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Abstract: - This study examines the differences between air temperature (Ta) and land surface temperature (LST), 
focusing on urban (UA) and non-urban area (NUA) characteristics in La Rioja, Argentina. Urban air temperature 
(TaUA) data were collected from the National Meteorological Service station at the La Rioja airport (-29.38 S, -
66.79 W). In comparison, rural data (TaNUA) were obtained from a meteorological station 10 km away in a non-
urban area (-29.47 S, -66.78 W). LST data were sourced from NASA's MERRA-2 database. Correction methods 
were developed to transform LST measurements into values comparable to TaUA and TaNUA, enhancing accuracy 
when analyzing urban heat island effects. The study yielded equations with high correlations (R² = 0.87–0.91), 
which enabled improved characterization of temperature differences across UA and NUA. These methods 
contribute to better understanding and quantifying the urban heat island phenomenon by addressing discrepancies 
between surface and atmospheric temperatures. This study not only improves the characterization of temperature 
differences between UA and NUA in La Rioja, Argentina, but also provides a valuable tool for agriculture, public 
health, and urban planning by enabling more accurate air temperature (TaUA and TaNUA) estimations from satellite 
data, particularly in regions with limited ground-based measurements. 
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1 Introduction 
The urban heat island effect (UHI) is a phenomenon 
where urban areas experience significantly higher 
temperatures than non-urban areas. This 
phenomenon is caused by factors such as the 
reduction of green cover, increased residual heat 
from human and productive activities, and the 
thermal characteristics of materials used in cities [0] 
Several authors argue that UHI is more pronounced 
in large cities due to the morphological 
characteristics of urban spaces, the building 

material´s optical and thermal properties, low 
vegetation levels, and the high contribution of 
anthropogenic heat [1]. 

This phenomenon has numerous negative 
impacts, such as reduced productivity, increased 
extreme weather events that can result in mortality, 
and higher electricity consumption with its 
subsequent economic impact [2]. Additionally, UHI 
contributes to global warming by intensifying the 
effects of climate change [3]. 
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In natural desert environments, characterized by 
wide daily temperature fluctuations, low humidity, 
and, depending on the time of year, occasional strong 
winds, indoor spaces' comfort and habitability rely 
heavily on air conditioning systems. These systems 
are essential for counteracting high temperatures and 
ensuring suitable living conditions for inhabitants 
[4]. 

To estimate air temperature in forested areas and 
understand its relevance to urban heat island studies, 
it is pertinent to consider the work of [5], who used 
machine learning models to estimate air temperature 
from surface temperature on the forested slopes of 
Kilimanjaro. Their research demonstrates how 
machine learning models can enhance air 
temperature estimation in areas with limited weather 
station coverage, offering significant implications for 
understanding climate change and mitigating its 
effects in urban and rural environments [5]. 
 
1.1 Background of the Urban Heat Island 

The study of the urban heat island (UHI) 
phenomenon originated in England. In 1833, Luke 
Howard observed temperature differences of 0.87°C 
between London and Greenwich, two locations 
separated by 13 km [6]. Thirty years later, research 
on this phenomenon began in France [7]. 

In 1958, Gordon Manley introduced the term 
"urban heat island" to describe the phenomenon, 
which remains in use today [7]. Until the early 1970s, 
research on Urban Heat Islands (UHIs) relied 
primarily on in situ temperature measurements. 

With advancements in satellite technology, the 
UHI effect began to be studied using images captured 
by artificial satellites at an orbital altitude of 917 km. 
In 1972, [8] conducted the first studies using images 
captured by the Landsat 1 satellite (initially called 
ERTS-1—Earth Resources Technology Satellite). 
 
1.2 Geographical Scope of the UHI 
Regarding the geographical variability, UHI studies can 
be conducted at local scales, such as within a single 
city [6] [9] or an area [10], or at broader, more global 
scales [11] [12] [13]. Many local-scale studies use 
surrounding rural or peri-urban areas as a reference 
for spatial analysis. 

Although the UHI pattern is associated with the 
location of cities, it is significantly influenced by 
direct solar radiation and anthropogenic activities. 
For this reason, vegetated areas play a critical role in 
restoring part of the energy and reducing the 
temperature gradient. 

The UHI is not associated with a specific period. 
Urban heat islands can occur at night, often related to 
the absorption of solar energy throughout the day and 

the absence of thermal dissipation [13]. In contrast to 
the UHI effect, there is the urban cold island (UCI) 
effect, which analyzes the use of various materials, 
covers, and vegetation to mitigate UHI effects [14] 
[15].  
 
1.3 Methods for Determining Urban Heat 

Islands (UHI) 

Various methods are employed to assess the 
phenomenon of urban heat islands (UHIs). One 
approach involves the direct measurement of air 
temperature (Ta), which is instrumental in 
establishing the presence of UHIs.  

Alternatively, satellite imagery can be utilized to 
measure Land Surface Temperature (LST) and 
evaluate the effects of surface urban heat islands 
(SUHI). Each method presents distinctive advantages 
and limitations, which will be discussed in the 
following sections. 

Measurement of Air Temperature in Urban Heat 
Islands (UHI) is conducted in situ using temperature 
sensors, fixed weather stations, and mobile weather 
stations equipped in vehicles specifically designed 
for this purpose to measure temperature transects [9]. 

Measurement of Land Surface Temperature 
(LST) to evaluate the effect of surface urban heat 
islands (SUHI). This technique gained momentum 
starting in 2005 [16] and is generally carried out 
through data acquisition derived from the analysis of 
images taken by satellites. 
 
1.4 Advantages and Disadvantages of Different 

Heat Island Measurement Methods 

Although UHI and SUHI are used in urban climate 
studies, in situ air temperature measurements and 
satellite-derived surface temperatures are not directly 
comparable [17]. 

In situ UHI measurements offer high data 
accuracy and frequent measurement intervals, but 
their limited spatial coverage restricts the monitoring 
of large areas. These data support studies at various 
spatial scales, including historical analyzes [18], and 
allow for detailed geographical and temporal 
assessments of urban surface warming [17]. 

Thermal satellite remote sensing measures surface 
UHI and provides consistent, repeatable observations 
of the Earth's surface.  

The use of satellite remote sensing to analyze 
Urban Heat Islands (SUHIs) faces several challenges, 
such as temporal discrepancies in data acquisition, 
limitations to daytime coverage, interference from 
clouds and vegetation, the need for atmospheric 
corrections to ensure accuracy, the effect of capture 
angles on radiances, and the difficulty of combining 
data of different resolutions and formats. In 
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homogeneous rural environments, land surface 
temperature (LST) is generally a reliable predictor of 
air temperature. Nevertheless, this relationship 
depends on cloud cover, wind, time of day, season, 
and surrounding land cover [18].  

Many studies use satellite-derived data to 
calculate urban heat islands. However, the spatial 
resolution of this data (0.5º x 0.5º, equivalent to an 
area of 2,651 km²) is broad, making it difficult to 
identify local variations. To overcome this limitation, 
it is necessary to compare satellite temperatures with 
measurements from ground-based weather stations. 
This approach allows for adjustments to the satellite 
data, improving its accuracy in assessing phenomena 
such as urban heat islands at the local scale. 

The absence of previous studies and the limited 
network of in situ meteorological stations in La Rioja 
province necessitate a methodology grounded in 
satellite data analysis to assess the urban heat island 
(UHI) effect. This strategy will address data 
limitations and improve understanding of the 
phenomenon in the region. 

Therefore, it is essential to determine the 
correction factor that enables the use of satellite data 
in measuring phenomena like the heat island effect 
(UHI) and estimating air temperatures in areas where 
there are no adequate means for direct measurements 
[19] [20]. 

The objective of this study is to develop a 
correction equation to transform land surface 
temperatures (LST) obtained from satellite data into 
more accurate air temperatures (Ta), using hourly 
data from two weather stations: one in the urban area 
of La Rioja (UA) and another in a non-urban area 
(NUA) of the same city. Additionally, the study aims 
to establish diurnal and nocturnal correlations 
between Ta and LST data for both geographic 
locations (UA and NUA) to optimize the 
interpretation of temperatures and improve the 
accuracy of Ta estimates from satellite data. 
 
2 Methodology 

This study uses diverse data sources to examine 
the disparities between air temperature (Ta) and land 
surface temperature (LST), revealing patterns 
associated with urban and rural environments. 
2.1 Data Sources 

● Urban Air Temperature (TaUA): Hourly 
temperature data for the urban area of La 
Rioja city were acquired from the National 
Meteorological Service station [23] located 
at the local airport (coordinates: -29.38 S, -
66.79 W). 

● Rural Air Temperature (TaNUA): Hourly 
temperature data for the non-urban area 
(NUA) were collected from a meteorological 
station situated 10 km from the La Rioja 
urban center (coordinates: -29.47 S, -66.78 
W) (Fig. 1). 

● Land Surface Temperature (LST): LST 
data were obtained from the NASA Global 
Modeling and Assimilation Office (GMAO 
MERRA-2) Atmospheric Reanalysis Model, 
representing hourly dry bulb temperature at 
2 meters [20] [21]. Due to the 0.5º x 0.5º 
spatial resolution of the satellite data [21], 
approximately 55.5 km in latitude and 48.2 
km in longitude at this location, a single LST 
value was applied to both urban and rural 
areas, as the meteorological stations are 
within this resolution. 

● Measurement Height: All meteorological 
station measurements were recorded at 2 
meters, adhering to the recommendation by 
[19]. 

 

 
Fig. 1: Map of La Rioja, Argentina, highlighting the 
analyzed areas. The Urban Area (UA) (1) and Non-
Urban Area (NUA) (2) of La Rioja city are 
demarcated. Source: Google Earth. 
 
2.2 Data Processing 

The data processing included the following steps: 

● A total of 26,277 temperature data points were 
classified and organized into daytime and 
nighttime measurements.  

● The classification criteria for daytime hours were 
based on the time frame between 8:00 AM and 
6:00 PM. Nighttime data corresponded to the 
hours from 7:00 PM to 7:00 AM. 
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2.3 Analysis of Classified Data 

Descriptive statistical analysis was performed, 
calculating mean values, standard deviations, and the 
temperature range, identifying the year's median, 
maximum, and minimum values. Additionally, the 
temperature differences between the urban area (UA) 
and Land Surface Temperature (LST) were 
calculated, analyzing patterns consistent with the 
temperature differences between the two data 
sources, following the methodology described in 
previous studies [22][24].  

The same procedure was applied to determine the 
temperature differences between NUA and LST. To 
validate the data, a K-fold cross-validation (k=20) 
approach was implemented, calculating the Root 
Mean Square Error (RMSE) to evaluate the accuracy 
of the regression models. 

Furthermore, a sensitivity analysis was conducted 
by applying perturbations of ±0.5 °C to air 
temperature measurements. A new linear regression 
model was computed for each perturbation, 
determining the updated regression parameters (slope 
and intercept) and recalculating the coefficient of 
determination (R²). This allowed for assessing how 
variations in air temperatures impact the correlation 
between LST and Ta. 

This study employed linear regression analysis to 
examine the relationship between the satellite-
derived Land Surface Temperature (LST) and the air 
temperatures (Ta) measured at weather stations in 
UA and NUA. This analysis enables the development 
of a correction model to adjust for discrepancies 
between LST and Ta (for both UA and NUA), 
thereby improving the accuracy of temperature 
estimations derived from satellite data. 

Linear regression will also help establish the 
daytime and nighttime correlation between the 
variables, providing insights into how temperatures 
fluctuate throughout the day and optimizing the 
interpretation of satellite data in the two different 
locations (UA and NUA). Additionally, the 
coefficient of determination (R²) was calculated to 
assess the strength and quality of the relationship 
between Land Surface Temperature (LST) and air 
temperatures (Ta). 
 
3 Results 
3.1 Analysis of Continuous 24-Hour 

Temperature Data for the Urban Area (UA) in 

2021. 
A descriptive statistical analysis was conducted for 
the urban area (UA) of La Rioja city. The analyzed 
sample comprised daily measurements of urban air 
temperature (TaUA) and their corresponding 
differences from satellite-derived land surface 

temperature (LSTUA) (Table 1). The distribution of 
these temperature differences (ΔTUA = TaUA – 
LSTUA) is further illustrated in Fig. 2.  

Fig. 2 depicts the distribution of temperature 
differences (ΔTUA), where positive values indicate 
instances in which TaUA exceeded LSTUA. This 
disparity highlights potential limitations of satellite-
based LSTUA measurements in capturing localized air 
temperature variations. The observed concentration 
of data points with positive ΔTUA suggests a 
systematic underestimation of air temperature by the 
LSTUA values. 
 
 
Table 1: Annual Descriptive Statistical Data for Air 

Temperature in the Urban Area (TaUA) and Its 
Differences from Satellite-Measured Land Surface 

Temperature (LSTUA). 

 TaUA  LSTUA 
ΔT UA = 
(TaUA – 
LSTUA)  

Daily Average (ºC) 20.43 19.63 0.80 
Standard Deviation 
(ºC) 7.95 7.72 2.51 

Maximum Recorded 
Temperature (ºC) 40.80 38.95 - 

Minimum Recorded 
Temperature (ºC) -3.90 -0.42 - 

Median (ºC) 20.90 19.68 - 
Mode 21.40 21.90 - 

 

 
Fig. 2: Temperature differences between TaUA and 

LSTUA. Note: Positive values indicate TaUA > 
LSTUA. 
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Fig. 3: Regression Analysis of TaAU – LST.  

 
From the statistical processing of 8,760 hourly 

data pairs, consisting of TaUA and LSTUA, a 
regression analysis yielded an R² = 0.9011. The 
following equation was obtained, relating LSTUA to 
TaUA (Fig. 3):  
 

LSTUA = 0.9229 TaUA + 0.7747   (1) 
 

Equation 1 allows for the prediction of LSTUA 
temperatures based on TaUA for the urban area of La 
Rioja. Similarly, TaUA can also be calculated from 
LST data using Equation 2: 
 

TaUA = (LSTUA - 0.7747) / 0.9229  (2) 
 

K-fold cross-validation results revealed a mean 
correlation of 0.9492, with a standard deviation of 
0.0002 and a standard error of the mean of 0.0001, 
demonstrating the model's reliability. A sensitivity 
analysis was also performed, assessing the model's 
stability under temperature perturbations of -0.50 °C, 
0.00 °C, and +0.50 °C. The R² value remained 
consistent at 0.9011 across these perturbations, 
suggesting that the regression model is robust and 
stable against minor temperature variations. The root 
mean square error (RMSE) is 2.6327. 
 

 
3.2. Analysis of Continuous 24-Hour Temperature 

Data for the Non-Urban Area (NUA) in 2021. 
For NUA of the city of La Rioja, a descriptive 
statistical analysis was conducted (Table 2).  

The analyzed sample corresponds to the total air 
temperature measurements (TaNUA) and satellite 
measurements (LSTNUA). Additionally, the 

differences between the measurements of TaNUA and 
LSTNUA were determined (Fig. 4). 
 
Table 2. Annual Descriptive Statistical Data for Air 
Temperature in the Non-Urban Area (TaNUA) and Its 
Differences from Satellite-Measured Land Surface 

Temperature (LSTNUA). 
 

TaNUA LSTNUA 
ΔTNUA = 
(Ta NUA – 
LSTNUA) 

Annual Daily Average 
(°C) 19.46 19.63 -0.17 

Standard Deviation 
(°C) 8.64 7.72 3.13 

Maximum Recorded 
Temperature (°C) 41.00 38.95 - 

Minimum Recorded 
Temperature (°C) -6.10 -0.42 - 

Median (°C) 19.90 19.68 - 
Mode 19.80 21.90 - 

 

 
Fig. 4: Temperature differences between TaNUA and 

LST. Note: Positive values indicate TaNUA > 
LSTNUA.  

 
The temperature differences between TaNUA and 

LSTNUA were plotted, as shown in Fig. 4. Positive 
values indicate that TaNUA exceeds LSTNUA, 
highlighting instances where the ambient air 
temperature in the non-urban area is higher than the 
satellite-derived land surface temperature. This 
discrepancy may reflect the limitations of satellite-
based measurements in capturing localized variations 
in air temperature.  

A significant density of measurements where 
TaNUA is higher than LSTNUA can be observed, 
suggesting that the calculated LSTNUA values are 
underestimated. This phenomenon is evident 
throughout all months, with the largest temperature 
differences occurring during the winter and summer. 
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Fig. 5: Regression analysis for data A) TaNUA – 

LSTNUA.  
 

Based on the analysis of the NUA data (Fig. 5), a 
regression was obtained with R² = 0.8701 (Equations 
3 and 4): 
 

LSTNUA = 0.8337 TaNUA + 3.496  (3) 
 

TaNUA = (LSTNUA - 3.4096) / 0.8337  (4) 
 

K-fold cross-validation results revealed a mean 
correlation of 0.9328, with a standard deviation of 
0.0003 and a standard error of the mean of 0.0001, 
demonstrating the model's reliability. A sensitivity 
analysis was also performed, assessing the model's 
stability under temperature perturbations of -0.50 °C, 
0.00 °C, and +0.50 °C. The R² value remained 
consistent at 0.8701 across these perturbations, 
suggesting that the regression model is robust and 
stable against minor temperature variations. The root 
mean square error (RMSE) is 3.3398. 
 
3.3- Analysis of daytime temperature data for the 

urban area (UA) and non-urban area (NUA) for 

2021. 

For the diurnal temperature variation, statistical 
analyzes were conducted on the data for TaUA, TaNUA, 
LSTUA, and LSTNUA between 8 AM and 6 PM (Table 
3). 
 
 
 
 
 
 

Table 3. Annual Diurnal Descriptive Statistical Data 
for the Non-Urban Area (NUA) and Urban Area 

(UA). 

 TaUA TaNUA LST 
(ΔTUA= 
TaUA – 
LST) 

(ΔTNAU= 
TaNUA – 
LST) 

Annual daily 
mean (ºC) 23,04 23,29 22,37 0,66 0,92 

Standard 
deviation 
(ºC) 

7,74 8,16 7,88 2,54 2,88 

Maximum 
temperature 
recorded 
(ºC) 

40,80 41,00 38,95 11,48 9,87 

Minimum 
temperature 
recorded 
(ºC) 

-3,20 -6,10 0,89 -10,70 -10,20 

Median (ºC) 23,00 23,50 22,90 0,82 1,17 
 

The mean air temperatures show that in the urban 
area (TaUA) and the non-urban area (TaNUA) of La 
Rioja, air temperatures are similar, with values of 
23.04 °C and 23.29 °C, respectively. However, the 
land surface temperature (LST) is slightly lower, with 
an average of 22.37 °C (Fig. 6).  

 

 
Fig. 6: Diurnal temperature differences between 
TaUA and LSTUA. Note: Positive values indicate 

TaUA > LSTUA.  
 

The diurnal differences between air temperatures 
and LST indicate that, on average, air temperatures 
are higher than the satellite-measured land surface 
temperatures, with a larger difference in the non-
urban area (ΔTNUA = 0.92 °C) compared to the urban 
area (ΔTUA = 0.66 °C). 

Regarding variability, the diurnal differences 
present a significant standard deviation (2.54 °C for 
ΔTUA and 2.88 °C for ΔTNUA), indicating notable 
fluctuations in temperature differences between 
TaUA, TaNUA, and LST over time. The data suggest 
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that land surface temperature (LST) tends to 
underestimate air temperatures, especially on warmer 
days when the most significant discrepancies are 
observed. 
 

 
Fig. 7: Diurnal temperature differences between 
TaNUA and LST. Note: Positive values indicate 

TaNUA > LST.  
 

 
Fig. 8: Regression analysis for diurnal data A) TaUA 

– LSTUA.  
 

Based on the analysis of TaUA and TaNUA data 
versus LST (Fig.s 8 and 9), a regression was obtained 
with R² = 0.8975 (Equation 5—Fig. 8) and R² = 
0.8766 (Equation 6—Fig. 9). 
 

 
Fig. 9: Regression analysis for diurnal data TaNUA – 
LSTNUA 
 

LSTUA= 0.9640 TaUA + 0.1569   (5)  
 

In the daily UA analysis, the K-fold cross-
validation approach produced a mean correlation of 
0.9464, with low variability reflected in a standard 
deviation of 0.0004 and a standard error of 0.0001. A 
sensitivity analysis examined model performance 
under temperature deviations of -0.50 °C, 0.00 °C, 
and +0.50 °C to further assess model robustness. The 
results demonstrated that the R² value remained 
unchanged at 0.8975, underscoring the model’s 
stability against small thermal perturbations. The root 
mean square error (RMSE) is 2.6179. 
 

LSTNUA = 0.9045 TaNUA + 1.3067  (6) 
 

On the other hand, for the daily NUA analysis, the 
K-fold cross-validation procedure demonstrated a 
mean correlation of 0.9363, with minimal variability, 
as indicated by a standard deviation of 0.0005 and a 
standard error of 0.0001. Furthermore, a sensitivity 
analysis was performed to evaluate the model’s 
performance under temperature fluctuations of -0.50 
°C, 0.00 °C, and +0.50 °C. The results showed that 
the R² value remained constant at 0.8766, reinforcing 
the model’s stability against small thermal 
perturbations. The root mean square error (RMSE) is 
3.0596. 
 
3.4 Nocturnal Temperature Data Analysis for 

Urban (UA) and Non-Urban Areas (NUA) in 2021.  

To analyze nocturnal temperature variations, the 
TaUA, TaNUA, and LST data were statistically 
evaluated between 7:00 PM and 7:00 AM (Table 4). 
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Table 4. Annual descriptive statistics for nocturnal 
temperatures in the non-urban area (NUA) and their 

differences with LST. 

 TaUA TaNUA LST 
(ΔTUA= 
TaUA – 
LST) 

(ΔTNAU= 
TaNUA – 
LST) 

Annual 
nocturnal 
mean (ºC) 

18.23 16.21 17.31 0.92 -1.10 

Standard 
deviation 
(ºC) 

7.44 7.66 6.78 2.47 3.04 

Maximum 
temperature 
recorded 
(ºC) 

39.10 37.60 37.65 11.55 8.39 

Minimum 
temperature 
recorded 
(ºC) 

-3.90 -6.00 -0.42 -8.06 -11.32 

Median (ºC) 18.80 17 17.57 0.99 -1.07 
 

The data indicate that annual average nighttime 
temperatures in the urban area (TaUA) are higher than 
in the non-urban area (TaNUA), with values of 18.23 
ºC and 16.21 ºC, respectively. The LST (17.31 ºC) 
lies between these values, being underestimated 
relative to TaUA and overestimated in the case of 
TaNUA. The maximum and minimum recorded 
temperatures also reflect these trends, with higher 
maxima in the urban area and greater nighttime 
cooling in the non-urban area. 

Nighttime temperature differences between TaUA 
and LST show significant fluctuations, with positive 
values indicating that TaUA is more considerable than 
LST and negative values indicating the opposite. The 
temperature differences range from -7.5℃ to 12.5℃ 
throughout the nocturnal hourly data collected 
between January 2021 and December 2021. This 
analysis reveals considerable variability in the 
nocturnal differences between the two measurement 
sites, especially in the non-urban area, indicating 
fluctuations in the nighttime temperature differences 
between TaNUA and LST (Fig. 10 and 11). 
 

 
Fig. 10: Nighttime temperature differences between 

TaUA and LST.  
 

 
Fig. 11: Nighttime temperature differences between 

TaNUA and LST. Note: Positive values indicate 
TaNUA > LST.  

 
Overall, air temperatures in the urban area are 

higher and more stable than those in the non-urban 
area, exhibiting greater variations and more 
pronounced cooling. These findings suggest 
significant thermal differences between urban and 
non-urban areas, as well as between air temperatures 
and land surface temperatures. 

In this study, we analyzed the correlation between 
land surface temperature (LST) and air temperature 
(Ta) using a regression equation defined (Equations 
7 and 8—Fig. 12).  

 
LSTUA = 0.8595 TaUA + 1.6422   (7) 

 
The results indicate a strong positive correlation 

R²= 0.8906. The root mean square error (RMSE) is 
2.6081. The equation for calculating TaUA from LST 
is given by  
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TaUA= 0.8595/ (LST −1.6403)   (8) 
 

K-fold cross-validation results revealed a mean 
correlation of 0.9437, with a standard deviation of 
0.0003 and a standard error of the mean of 0.0001, 
demonstrating the model's reliability.  

A sensitivity analysis was also performed, 
assessing the model's stability under temperature 
perturbations of -0.50 °C, 0.00 °C, and +0.50 °C. The 
R² value remained consistent at 0.8906 across these 
perturbations, suggesting that the regression model is 
robust and stable against minor temperature 
variations.  
 

 
Fig. 12: Regression analysis for nighttime data: 

TaUA – LST. 
 

The analysis of the dataset using Pearson's 
correlation revealed the equation.  
 

LST=0.8122 TaNUA +4.1415   (9) 
 

The R² value of 0.8433 indicates a strong 
relationship between land surface temperature (LST) 
and air temperature in non-urban areas (TaNUA). The 
corresponding equation for TaNUA based on LST is  
 

TaNUA = 0.8122/(LST−4.1415)   (10) 
 
with a root mean square error (RMSE) of 3.3035, 
reflecting a moderate level of predictive accuracy.  

K-fold cross-validation was employed to validate 
the model, resulting in an average correlation of 
0.9183, a standard deviation of 0.0005, and a 
standard error of the mean of 0.0001, which supports 
the model's reliability.  

Sensitivity analysis indicated that perturbations of 
-0.50°C, 0.00°C, and +0.50°C resulted in consistent 

equations with an R² value remaining at 0.8433 
(Equations 9 and 10—Fig. 13). These results 
highlight the regression model's robustness against 
minor temperature variations. 
 

 
Fig. 13: Regression analysis for nighttime data: 

TaNUA – LST. 
 
4 Conclusion 
The objective of this study was to develop a 
correction equation to transform land surface 
temperatures (LST) obtained from satellite data into 
air temperatures (Ta) in the urban area of the city of 
La Rioja (UA) and another for a non-urban area 
(NUA). 

To achieve this, equations were derived to 
calculate air temperature (Ta) values based on land 
surface temperatures (LST) from satellite data 
sources. 

The results show that, in general, LST 
underestimates air temperatures (Ta) in both areas, 
with more pronounced differences during the 
summer months. The equations derived from the 
regression analysis, with determination coefficients 
(R²) over 0.87, enable reliable predictions of air 
temperatures based on satellite data, thereby 
improving the accuracy of Ta estimates. 

The underestimation of air temperatures (Ta) by 
land surface temperatures (LST) can be attributed to 
several factors. Firstly, LST is derived from satellite 
observations, which represent the temperature of the 
Earth's surface [18] [19] [20]. At the same time, Ta is 
measured at a height above the surface [9], 
influenced by local microclimates [25], leading to 
discrepancies. Additionally, in areas with significant 
vegetation, the cooling effect of evapotranspiration 
can decrease surface temperatures, resulting in LST 
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readings that do not reflect the warmer air 
temperatures. To add complexity to the Ta-LST 
relationships, an increasing spatial variation in LST 
was found during the day for land covers of tall and 
short trees [25]. Different land cover types, such as 
urban areas, can also affect heat absorption and 
release, with urban heat island effects causing higher 
air temperatures not captured by LST [25]. 
Furthermore, atmospheric conditions such as 
humidity, wind, and cloud cover can impact the 
relationship between LST and Ta, with high moisture 
potentially leading to warmer air temperatures that 
LST does not account for. Lastly, limitations of the 
sensors used to measure LST can introduce biases, 
ultimately affecting the accuracy of temperature 
predictions based on satellite data. 

Additionally, daytime and nighttime data were 
correlated between Ta and LST for both geographical 
locations (UA and NUA) to optimize the 
interpretation of temperatures and enhance the 
precision of Ta estimates derived from satellite data. 

The analysis of diurnal and nocturnal temperature 
patterns revealed thermal variation, highlighting that 
air temperatures in the urban area (UA) are higher 
and more stable than in the non-urban area (NUA), 
which exhibits greater fluctuations and more 
pronounced nighttime cooling. 

These findings highlight the importance of 
adjusting LST data according to geographic and 
temporal contexts to obtain more accurate estimates 
of air temperatures, which may have significant 
implications for climate studies and environmental 
management in urban and rural areas. 

This study is particularly valuable for various 
sectors, including agriculture, public health, and 
urban planning. By providing a reliable method to 
estimate air temperatures (TaAU and TaNUA) from 
satellite data, it supports farmers in monitoring 
temperature variations that impact crop growth, aids 
public health officials in assessing heat-related risks, 
and assists urban planners in designing more resilient 
and sustainable cities, especially in regions like La 
Rioja, where ground-based temperature 
measurements are limited. 
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