
Abstract: This paper addresses the Darcy-Forchheimer problem with pressure boundary conditions. We employ
finite element methods to discretize the system and introduce an iterative scheme to solve the resulting nonlinear
discrete problem. The well-posedness and convergence of this iterative approach are then demonstrated. Finally,
we present several numerical experiments to validate the proposed numerical schemes.
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1 Introduction
Darcy’s law describes the creeping flow of Newtonian
fluids in porous media. It establishes a linear
relationship between the velocity of creeping flow
and the pressure gradient, as expressed by the
equation

µ

ρ
K−1u+∇p = f,

where u represents the velocity, p represents the
pressure, and the parameters ρ and µ represent the
fluid density and its viscosity.
A theoretical derivation of Darcy’s law can be
found in [1], [2]. However, when conducting
flow experiments in porous media with nonuniform
porosity and higher velocities, [3], observed that
Darcy’s law becomes insufficient. To address
this limitation, Forchheimer introduced a modified
equation, which is nonlinear in nature:

µ

ρ
K−1u+

β

ρ
|u|u+∇p = f. (1)

Here, |.| denotes the Euclidean norm, and |u|2 = u·u.
The parameter β represents the fluid dynamic
viscosity and is also referred to as the Forchheimer
number when it is a positive scalar constant. K
represents the permeability tensor.
A theoretical derivation of Forchheimer’s law can be
found in [4].

A mixed element for Forchheimer equation (1), also
known as Darcy-Forchheimer equation, completed
by a non-homogeneous boundary condition on the
normal component of the velocity was introduced
by [5]. Their work established the existence and

uniqueness of the corresponding weak solution. At
the discrete level, Girault and Wheeler approximated
the velocity using piecewise constants and the
pressure using the Crouzeix-Raviart element. To
solve the resulting system of nonlinear equations
arising from finite element discretization, they
proposed an alternating directions iterative method.
Their research encompasses the convergence analysis
of both the iterative algorithm and the mixed element
scheme. Additionally, they provided an error
estimate for the mixed element scheme. The study,
[6], carried out numerical tests of the methods
studied in [5], to corroborate the results presented
there. Furthermore, they introduced another mixed
finite element space, which yields smoother pressure
approximations compared to the space proposed in
[5]. The study, [7], undertook a theoretical study
of this mixed finite element space as proposed in
[6]. Their work demonstrated the existence and
uniqueness of discrete solutions, convergence, and
error estimates. The study, [8] derived a posteriori
error estimates for the Darcy-Forchheimer problem
introduced in [5], [7]. Furthermore, their work
in [9] extended their investigation to include the
coupling of the Darcy-Forchheimer problem with
the convection-diffusion-reaction equation. They
showed existence and conditional uniqueness of the
solution, disctretized it by using the finite element
method and establish optimal a priori and a posterior
error estimates.

In a different approach, the authors in [10],
considered Equation (1) with boundary conditions
on pressure and introduced mixed element
approximations, including the Raviart-Thomas
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mixed element and the Brezzi-Douglas-Marini
mixed element. They established the existence
and uniqueness of weak solutions and provided
corresponding error estimates. Additionally,
they introduced an iterative algorithm but did
not extensively investigate its convergence. Their
work was complemented by numerical tests to
validate the proposed methods.

Several recent works have focused on the
Darcy-Forccheimer equation and its practical
applications; we refer to [11], [12], [13], [14],
[15], [16], [17], for theoretical and numerical
investigations and to [18], [19], [20], [21], [22], [23],
for practical applications.

In this paper, we consider the problem introduced in
[10], and recall the corresponding discrete scheme.
We subsequently propose a discrete iterative scheme
and demonstrate its convergence. Finally, we present
numerical simulations to validate our findings.
Let Ω be a bounded subset of IRd (d = 2, 3)
with Lipschitz continuous boundary Γ = ∂Ω. We
consider the Darcy-Forchheimer equation (1) with the
divergence constraint

divu = b in Ω, (2)

and the boundary condition

p = 0 on ∂Ω. (3)

We assume that the tensor K appearing in (1) is
uniformly positive definite and bounded, satisfying:

0 < Km x · x ≤ (K−1(x)x) · x ≤ KM x · x. (4)

whereKm andKM are two positive real numbers.
It’s worth noting that Km could be very close to
zero, and KM could be very large. Although the
homogeneous boundary condition (3) can be easily
extended to the non-homogeneous case (p = gp on
∂Ω), we use (3) for simplicity.

We denote by Problem (P ) the system of equations
(1), (2) and (3).
The structure of this paper is as follows:

• Section 2 describes the problem and the weak
formulation.

• Section 3 delves into the discretization process
and explores the convergence of the proposed
iterative scheme.

• Section 4 presents the results of our numerical
simulations.

2 Notations and Weak Formulations
In order to introduce the variational formulations,
we recall some classical Sobolev spaces and their
properties.

Let α = (α1, α2, . . . αd) be a d-uple of non

negative integers, set |α| =

d∑
i=1

αi, and define the

partial derivative ∂α by

∂α =
∂|α|

∂xα1

1 ∂xα2

2 . . . ∂xαd

d

.

Then, for any positive integer m and number q ≥ 1,
we recall the classical Sobolev space

Wm,q(Ω) = {v ∈ Lq(Ω); ∀ |α| ≤ m, ∂αv ∈ Lq(Ω)},
(5)

equipped with the seminorm

|v|Wm,q(Ω) =
{ ∑

|α|=m

∫
Ω
|∂αv|q dx

} 1

q (6)

and the norm

‖v‖Wm,q(Ω) =
{ ∑

0≤k≤m

|v|qW k,q(Ω)

} 1

q . (7)

When q = 2, this space is the Hilbert space Hm(Ω).
In particular, the scalar product of L2(Ω) is denoted
by (., .).
The definitions of these spaces are extended
straightforwardly to vectors, using the same notation,
but with the following modification for the norms
in the non-Hilbert case. Let v be a vector valued
function and we define the norm as follows:

‖v‖Lq(Ω) =
( ∫

Ω
|v|q dx

) 1

q , (8)

where |.| denotes the Euclidean vector norm.

We recall the following standard space

H(div,Ω) = {v ∈ L2(Ω)d; div(v) ∈ L2(Ω)}, (9)

equipped with the norm

‖v‖2H(div,Ω) = ‖v‖2L2(Ω) + ‖ div(v)‖2L2(Ω). (10)

Let us now introduce the following technical lemma:

Lemma 2.1. For all x, y ∈ IR and q ∈ IR+, the
following bound holds:

(|x|qx− |y|qy)(x− y) ≥ 0.
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2.1 Variational Formulation
For all the properties and details of the weak
formulation corresponding to Problem (P ) presented
in this section, we refer to [10]. Let us introduce the
spacesM = L2(Ω) and

X = {v ∈ L3(Ω)d; div(v) ∈ L2(Ω)},

equipped with the norm

||v||X = ||v||L3(Ω) + || div(v)||L2(Ω).

The spaces X and M satisfy the following inf-sup
condition: there exists a positive constant γ such that

inf
q∈M

sup
v∈X

∫
Ω
q div(v) dx

||q||M ||v||X
≥ γ.

In this case, we assume f = ∇Z ∈ L2(Ω)d the
gradient of the depth function Z ∈ H1(Ω) and
b ∈ L2(Ω) (see, [10], for details).

In order to write the variational formulation
associated to Problem (P ), we introduce the mapping
v −→ A(v) defined by:

A : L3(Ω)d 7→ L
3

2 (Ω)d

v 7→ A(v) = µ

ρ
K−1v+ β

ρ
|v|v.

We refer to [5], (page 170), and [24], (Lemma 3), for
the following properties of A.
Property 2.2. We have the following monotonicity
properties:
1. for all v ∈ L3(Ω)d,

µ

ρ

∫
Ω
K−1v · v dx ≥ µKm

ρ
‖v‖2L2(Ω) (11)

2. for all v,w ∈ L3(Ω)d,

β

ρ

∫
Ω
(|v|v−|w|w)(v−w) dx ≥ cm ‖v− w‖3L3(Ω) .

(12)
where cm is a strictly positive constant depending
on |Ω|.

Problem (P ) is equivalent to the following variational
formulation: Find (u, p) ∈ X ×M such that

∀v ∈ X,

∫
Ω
A(u) · v dx−

∫
Ω
p div(v) dx

=

∫
Ω
f · v dx,

∀q ∈ M,

∫
Ω
q div(u) dx =

∫
Ω
b q dx.

(13)

As established in [10], Problem (P ) is equivalent to
(13), and it possesses a unique solution in (u, p) ∈
X ×M , satisfying the following relations:

||u||2L2(Ω) + ||u||3L3(Ω) + || div(u)||2L2(Ω)

≤ C(||b||2L2(Ω) + ||b||3L2(Ω) + ||f||2L2(Ω)),

||p||L2(Ω) ≤ C(||b||L2(Ω) + ||b||2L2(Ω) + ||f||L2(Ω)

+||f||2L2(Ω)).

(14)
Here, C represents a positive constant.

3 Finite Element Discretization and
Convergence

Henceforth, we make the assumption that Ω is a
polygon in the case of d = 2 or polyhedron in the case
of d = 3, allowing for complete meshing. For the
space discretization, we consider a regular family of
triangulations (Th)h of Ω, as decribed in [25], which
is a set of closed non-degenerate triangles for d = 2
or tetrahedra for d = 3, called elements, satisfying,

• for each h, Ω̄ is the union of all elements of Th;

• the intersection of two distinct elements of Th
is either empty, a common vertex, or an entire
common edge (or face when d = 3);

• the ratio of the diameter hκ of an element κ ∈ Th
to the diameter ρκ of its inscribed circle when
d = 2 or ball when d = 3 is bounded by a
constant independent of h: there exists a positive
constant σ independent of h such that,

max
κ∈Th

hκ
ρκ

≤ σ. (15)

As is customary, h denotes the maximal diameter
of all elements of Th. To define the finite element
functions, let r denote a non-negative integer. For
each κ in Th, we denote Pr(κ) the space of
polynomials in d variables, restricted to κ, with a
total degree at most ’r’. This notation extends to the
faces or edges of κ. For every edge (when d = 2)
or face (when d = 3) denoted as e in the mesh
Th, we represent its diameter ashe. In order to use
inverse inequalities, we assume that the family of
triangulations is uniformly regular in the following
sense: there exists β0 > 0 such that, for every element
κ ∈ Th, we have

hκ ≥ β0h.

We will apply the following inverse inequality, [26]:
for any dimension d, there exists a constant CI such
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that, for any polynomial function vh of degree r on κ
on κ,

‖vh‖L3(κ) ≤ CIh
− d

6
κ ‖vh‖L2(κ). (16)

The constant CI depends on the regularity parameter
σ from (15), but for the sake of simplicity, we omit
this detail.

3.1 Discretization of the Variational
Problem

In this section, we present the discretization of
the variational problem, following the approach
outlined in [10]. The authors of [10], introduced a
discrete variational formulation for (13) using mixed
elements, including the Raviart-Thomas mixed
element, [27], and the Brezzi-Douglas-Marini mixed
element, [28]. They also introduced an iterative
scheme, although without a detailed investigation
into its convergence, and provided numerical
evidence demonstrating the convergence of the finite
element approximation.

In this section, we consider the discrete variational
formulation, introduce a new corresponding
numerical algorithm and show the convergence
of the corresponding iterative solution.
Let Xh ⊂ X and Mh ⊂ M the discrete spaces
corresponding to the velocity and the pressure.
We assume that they satisfy the following inf-sup
condition:

∀ qh ∈ Mh, sup
vh∈Xh

∫
Ω
qh div(vh) dx

‖vh‖X
≥ βp‖qh‖Mh

,

(17)
where βp is a positive constant independent of h.

Problem (13) can be discretized as follows:

∀vh ∈ Xh,
µ

ρ

∫
Ω
K−1uh · vh dx

+
β

ρ

∫
Ω
|uh|uh · vh dx−

∫
Ω
ph div(vh) dx

=

∫
Ω
f · vh dx,

∀qh ∈ Mh,

∫
Ω
qh div(uh) dx =

∫
Ω
bqh dx.

(18)
In the following, we will consider for instance the
Raviart-Thomas RT0mixed element, [27], given by:
Xh ={vh ∈ X; vh(x)|κ = aκx+ bκ, aκ ∈ IR,

bκ ∈ IRd, ∀κ ∈ Th},
Mh ={qh ∈ L2(Ω); ∀κ ∈ Th, qh|κ is constant}.

(19)

It is also shown in [10], that there exists a unique
uh,p ∈ Xh such that

∀qh ∈ Mh,

∫
Ω
qh div(uh,p) dx =

∫
Ω
b qhdx,

(20)
and uh,p verifies the following bound,

||uh,p||Xp
≤ Cl2||b||L2(Ω). (21)

It is shown in [10], that Problem (18) admits a unique
solution (uh, ph) ∈ Xh × Mh satisfying exactly
similar bounds as (14). Also the solutions (u, p) of
(13) and (uh, ph) of (18) verify the following a priori
error:
If (u, p) ∈ W 1,3(Ω)d ×W 1,3/2(Ω), then there exists
a constant C independent of h such that

||u− uh||L2(Ω) + ||u− uh||33,Ω ≤ Ch2,
||p− ph||L2(Ω) ≤ Ch.

(22)

An iterative algorithm: In order to approximate the
solution of the non-linear problem (18), we introduce
the following iterative algorithm: for a given initial
guess u0h ∈ Xh and having uih at each iteration i, we
compute (ui+1

h , pi+1
h ) solution of

∀vh ∈ Xh, α

∫
Ω
(ui+1

h − uih)vh

+
µ

ρ

∫
Ω
K−1ui+1

h · vh dx+
β

ρ

∫
Ω
|uih|ui+1

h · vh dx

−
∫
Ω
pi+1
h div(vh) dx =

∫
Ω
f · vh dx,

∀qh ∈ Mh,

∫
Ω
qh div(ui+1

h ) dx =

∫
Ω
bqh dx,

(23)
where α is a given positive parameter.

In the following, we investigate the convergence of
Scheme (23). We begin first by bounding the iterative
solution when α is sufficiently big and the initial
guess u0h is sufficiently close to uh,p.

Theorem 3.1. Problem (23) admits a unique solution
(ui+1

h , pi+1
h ) in Xh ×Mh. Furthermore, if the initial

value u0h satisfies the condition

||u0h − uh,l||L2(Ω) ≤ L1(f,uh,p), (24)

where

L1(f,uh,p) =
(

2ρ
µKm

( 3ρ

2µKm
||f||2L2(Ω)

+(
µKm

6ρ
+

3µK2
M

2ρKm
)||uh,p||2L2(Ω) +

4β

3ρ
||uh,p||3L3(Ω)

))1/2

(25)
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and if α satisfies the condition

α > 2
( 3β2

ρµKm
C4
Ih

− 2d

3 ||uh,p||2L3(Ω)

+
4β

3ρ
C3
Ih

−d/2L2(f, L1(f,uh,p))2
)
,

(26)

where

L2(f, η) =
ρ

µKm

(
‖f‖L2(Ω)d +

µKM

ρ
‖uh,p‖L2(Ω)

+
β

ρ
c3Ih

− d

2 ‖uh,p‖2L2(Ω) +
µKM

ρ
η +

β

ρ
c3Ih

− d

2 η2
)
.

then the solution of Problem (23) satisfies the
estimates

||ui+1
h − uh,p||L2(Ω) ≤ L1(f,uh,p), (27)

||ui+1
h ||L2(Ω) ≤ L1(f,uh,p) + ||uh,p||L2(Ω), (28)

and

||ui+1
h ||3L3(Ω) ≤ (

3µKm

2β
+

3αρ

2β
)L2

1(f,uh,p). (29)

Proof. Problem (23) is a square linear system
in finite dimension. Then to prove the existence
and uniqueness of the corresponding solution, it
suffices to prove the uniqueness. For a given uih, let
(ui+1

h1 , pi+1
h1 ) and (ui+1

h2 , pi+1
h2 ) two different solutions

of Problem (23) and wh = ui+1
h1 − ui+1

h2 and ξh =

pi+1
h1 − pi+1

h2 , then (wh, ξh) is the solution of the
following problem:

∀vh ∈ Xh, α

∫
Ω
whvh +

µ

ρ

∫
Ω
K−1wh · vh dx

+
β

ρ

∫
Ω
|uih|wh · vh dx−

∫
Ω
ξh div(vh) dx = 0,

∀qh ∈ Mh,

∫
Ω
qh div(wh) dx = 0,

By taking (vh, qh) = (wh, ξh) and by remarking

that
β

ρ

∫
Ω
|uih||wh|2 dx ≥ 0, we obtain by using the

properties ofK−1 the following bound:

(α+
Kmµ

ρ
)||wh||2L2(Ω) ≤ 0.

Thus, we deduce that wh = 0. The inf-sup condition
(17) deduces that ξh = 0 and then, we get the
uniqueness of the solution of Problem (23).

Let us now prove the bound (27). We need first to
bound the error ‖ui+1

h − uih‖L2(Ω) with respect to the

previous value uih. The second equation of Problem
(23) allows us to deduce the relation

∀qh ∈ Mu,h,

∫
Ω
qh div(ui+1

h − uih) dx = 0.

Then, the first equation of (23) with vh = ui+1
h − uih

gives

α‖ui+1
h − uih‖2L2(Ω) +

µ

ρ

∫
Ω
K−1ui+1

h · (ui+1
h − uih) dx

+
β

ρ

∫
Ω
|uih|ui+1

h · (ui+1
h − uih) dx

=

∫
Ω
f · (ui+1

h − uih) dx.

By inserting uih in the second and third terms of the
last equation, we get,

α
∥∥ui+1

h − uih
∥∥2
L2(Ω)d

+ µ
ρ

∫
ΩK−1|ui+1

h − uih|2 dx

+
β

ρ

∫
Ω
|uih||ui+1

h − uih|2 dx

=

∫
Ω
f · (ui+1

h − uih) dx−
µ

ρ

∫
Ω
K−1uih · (ui+1

h − uih) dx

−β

ρ

∫
Ω
|uih|uih · (ui+1

h − uih) dx.

(30)
Using the properties of K−1, the Cauchy-Schwartz
inequality and relation (16) give the following

α
∥∥ui+1

h − uih
∥∥2
L2(Ω)d

+
µKm

ρ

∥∥ui+1
h − uih

∥∥2
L2(Ω)d

≤ ‖f‖L2(Ω)d

∥∥ui+1
h − uih

∥∥
L2(Ω)d

+
µKM

ρ

∥∥ui+1
h − uih

∥∥
L2(Ω)d

∥∥uih∥∥L2(Ω)d

+
β

ρ
C3
Ih

−d/2
∥∥uih∥∥2L2(Ω)d

∥∥ui+1
h − uih

∥∥
L2(Ω)d

.

(31)
We simplify by

∥∥ui+1
h − uih

∥∥
L2(Ω)d

and insert uh,p in
the second member to obtain:
‖ui+1

h − uih‖L2(Ω) ≤ L2(f, ‖uih − uh,p‖2L2(Ω)), (32)

where

L2(f, η) =
ρ

µKm

(
‖f‖L2(Ω)d +

µKM

ρ
‖uh,p‖L2(Ω)

+
β

ρ
C3
Ih

− d

2 ‖uh,p‖2L2(Ω) +
µKM

ρ
η +

β

ρ
C3
Ih

− d

2 η2
)
.

Now, Relation (32) allows us to show (27). In fact,
Property (20) allows us to deduce that the term ui+1

h,0 =

ui+1
h − uh,p is in Xh and verifies

∀qh ∈ Mh,

∫
Ω
qh div(ui+1

h,0 ) dx = 0.
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We consider the first equation of (23) with vh =
ui+1
h,0 = ui+1

h − uh,p and we obtain:

α

∫
Ω
(ui+1

h − uih) · (ui+1
h − uh,p) dx

+
µ

ρ

∫
Ω
K−1|ui+1

h − uh,p|2 dx+
β

ρ

∫
Ω
|ui+1

h |3 dx

=

∫
Ω
f · (ui+1

h − uh,p) dx

+
µ

ρ

∫
Ω
K−1uh,p · (ui+1

h − uh,p) dx

+
β

ρ

∫
Ω
(|ui+1

h | − |uih|)|ui+1
h |2 dx

+
β

ρ

∫
Ω
(|uih| − |ui+1

h |)ui+1
h · uh,p dx

+
β

ρ

∫
Ω
|ui+1

h |ui+1
h · uh,p dx.

By inserting uh,p in the first term of the last equation
and using the properties ofK we get:

α

2
||ui+1

h − uh,p||2L2(Ω) −
α

2
||uih − uh,p||2L2(Ω)

+
α

2
||ui+1

h − uih||2L2(Ω)

+
µ

ρ
Km||ui+1

h − uh,p||2L2(Ω) +
β

ρ
||ui+1

h ||3L3(Ω)

≤ ||f||L2(Ω)||ui+1
h − uh,p||L2(Ω)

+
µ

ρ
KM ||ui+1

h − uh,p||L2(Ω)||uh,p||L2(Ω)

+
β

ρ
||uih − ui+1

h ||L3(Ω)||ui+1
h ||L3(Ω)||uh,p||L3(Ω)

+
β

ρ
||uih − ui+1

h ||L3(Ω)||ui+1
h ||2L3(Ω)

+
β

ρ
||ui+1

h ||2L3(Ω)||uh,p||L3(Ω).

We use the relation a2b ≤ 1
3

(
1
δ3 b

3 + 2δ3/2a3
)
(for

any positive real numbers a and b) to obtain for any

positive numbers εi, i = 1, 2, 3 and δj , j = 1, 2:

α

2
||ui+1

h − uh,p||2L2(Ω) −
α

2
||uih − uh,p||2L2(Ω)

+
α

2
||ui+1

h − uih||2L2(Ω)

+
µ

ρ
Km||ui+1

h − uh,p||2L2(Ω) +
β

ρ
||ui+1

h ||3L3(Ω)

≤ 1

2ε1
||f||2L2(Ω) +

1

2
ε1||ui+1

h − uh,p||2L2(Ω)

+
µ2

2ρ2ε2
K2

M ||uh,p||2L2(Ω) +
1

2
ε2||ui+1

h − uh,p||2L2(Ω)

+
β2

2ρ2ε3
C4
Ih

− 2d

3 ||uh,p||2L3(Ω)||u
i
h − ui+1

h ||2L2(Ω)

+
1

2
ε3(2||ui+1

h − uh,p||2L2(Ω) + 2||uh,p||2L2(Ω))

+
β

3ρ

(
(
1

δ1
)3C3

Ih
−d/2||ui+1

h − uih||3L2(Ω)

+2δ
3/2
1 ||ui+1

h ||3L3(Ω)

)
+

β

3ρ

(
(
1

δ2
)3||uh,p||3L3(Ω) + 2δ

3/2
2 ||ui+1

h ||3L3(Ω)

)
.

We choose ε1 = ε2 =
µKm

3ρ
, ε3 =

µKm

6ρ
, δ1 = δ2 =(1

2

)2/3 and we denote:
C1(‖uih‖L2(Ω)) =

α

2
− 3β2

ρµKm
C4
Ih

− 2d

3 ||uh,p||2L3(Ω)

−4β

3ρ
C3
Ih

−d/2L2(f, ‖uih − uh,p‖L2(Ω)),

which is not necessarily positive at this level.
By using the bound (32), we get the following bound:

α

2
||ui+1

h − uh,p||2L2(Ω) −
α

2
||uih − uh,p||2L2(Ω)

+C1(‖uih‖L2(Ω))||ui+1
h − uih||2L2(Ω)

+
µKm

2ρ
||ui+1

h − uh,p||2L2(Ω) +
β

3ρ
||ui+1

h ||3L3(Ω)

≤ 3ρ

2µKm
||f||2L2(Ω) +

4β

3ρ
||uh,p||3L3(Ω)

+(
µKm

6ρ
+

3µK2
M

2ρKm
)||uh,p||2L2(Ω)

≤ µKm

2ρ
L2
1(f,uh,p).

(33)
We now prove estimate (27) by induction on i under
some conditions on α. Starting with relation (24), we
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suppose that we have

||uih − uh,p||L2(Ω) ≤ L1(f,uh,p). (34)

We are in one of the following two situations:

• We have ||ui+1
h −uh,l||L2(Ω) ≤ ||uih−uh,l||L2(Ω).

We obviously deduce the bound

||ui+1
h − uh,l||L2(Ω) ≤ L1(f,uh,l),

from the induction hypothesis

• We have ||ui+1
h −uh,l||L2(Ω) ≥ ||uih−uh,l||L2(Ω).

By using the induction condition (34) and the fact
that the function L2 is increasing with respect to
η, we chose

α

2
≥ 3β2

ρµKm
C4
Ih

− 2d

3 ||uh,l||2L3(Ω)

+
4β

3ρ
C3
Ih

−d/2L2(f, L1(f,uh,l)),
(35)

and we get

α

2
≥ 3β2

ρµKm
C4
Ih

− 2d

3 ||uh,l||2L3(Ω)

+
4β

3ρ
C3
Ih

−d/2L2(f, ||uih − uh,l||L2(Ω)),

(36)
which leads to C1(||uih||L2(Ω)) ≥ 0, and then

||ui+1
h − uh,l||L2(Ω) ≤ L1(f,uh,l).

whence we deduce relation (27).
The bound (28) is a simple consequence of (27) by
using a simple triangle inequality. The inequality
(29) can be easily obtained by using Equation (33)
and Relation (27). □

Remark 3.2. It’s worth noting that the bounds of the
iterative velocity (23) are derived under the condition
(26), where α must satisfy a certain constraint that
is not straightforward to compute. This constraint
depends on h−2d/3. In the final section, we will
provide numerical simulations and explore how the
convergence depends on α in specific cases.

Remark 3.3. Relation (24) assumes that the initial
guess u0h must lie within a ball centered at
uh,p with a radius of L1(f,uh,p), which is not
known. However, upon inspecting the expression for
L1(f,uh,p) provided in (25), we can deduce that the
initial guess u0h = 0 satisfies Relation (24).

The next theorem treats the convergence of the
solution of Scheme (23).

Theorem 3.4. Under the assumptions of Theorem 3.1
and if α satisfies also the condition

α >
ρC2

Kmµ
h−d, (37)

where

C =
β

ρ
C3
I

(
L1(f,uh,l) + ‖uh,l‖L2(Ω)

)
then the iterative solutions (uih, pih) of Problem (23)

converges in L2(Ω)d×L2(Ω) to the solution (uh, ph)
of Problem (18).

Proof. We take the difference between the equations
(18) and (23) with vh = ui+1

h − uh, resulting in
α

2
||ui+1

h − uh||2L2(Ω) −
α

2
||uih − uh||2L2(Ω)

+
α

2
||ui+1

h − uih||2L2(Ω) +
µ

ρ

∫
Ω
K−1(ui+1

h − uh)2 dx

+
β

ρ
(|uih|ui+1

h − |uh|uh,ui+1
h − uh) = 0.

The last term in the previous equation, denoted by T,
can be decomposed into

T =
β

ρ
((|uih| − |ui+1

h |)ui+1
h ,ui+1

h − uh)

+
β

ρ
(|ui+1

h |ui+1
h − |uh|uh,ui+1

h − uh).

We denote by T1 and T2, respectively the first and
the second terms in the right-hand side of the last
equation. Using (12), we have T2 ≥ 0. Then, by
using (16) and (4), we have
α

2
||ui+1

h − uh||2L2(Ω) −
α

2
||uih − uh||2L2(Ω)

+
α

2
||ui+1

h − uih||2L2(Ω) +
Kmµ

ρ
‖ui+1

h − uh‖2L2(Ω) + T2

≤ |T1|

≤ β

ρ

∫
Ω
|ui+1

h − uih| |ui+1
h | |ui+1

h − uh|dx

≤ β

ρ
||ui+1

h − uih||L3(Ω) ||ui+1
h ||L3(Ω) ||ui+1

h − uh||L3(Ω)

≤ β

ρ
C3
Ih

− d

2 ||ui+1
h − uih||L2(Ω) ||ui+1

h ||L2(Ω)

||ui+1
h − uh||L2(Ω)

≤ β

ρ
C3
Ih

− d

2

(
L1(f,uh,l) + ‖uh,p‖L2(Ω)

)
||ui+1

h − uih||L2(Ω) ||ui+1
h − uh||L2(Ω).
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Here, we denote C =
β

ρ
C3
I

(
L1(f,uh,l) +

‖uh,l‖L2(Ω)

)
and use the inequality ab ≤ 1

2ε
a2+

ε

2
b2

(with ε = Kmµ

ρ
) to obtain the following bound :

α

2
||ui+1

h − uh||2L2(Ω) −
α

2
||uih − uh||2L2(Ω)

+
α

2
||ui+1

h − uih||2L2(Ω) +
Kmµ

2ρ
||ui+1

h − uh||2L2(Ω)

≤ ρC2

2Kmµ
h−d||ui+1

h − uih||2L2(Ω).

We choose

α >
ρC2

Kmµ
h−d, (38)

denote by C1(h) =
1

2
(α− ρC2

Kmµ
h−d) and obtain

α

2
||ui+1

h − uh||2L2(Ω) −
α

2
||uih − uh||2L2(Ω)

+C1(h)||ui+1
h − uih||2L2(Ω) +

µKm

2ρ
||ui+1

h − uh||2L2(Ω)

≤ 0.
(39)

We deduce then that if ||uih − uh||L2(Ω) 6= 0 and for
all integer i we have:

||ui+1
h − uh||L2(Ω) < ||uih − uh||L2(Ω),

and we deduce the convergence of the sequence
(ui+1

h − uh) in L2(Ω)d and then the convergence of
uih to uh in L2(Ω)d.
Now, we prove the convergence of the iterative
pressure. We take the difference between the
equations (18) and (23) and we obtain for all vh ∈ Xh

the equation

∫
Ω
(pi+1

h − ph) div(vh) dx

= α

∫
Ω
(ui+1

h − uih)vh dx−
µ

ρ

∫
Ω
K−1(uh − ui+1

h )vh dx

−β

ρ
((|uh| − |uih|)uh, vh)−

β

ρ
(|uih|(uh − ui+1

h ), vh).

By applying the inverse inequality (16), we obtain the

following:∣∣∣ ∫Ω(pi+1
h − ph) div(vh) dx

∣∣∣
||vh||X

≤
(
α||uih − ui+1

h ||L2(Ω)

+
µKm

ρ
||uh − ui+1

h ||L2(Ω)

) ||vh||L2(Ω)

||vh||X

+
β

ρ
CIh

− d

6 ||uh − uih||L2(Ω)

(||uh||L3(Ω) + ||uih||L3(Ω))
||vh||L3(Ω)

||vh||X
.

Since we have ||vh||L3(Ω) ≤ ||vh||X and ||vh||L2(Ω) ≤
|Ω|1/6||vh||L3(Ω), we deduce, by using the inf-sup
condition (17), the following relation

||pi+1
h − ph||L2(Ω)

≤ 1

βp

(
α|Ω|1/6||uih − ui+1

h ||L2(Ω)

+|Ω|1/6µKm

ρ
||uh − ui+1

h ||L2(Ω)

+
β

ρ
CIh

− d

6 ||uh − uih||L2(Ω)d

(||uh||L3(Ω)d + ||uih||L3(Ω)d)
)
.

Thus, the strong convergence of uih to uh in L2(Ω)d

implies the strong convergence of pih to ph inL2(Ω).□

Remark 3.5. In order to show the convergence of
the algorithm (23), the assumptions of Theorems 3.1
and 3.4 require the conditions (26) and (37). These
conditions demand that γ must exceed a certain
constant that is difficult to compute and relies on the
mesh step h.

4 Numerical Results
In this section, we present numerical experiments
corresponding to Scheme (23). These simulations
were performed using the FreeFem++ code developed
[29].
Two  cases  are considered  in this work:  First, we
assess the convergence properties of the method by
using the standard mesh refinement analysis.
The second  example involves  a  more  complicated
geometry (Figure 3) presenting reentrant corners.

4.1 First Test Case: Convergence Analysis
We consider the domain Ω = (0, 1)2 ⊂ IR2 where
each edge is divided into N equal segments. Then
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Ω is divided into N2 equal squares and equivalently
into 2N2 equal triangles. For simplicity, we set
µ = ρ = 1 andK = I .

To determine the convergence of the iterative
problem (23), we employ the stopping criterion
ErrL ≤ ε where ε is a given tolerance considered
in this work equal to 10−5 and ErrL is defined as
follows:

ErrL =

√√√√ ||ui+1
h − uih||2L2(Ω) + ||pi+1

h − pih||2L2(Ω)

||ui+1
h ||2L2(Ω) + ||pi+1

h ||2L2(Ω)

.

Regarding the initial guess u0h, we consider two
situations:

1. u0h = 0.

2. u0h = u0h,d is calculated by usingDarcy’s problem
which corresponds to β = α = 0.

We will later observe that the second case, where
u0h = u0h,d, leads to improved convergence of the
algorithms.
Additionally, we compute the error

Err =

√√√√ ||uih − u||2L2(Ω) + ||pih − p||2L2(Ω)

||u||2L2(Ω) + ||p||2L2(Ω)

where (u, p) is the exact solution of problem
(13). This error provides information about the
convergence of the algorithm (23).

In fact, to compute the solution of the iterative
problem (23), we use the penalty method ([29])
which consists to solve the following problem:

∀vh ∈ Xh,

∫
Ω
α(ui+1

h − uih) · vh dx

+
µ

ρ

∫
Ω
K−1ui+1

h · vh dx+
β

ρ

∫
Ω
|uih|ui+1

h · vh dx

−
∫
Ω
pi+1
h div(vh) dx =

∫
Ω
f · vh dx,

∀qh ∈ Mh,

∫
Ω
qh div(ui+1

h ) dx+ εp

∫
Ω
pi+1
h qh dx

=

∫
Ω
bqh dx,

(40)
where εp = 10−8.
The numerical algorithm solving Problem (40) can
be summarized in a standard way as follows: set
u0h = 0,

(1) having uih,

(a) Solve the problem (40) to compute
(ui+1

h , pi+1
h ).

(b) Calculate ErrL.

(2) • If ErrL ≤ ε, we stop the algorithm.
• else set uih = ui+1

h and i = i+ 1
and then go to (1).

We propose the following two examples :

1. First example:

p(x, y) = 10 sin(πx) sin(πy),

u(x, y) = γ(exp(x) sin(πy), 1
π
exp(x) cos(πy))T ,

b = 0,

f = u+ β|u|u+∇p,
(41)

2. Second example:
p(x, y) = 10(x− x2)(y − y2),

u(x, y) = γ(x exp(πy), y exp(πx))T ,
b = γ(exp(πx) + exp(πy)),
f = u+ β|u|u+∇p,

(42)

Where γ is a real parameter.

To study the dependency of the convergence on
the parameter α, we consider N = 60, β = 20 and
γ = 20. For each α, we stop the algorithm (23)
when ErrL < 1e−5. We consider that the algorithms
doesn’t converge if this condition is not reached after
10000 iterations.

Table 1 and Table 2 display the error Err and
the number of iterations Nbr which describe the
convergence of Algorithm (23) with respect to α for
each example when u0h = 0. It is observed that
Algorithm (23) converges for Example (41) for all
considered values of α, with the best convergence
archived for α = 1000. In the case of Example (42),
it converges for α > 10, with the best convergence
again observed for α = 1000.

Table 3 and Table 4 show, for u0h = u0h,d
computed with the Darcy’s problem, the error Err
and the number of iterations Nbr which describe the
convergence of Algorithm (23) with respect to α,
for each example. In this case, we remark also that
Algorithm (23) consistently converges always, and
the best convergence is for α = 100 for Example
(41) and α = 1000 for Example (42). One significant
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Table 1. ErrorE rr (in logarithmic scale) and number
of iterations Nbr for u0h = 0, with respect to α
associated to Example (41) of Algorithm (23). (β =
20 and γ = 20).
α .1 1 10 100 1000
Nbr 7376 3020 487 61 45
Err -1.43 -1.43 -1.43 -1.43 -1.43

Table 2. ErrorE rr (in logarithmic scale) and number
of iterationsNbr for u0h = 0 and for eachα associated
to Example (42) of Algorithm (23). (β = 20 and γ =
20).
α .1 1 10 100 1000
Nbr >10000 >10000 3518 512 69
Err div div -0.36 -0.36 -0.36

advantage when using u0h = u0h,d computed with the
Darcy’s problem is that Nbr is lower compared to
when u0h = 0.

Table 3. ErrorE rr (in logarithmic scale) and number
of iterations Nbr for u0h = u0h,d and for each α
associated to Example (41) of Algorithm (23). (β =
20 and γ = 20).
α .01 .1 1 10 100 1000
Nbr 1214 1038 463 104 18 20
Err -1.43 -1.43 -1.43 -1.43 -1.43 -1.43

Table 4. ErrorE rr (in logarithmic scale) and number
of iterations Nbr for u0h = u0h,d and for each α
associated to Example (42) of Algorithm (23). (β =
20 and γ = 20).
α .01 .1 1 10 100 1000
Nbr 7526 6781 3632 868 149 25
Err -0.36 -0.36 -0.36 -0.36 -0.36 -0.36

For further study, we takeN = 60, β = 10, γ = 1,
and we consider the initial guess u0h = u0hd. Table
5 and Table 6 show the error Err and the number
of iterations Nbr for each α and each example. We
notice that the best convergence (in term of number
of iterations) is obtained for α = 1000 for Example
(41) and for α = 100 for Example (42).

Table 5. ErrorE rr (in logarithmic scale) and number
of iterations Nbr for each α associated to Example
(41) of Algorithm (23). (β = 10 and γ = 1).
α .01 .1 1 10 100 1000
Nbr 26 22 9 4 4 2
Err -1.72 -1.72 -1.72 -1.72 -1.72 -1.72

Table 6. ErrorE rr (in logarithmic scale) and number
of iterations Nbr for each α associated to Example
(42) of Algorithm (23). (β = 10 and γ = 1).
α .01 .1 1 10 100 1000
Nbr 481 376 181 40 17 59
Err -0.96 -0.96 -0.96 -0.96 -0.96 -0.96

Figure 1 and Figure 2 show, for α = 10 and
γ = 1 and β = 10, in logarithmic scale the error Err

with respect to h =
1

N
,N = 60, . . . , 200, for the

algorithm (23) (first example in Figure 1 and second
example in 2). The slopes of the error lines are
0.983 for the first example and 1.10 for the second
one, which are close to the theoretical slope equal to 1.

Log10(h=1/N)

L
o
g
1
0
(E
rr
)

Fig. 1:     A priori error for the algorithm (23) with
respect to h = 1/N : first example. (β = 10 and
γ = 1)

Log10(h=1/N)

L
o
g
1
0
(E
rr
)

Fig. 2:     A priori error for the algorithm (23) with
respect to h = 1/N : second example. (β = 10 and
γ = 1)

Remark 4.1. We can list the following comments:
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1. Table 1, Table 2, Table 3, Table 4, Table 5 and
Table 6 show that for the examples considered,a
large value of α corresponds to a relatively
small number of iterations in the algorithm.
However, determining the optimal value of α
for minimal iterations in advance is challenging.
Additionally, using the initial guess u0h = u0h,d
computed with the Darcy problem consistently
produces better results than using u0h = 0.

2. The slopes of the curves presented in Figure 1 are
close to the theoretical one (equal to 1).

4.2 Second Test Case
In this part, we consider numerical results for a more
complicated  geometry  (Figure   3)  with  Problem
(13) by the numerical scheme (23). The domain
features reentrant corners to highlight the fluctuations
around these parts of the geometry. In all the
numerical results considered in this section, we set
µ = ρ = 1, α = 10, f = (f, 0) where

f =

{
0 if y > 1,

−2 if y <= 1,

and

K−1 =

(
k11 k12
k21 k22

)
where k11 = 2 + sin(πx) sin(πy), k12 = k21 = 0.2x
and k22 = 3 + sin(πx) sin(πy).
Figure 4 shows the mesh (containing 3608 triangles)
corresponding to the domain and used for all the
following numerical results.

(0,0) (2,0)

(2,2)(0,2) (3/4,2) (5/4,2)

(3/4,5/4) (5/4,5/4)

Fig. 3: Geometry

To illustrate the difference between Darcy (α = β =
0) and Darcy-Forchheimer (α = 10, β = 10), Figure
5 and Figure 6 show comparisons of the velocity and
pressure. We observe the difference between these
two cases, where, in the Darcy case, the fluid is more
agitated than in the Darcy-Forchheimer case.

Fig. 4: Mesh

Vec Value
0
0.020297
0.040594
0.060891
0.081188
0.101485
0.121782
0.142079
0.162376
0.182673
0.20297
0.223267
0.243564
0.263861
0.284158
0.304455
0.324752
0.345049
0.365346
0.385643

Vec Value
0
0.0742852
0.14857
0.222856
0.297141
0.371426
0.445711
0.519996
0.594282
0.668567
0.742852
0.817137
0.891422
0.965708
1.03999
1.11428
1.18856
1.26285
1.33713
1.41142

Fig. 5: Velocity: Darcy-Forchheimer on the left
(β = α = 10) and Darcy on the right (β = α = 0)

IsoValue
-0.0119504
-0.00826806
-0.00458573
-0.000903398
0.00277893
0.00646126
0.0101436
0.0138259
0.0175082
0.0211906
0.0248729
0.0285552
0.0322376
0.0359199
0.0396022
0.0432845
0.0469669
0.0506492
0.0543315
0.0580139

IsoValue
-0.0350361
-0.0181297
-0.00122331
0.0156831
0.0325895
0.0494959
0.0664023
0.0833087
0.100215
0.117122
0.134028
0.150934
0.167841
0.184747
0.201654
0.21856
0.235466
0.252373
0.269279
0.286186

Fig. 6: Pressure: Darcy-Forchheimer on the left
(β = α = 10) and Darcy on the right (β = α = 0)

5 Conclusion and Perspective
In this study, we have addressed the
Darcy-Forchheimer problem with pressure boundary
condition. We first introduced the weak formulation
and showed the upper bound of the corresponding
solution. Then, by utilizing the Raviart-ThomasRT0
mixed finite elements, we have discretized the system
and then introduced an iterative scheme to solve the
resulting nonlinear discrete problem. Our study has
effectively demonstrated the well-posedness and
convergence of this iterative approach. Furthermore,
our numerical experiments have provided evidence
supporting the effectiveness and accuracy of the
proposed numerical scheme.
This work can be extended in several directions,
such as coupling the Darcy-Forchheimer system with
a pressure boundary condition to the heat equation
or coupling it with the Stokes or Navier-Stokes
equations, among others.
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