate grows as 4.92 x1/2. Taking 
the limit for x approaching zero, equation (12) 
reveals that: (x0) = 4 x1/2. Therefore, the well-
known Blasius solution's functional dependence is 
fully recovered and the velocity structure close to 
the inlet resembles the Leveque boundary layer 
solution: u(x,r) = (1/2) (1-r)/x1/2.  
The thermal solution close to the inlet gives: 

T(x) = 2.09 Pr-1/3 x1/2 ; 
tw(x) = 1 1.57 Bi Pr-1/3 x1/2 (18) 

 
As happens for the velocity, the temperature 

shows a boundary layer behaviour and saves the 
expected functional dependence on the tube 
longitudinal coordinate.  
 
 

fully developed 
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Fig. 1: Developing velocity profiles 
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Fig. 2: Local skin friction coefficient 
 

4.2  Velocity Field 
To show the behaviour of the proposed solution and 
compare it with the numerical code, the fluid was 
assumed to be water with constant properties 
(thermal conductivity k = 0.6 W m−1 K−1, density ρ 
=1000 kg m−3, and dynamic viscosity 
μ=8.82×10−4 Pa s). At the inlet, uniform velocity and 
temperature of 0.441 m/s and 50°C were assumed, 
respectively. The outlet pressure was set to 1 bar, 
while the external fluid temperature and convection 
coefficient were 20°C and 1200 W m−2 K−1, 
respectively. In Figure 1, the developing velocity 
profiles are reported for selected distances from the 
inlet. As expected, the slowing down of the fluid 
due to increasing boundary layer thickness requires 
that the axial velocity grows along the duct until the 
fully developed value is recovered. The numerical 
and the analytical solutions gradually approach each 
other until they collapse into a single profile in the 
fully developed region. Here, the above-mentioned 
occurrence providing (x)=1 implies the 
approximated fully developed velocity profile 
coincides with the exact solution. 

Even though the velocities on the axis differ by 
no more than 6.84% throughout the entire entrance 
region, it's noteworthy to observe the wall slopes of 
the approximate and numerical profiles: they appear 
to exhibit satisfactory agreement. This is significant 
because the friction between the fluid and the walls 
is related to the local shear stress at the surface, 
which is evaluated by the velocity gradient at the 
wall. Quantitatively, the local skin friction 
coefficient in the entrance region is presented to 
characterize the frictional force at the boundary 
between the fluid and the wall; this dimensionless 
number is defined as: 

ww
2 2
0 0

8 1 ( )2
( )/ 2D

U

R x
C

Re xU U

 

 

 
 
  

    
(19) 

 
where w is the shear stress at the wall, and U0 is the 
characteristic average velocity of the flow over the 
cross-section. It can be readily checked that the 
previous structure allows to recover the expected 
asymptotic value, i.e. Cf,∞ = 16/Re.  

The gradual build-up of the fully developed 
velocity profile from the uniform inlet one is 
responsible for the curve monotonic decay until the 
exact asymptotic value is recovered, as shown in 
Figure 2.  Here, the proposed solution is compared 
with both the numerical solution and the one 
proposed in [28]. The maximum relative error is 
contained within the 0.8% in the range under 
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consideration, which indeed entails a broad 
operative range. 

 
4.3  Temperature Field 
The developing temperature profiles depend on the 
thermal boundary condition at the wall, i.e. on the 
Biot number, and on the fluid at hand, i.e. on the 
Prandtl number. In Figure 3, the developing 
temperature profiles are reported for selected 
distances from the inlet and compared with the 
numerical solution, assuming Bi = 1 and Pr = 6.15. 
The results obtained from the approximate solution 
fairly agree with the numerical simulations, with the 
relative error being less than 1%. This demonstrates 
that the proposed solution is an effective method for 
making precise and accurate predictions about the 
developing temperature field. 

The knowledge of the temperature field allows 
for the calculation of the Nusselt number, which is a 
critical parameter in heat transfer analysis. In fact, it 
represents the heat transfer coefficient in a non-
dimensional form therefore the wall heat transfer 
can be calculated.  
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Fig. 3: Developing temperature profiles for Pr = 
6.15, Bi = 1  
 

A former check for comparing approximate and 
numerical Nusselt numbers arises from the 
availability of the well-known Hickman 
relationship, [22], [29], [30], [31] which applies to 
the fully developed region (subscript ∞): 

48 /11( )
1 / 3.66

Bi
Nu Bi

Bi






 (20) 

 
From this equation, one can derive the limiting 

cases of uniform wall heat flux, which corresponds 
to Bi = 0, and uniform wall temperature, which 
corresponds to Bi = ∞. The well-known values for 

these cases are 48/11 and 3.66, respectively. For the 
case at hand featured by Bi = 1, equation (20) 
returns Nu∞ = 4.21. On the other hand, the fully 
developed Nusselt number can be calculated 
according to its definition as per equation (16), 
yielding: 

w

b w

[ ]( ) 2
[ ] [ ]

Bi t x
Nu Bi

t x t x



 

  
 (21) 

 
Evaluating the wall and bulk temperatures as 

per equation (21) yields a Nusselt number of Nu∞ = 
4.14, resulting in a relative error of 1.6%.  

A further validation can be made by evaluating 
the Hickman relationship for Bi0 which gives 
4.36, fully recovering the approximate value 
obtained through equation (21). In other words, the 
structure sought for the approximate temperature 
profile allows us to completely recover the exact 
one in the fully developed region. At the other 
extreme, for Bi∞, the error reduces to 0.87%. 

the thermal boundary layer thickens along the 
axial direction, causing the Nusselt number to 
decrease monotonically along the pipe until it 
reaches the asymptotic value. The developing 
Nusselt number, calculated using equation (21) and 
based on the local temperature values obtained from 
the approximate solution, is compared with the 
numerical FEM solution in Figure 4 for the 
previously selected Bi and Pr values. The curves 
exhibit the anticipated trend, with the relative error 
decreasing monotonically from 8.6% to 1.6% within 
the examined range, demonstrating a good 
agreement between the two methods. 
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Fig. 4: Nusselt number in the simultaneous entrance 
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5  Conclusions 
In this contribution, the authors demonstrated the 
validity of an approximate solution for heat transfer 
in the entrance region of a laminar Newtonian flow 
in a circular pipe. The main advantages of this 
innovative approach are the low time and 
computational cost required when compared to the 
numerical model. By implementing an integral 
method to solve the proposed model, interesting 
results are obtained for both the velocity and 
temperature profiles. 

A comparison of such results with the one 
obtained with the numerical solutions shows how 
the proposed model is advantageous since it gives 
comparable results with significantly lower efforts 
in terms of both time and computational mess. The 
relative error for the velocity field is lower than 
0.8%, while the relative error for the temperature 
field is lower than 1%. Such error values are relative 
to the application of the model at a specific range 
under consideration, while they increase in 
exceeding it up to a maximum of 8.6%. 

To conclude, the presented model is a valid 
approximate substitution for FEM methods for 
a specific range of applications. Future 
developments will involve the investigation of the 
solution for a wider range of applications, together 
with the application of the proposed method to solve 
heat transfer problem for non-Newtonian flows. 
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