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Abstract: Computer simulations are being extensively used as a partial substitute for real-world experiments. Such

simulations are often computationally intensive and hence metamodels are used to approximate them and to yield

estimated output values more economically. While this setup can work well in low dimensional problems it can

struggle in high-dimensional ones due to poor metamodel prediction accuracy. As such this study examines the

application of dimensionality-reduction procedures during the search so that a simplified problems is formulated

which is easier to solve and which could yield a better solution of the original one. An extensive performance anal-

ysis with both mathematical test functions and an engineering application shows the effectiveness of the proposed

approach.
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1 Introduction

Computer simulations are used in engineering and sci-

ence to yield significant cost reductions by partially

replacing costly and time consuming real-world ex-

periments. Using such simulations transforms the de-

sign process, namely, that of finding a better prod-

uct/system configuration, into an optimization prob-

lem with three distinct features: a) the simulation is a

‘black-box’ function, namely, it assigns input vectors

(candidate designs) a corresponding merit value but an

analytic expression for this mapping is often unavail-

able, b) typically the simulation is computationally

expensive so only a small number of designs can be

evaluated, and c) the optimization landscape is often

nonconvex and discontinuous thereby further compli-

cating the optimization. Figure 1 shows the layout of

such problems.
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Figure 1: The layout of a simulation-driven optimiza-

tion problem.

Metamodels, also termed in the literature as sur-

rogates, have been used to circumvent these issues

by approximating the latter inputs–outputs relation

and providing estimated outputs more economically

[1–3]. While this approach can be effective in low-

dimensional settings it can falter in high-dimensional

ones due to the ‘needle-in-a-haystack’ effect and the

difficulty of generating an accurate approximation in

a large search space based on a small sample.

Accordingly high-dimensional simulation-driven

problems pose an optimization challenge and as

such this paper studies the integration of procedures

which transform the original problem into a lower-

dimensional one which is simpler to solve. To en-

sure search progress in the presence of metamodel

inaccuracy a trust-region mechanism is used to dy-

namically adjust the degree of dimensionality reduc-

tion. An extensive performance analysis based on a

set of high-dimensional problems shows the effective-

ness of the proposed approach. The remainder of this

paper is organized as follows: Section 2 provides the

background information, Sections 3 and 4 describe the

algorithm and the dimensionality reduction methods,

respectively, while Section 5 gives a detailed perfor-

mance analysis. Lastly, Section 6 concludes the paper.

2 Background

It has been shown that an effective optimization re-

quires both global and local search stages. To achieve

this a common approach is to combine explorative

methods, such as evolutionary algorithms (EAs) , with

Received: August 23, 2019 . Revised: February 1, 2020. Accepted: February 21, 2020. Published: March 6, 2020.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2020.17.3 Yoel Tenne

E-ISSN: 2224-3402 23 Volume 17, 2020



localized gradient methods which yields a hybrid al-

gorithm [4, 5].

With regards to metamodels multiple variants

have been proposed and effectively applied [6, 7].

However, a metamodel accuracy may severely de-

grade if the sample is too small or the search space

is large and this may not not only impair the search

but may even introduce false optima which can lead

the optimization algorithm to a poor final solution [8].

As such, metamodel-assisted optimization algorithm

must account for this inherent inaccuracy and manage

it to ensure convergence to a correct solution [9]. An

established approach to achieve this is with the trust-

region framework in which the metamodel is assumed

to be valid in a confined region (the trust-region) and

the optimization algorithm seeks the best metamodel

vector in the trust-region (TR) only. The TR is then

updated based on the success of the optimization trial

step.

Given the effectiveness of the hybrid algorithms

and the TR framework several studies have explored

different formulations. Examples include using RBF

[10] or quadratic interpolants for noisy functions [11],

and multi-model approaches [5]. The combination of

hybrid search and metamodels allows to handle the

challenges mentioned, namely, the lack of an analytic

expression, high evaluation cost, and a complicated

function landscape.

3 A baseline algorithm

A baseline hybrid algorithm is used which combines

an explorative EA search with a localized SQP search,

and operates in four steps: a) sampling an initial

set, b) training a metamodel, c) performing a trust-

region search, and d) updating the interpolation set

and the trust-region. The initial sampling is made

with an optimized Latin hypercube method to achieve

an adequate space-filling sample [12]. The meta-

model used is Kriging whose details are given in Ap-

pendix A, while the real-coded evolutionary algorithm

(EA) uses a population size of 100, stochastic univer-

sal selection (SUS), intermediate recombination with

probability 0.75, mutation with probability 0.1, 10%

elitism and a limit of 50 generations. These values

were chosen after experimentation with a range of test

functions. Candidate solutions obtained by the EA are

then further refined with a localized SQP search. Af-

ter resultant candidate vector is evaluated with the true

objective function and is compared to the current best

solution obtained and accordingly the following up-

dates take place:

• If the predicted solution is indeed better than the

current best then the TR is centred at the new

vector and is enlarged.

• If the predicted solution isn’t better than the cur-

rent best and there are sufficient vectors in the TR

then the TR is contracted, where the extra check

for the number of vectors in the trust-region is

done to avoid rapid contraction of the TR and

thereby premature convergence [13]

• If the predicted solution isn’t better but there is

an insufficient number of sampled vectors in the

TR then a new sample vector is added to im-

prove the local prediction accuracy. This vec-

tor is chosen to be remote from existing interior

ones and is obtained by a max-min distance crite-

rion (effectively generating a LHD sample in the

TR and selecting the vector with largest max-

min distance) [14].

The TR expansion/contraction factor is 2 and at

least five interior points are needed to allow contrac-

tion. To conclude the description Algorithm 1 gives

the pseudocode of the procedures described.

sample and evaluate an initial set;

while number of max simulation runs not

reached do
train a metamodel with the sampled

vectors;

define a TR around current best and

search for a new optimum;

evaluate found optimum and update:

if new optimum is better than current

then expand the TR

else add a new vector in TR

else if sufficient vectors in TR then

contract the TR

cache all new vectors sampled

end

Output: best solution found

Algorithm 1: The baseline optimization algo-

rithm.

4 Dimensionality Reduction

To improve the search effectiveness the above al-

gorithm was modified to include dimensionality re-

duction methods. Such methods require the output
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(lower) dimension to be specified but in practice the

optimal value of the latter in unknown. Accordingly in

this study a dynamic approach has been implemented

in which the lower dimension is adjusted during the

search. Specifically the number of successful trial

steps within the last n is monitored, where a success-

ful step is such that the predicted solution was indeed

better than previously best known. If no iteration was

successful within the above interval then the output

dimension is reduced by a factor r . If at least 50%

of the recent n iterations were successful then the out-

put dimension is increased by a factor r . The way,

the dimensionality reduction is used to assist search

progress when it appears to stagnate, but the dimen-

sion is increased once progress has been restored.

Two alternative dimensionality reduction meth-

ods were studied:

• Variable/Subset selection: The goal is to identify

a subset of important variables out of the original

full set so that a lower-dimensional problem can

be formulated [15]. Since the number of pos-

sible subsets is d!
p!(d−p)! (d being the dimension

and p the subset size) implies that the computa-

tional cost of an exhaustive search is prohibitive.

Accordingly a search based on a binary GA was

implemented such that the best subset is identi-

fied based on a cross-validation error assessment,

that is, by comparing the predictions based on the

high-dimensional set and the lower-dimensional

subsets. The binary GA used for the subset se-

lection used SUS selection, a shuffle crossover

(shuffling chromosomes between pairs of par-

ents) with probability 0.75, a discrete mutation

with probability 0.1, a population size of 100,

elitism of 10% elitism, and a generation limit of

50. Figure 2(a) shows that the time complexity of

the subset selection was mainly affected by sam-

ple size and not by problem dimension due to the

prescribed limit of GA generations.

• Mapping: Here the original high-dimensional

data is mapped into a lower-dimensional one

such that certain aspects in the data are pre-

served. One such method is the Sammon map-
ping [16] which uses the stress function

C =
1

∑

i<j di,j

∑

i<j

(di,j − d̂i,j)
2

di,j
(1)

where di,j is the distance between the ith and

jth high-dimensional (original) vectors the d̂i,j is

the distance between the lower dimensional pro-

jections. The method was shown to be both ef-

fective and efficient [16]. Figure 3(a) shows an
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Figure 2: Performance examples of the subset selec-

tion approach. (a) Time dependency on dimension

and sample size for a single data set. (b) Variation

of operating dimension during the search (for 100D

Rastrigin and Rosenbrock functions).

example how a Sammon mapping from three to

two dimensions preserves the proximity relations

in the data, namely, points which are adjacent

in high-dimension are mapped to adjacent low-

dimensional points and vice-versa. Figure 3(b)

shows a metamodel trained by using data of a

Rastrigin-5D function based on a mapping to

two dimensions. The metamodel preserves the

multimodality of the original high-dimensional

landscape. With respect to performance, Fig-

ure 4(a) shows the mapping time is mainly af-

fected by dimension and is practically unaffected

by sample size. Figure 4(b) shows a typical vari-

ation of the reduced dimension during the op-

timization search, and similarly to the example

in the previous section, the operating dimension

is adjusted based on the search progress with a

monotonous decrease in later stages of the search

when progress is slower.
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Figure 3: (a) A Sammon mapping from 3D to 2D pre-

serves the proximity relations (adjacent points in 3D

are mapped to adjacent ones in 2D and vice-versa). (b)

A Kriging metamodel based on data projected from

5D to 2D preserves the landscape multimodality.

A key element in the mapping-based approach

is how to accurately project vectors from

high-to-low and low-to-high dimensions, and

for this two alternatives were considered: a)

Nearest-neighbour interpolation (NNI): A low-

dimensional vector is found in the TR step and

is associated with a high-dimensional one, and

the nearest-neighbour to the latter is evaluated

with the the true expensive function. b) Krig-

ing interpolation: An interpolant is trained with

the high-dimensional vectors as input and low-

dimensional as responses for a high-to-low map-

ping, and vice versa for low-to-high mapping.

To improve the mapping accuracy in both meth-

ods the training cache was supplemented with

a LHD sample of 100 high-dimensional vectors
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Figure 4: Performance examples for the Sammon

topological mapping approach. (a) The time depen-

dency on dimension and sample size for a single data

set. (b) The variation of the chosen dimension dur-

ing the optimization search with a 100D Rastrigin and

Rosenbrock functions.

(without evaluating them) and their correspond-

ing low-dimensional vectors. The accuracy of

the two methods was compared by mapping the

full set of evaluated vectors from high to low di-

mension, holding-out one high-dimensional vec-

tor and retraining the mapping, and lastly map-

ping the hold-out low-dimensional vector back to

high-dimension. The procedure was repeated for

20 vectors and over 10 re-runs. Figure 5 shows

the accuracy comparison from which it follows

that the Kriging-based approach achieved an ac-

curacy which was an order of magnitude or more

better than that of the NN one and hence it was

used in the numerical tests.
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Figure 5: Comparison of l2 error in low-to-high pro-

jected vectors.

5 Performance Analysis

5.1 Parameter sensitivity analysis

As detailed in Section 4 the dimensionality reduc-

tion procedure relies on two user defined parameters:

a) the number of iterations between successive dimen-

sion updates (n) , and b) the dimension change fac-

tor (r). Analysis of these parameters was performed

based on a Design of Experiments approach [3] such

that each parameter was tested in both low (L) and

high (H) settings in all possible combinations. For n
the low and high settings are 5 and 10, respectively,

and for r 1.1 and 1.5, respectively. Tests were per-

formed with the Rastrigin and Rosenbrock function in

dimension 50. Table 1 gives the mean objective func-

tion values obtained (repeated trials) with each design

and its ranking. It follows that the (LL) design was

the best performing one, that is, updating the dimen-

sion every n = 5 iterations and reduction factor of

r = 1.1 .

5.2 Mathematical test functions

To evaluate the effectiveness of the proposed frame-

work it was applied to five established test functions:

Ackley, Rastrigin, Rosenbrock, Schwefel 2.13 and

Weierstrass [17], as detailed in Table 2, in dimension

50 and 100. In all cases the limit of function evalu-

ations was 100 and to obtain statistically significant

results 30 runs were repeated per function.

Table 3 gives the test results from which it fol-

lows:

• The variable selection (VS) variant performed

best in two cases (Schwefel 100 and Weier-

strass 100) and second best in five tests (Ack-

ley 50, Rastrigin 50 and 100, Schwefel 50 and

Weierstrass 50). This indicates that it performed

better in the higher dimensional settings. In the

two cases it performed best its was slightly better

than the baseline method.

• The Sammon mapping (SM) variant performed

best in seven cases (Ackley 50, Rastrigin 50,

Rosenbrock 50, Weierstrass 50, Ackley 100,

Rastrigin 100 and Rosenbrock 100), which indi-

cates that it performed well over a range of func-

tions and dimensions. In six cases the SM variant

performed significantly better than the baseline

algorithm and the VS variant.

• The VS variant typically had a higher standard-

deviation compared to the SM one which indi-

cates that it was more affected by the sample.

• The baseline framework without any dimension-

ality reduction outperformed the two variants

only in the Schwefel 50 case.

Overall the SM variant was the best performing

variant followed by the VS one. The former was less

affected by the sample and appeared to handle non-

separable functions well, presumably since it projects

the entire high-dimensional set while VS does not. It

also performed well in 6 cases where it obtained final

solutions much better than the other methods. In con-

trast VS worked well with the difficult functions (the

100D Schwefel and Weierstrass). Lastly, both variants

improved the search effectiveness with respect to the

baseline framework without dimensionality reduction.

5.3 Airfoil Shape Optimization

The tests also included an engineering problem of

shape optimization in which the goal is to find an

airfoil shape which would maximize the ratio of lift

coefficient cl to drag (friction) coefficient cd at some

specified flight conditions [18]. To ensure structural

integrity the airfoil maximum thickness had to be no

less than a threshold value t⋆= 0.1. The flight condi-

tions set were typical for a commercial jet aircraft: an

altitude of 30 kft, a cruising speed of 70% of the speed

of sound, and an angle of attack of 2◦ . A minimiza-

tion problem formulation was chosen and accordingly

the objective function used was

f = −
cl

cd
+ |

cl
cd
| ·

max{t⋆ − t , 0}

t⋆
(2)

so that a penalty was added for airfoils which violated

the thickness constraint.

Lift and drag coefficients were obtained with the

Xfoil analysis code [19] and each airfoil evaluation
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Table 1: Parameter sensitivity analysis

Rastrigin Rosenbrock

Design VS Rank SM Rank VS Rank SM Rank Total

LL 5.492e+02 1 2.624e+03 4 2.420e+02 2 4.798e+01 1 08

LH 5.629e+02 2 1.234e+03 2 5.267e+02 4 7.383e+02 3 11

HL 5.644e+02 3 2.333e+03 3 3.527e+01 1 5.312e+01 2 09

HH 6.164e+02 4 1.227e+03 1 4.689e+02 3 1.149e+03 4 12

VS: variable selection, SM: Sammon mapping. A lower rank is better.

Table 2: Mathematical test functions.

Fun. Definition Domain

Ack

− 20 exp

(

−0.2

√

x2
i

d

)

− exp

(

∑d

i=1 cos(2πxi)

d

)

+ 20 + e

[−32, 32]d

Gri

d
∑

i=1

{x2
i /4000} −

d
∏

i=1

{cos
(

xi/
√
i
)

}

+ 1

[−100, 100]d

Ras
∑d

i=1

{

x2
i − 10 cos(2πxi) + 10

}

[−5, 5]d

Ros
∑d−1

i=1

{

100(x2
i − xi+1)

2 + (xi − 1)2
}

[−10, 10]d

Sch
∑d

i=1

{
∑d

j=1

[(

ai,j sin(αj) + bi,j cos(αj)
)

−
(

ai,j sin(xj) + bi,j cos(xj)
)]}2

[−π, π]d

Wei
∑d

i=1

{
∑20

k=0 0.5
k cos

(

2π3k(xi + 0.5)
)}

− d
∑20

k=0 0.5
k cos(π3k)

[−0.5, 0.5]d

Ack:Ackley, Gri:Griewank, Ras:Rastrigin

Ros:Rosenbrock, Sch:Schwefel 3.12, Wei:Weierstrass

required 10–30 seconds on a desktop computer. Air-

foils were defined by the Hicks-Henne method [20]

which combines a baseline airfoil shape with shape

functions [21]

bi(x) =

[

sin

(

πx
log(0.5)

log(t1(x))

)]t2

(3)

where

t1(x) = i/(n − 1) (4)

determines the location of the bump peak and t2 = 3
determines the bump width. Accordingly the defini-

tion of the upper and lower airfoil curves was

y = yb +

l
∑

i=1

αibi(x) (5)

where yb is the baseline upper/lower curve

(NACA0012 symmetric airfoil) and αi ∈
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0.0 0.2 0.4 0.6 0.8 1.0
−0.4

−0.2

0.0

0.2

0.4

y b
(x
)

Figure 6: The baseline NACA0012 airfoil yb(x) and

the Hicks-Henne basis functions bi(x) .

[−0.01, 0.01] are weights which are the variables

whose optimal values need to be found. Figure 6

shows the parameterization layout.

Tests were performed in dimension 50 and 100,

namely, using 50 or 100 shape functions, while the

test setup followed that of Section 5.2. Table 4 pro-

vides the resultant test statistics from it follows that

the VS variant outperformed both the SM variant and

the baseline algorithm. These results are attributed to

the intrinsic structure of the problem: a good perform-

ing airfoil can be obtained by using a relatively small

number of shape functions, namely, by using a small

subset of the original variables.

6 Conclusion

High-dimensional and computationally expensive

simulation-driven problems can be challenging to

solve due to the enormous search space and limited

number of function evaluations. In these settings clas-

sical algorithms may not perform well and accord-

ingly this paper has explored the incorporation of di-

mensionality reduction methods into the optimization

search so that simplified problems can solved instead.

The variants studied were based on variable selection

or on Sammon mapping. An extensive performance
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Table 3: Test statistics–Mathematical test functions

d = 50 d = 100

Function Statistic VS SM Baseline VS SM Baseline

Ackley

Min 1.503e+01 3.374e+00 1.696e+01 1.642e+01 4.116e+00 1.476e+01

Max 1.693e+01 3.469e+00 1.855e+01 1.849e+01 4.904e+00 2.089e+01

Mean 1.585e+01 3.423e+00 1.745e+01 1.750e+01 4.390e+00 1.708e+01

SD 8.203e-01 4.756e-02 7.415e-01 8.377e-01 3.502e-01 2.275e+00

Median 1.560e+01 3.425e+00 1.714e+01 1.752e+01 4.270e+00 1.656e+01

Rastrigin

Min 4.817e+02 1.424e+02 4.890e+02 1.037e+03 2.115e+02 1.032e+03

Max 6.345e+02 4.788e+02 6.895e+02 1.239e+03 5.509e+02 1.471e+03

Mean 5.492e+02 2.420e+02 5.772e+02 1.172e+03 4.135e+02 1.260e+03

SD 6.109e+01 1.594e+02 7.985e+01 8.078e+01 1.457e+02 1.809e+02

Median 5.377e+02 1.734e+02 5.800e+02 1.211e+03 4.458e+02 1.233e+03

Rosenbrock

Min 1.435e+03 4.698e+01 8.471e+02 3.626e+03 1.029e+02 3.083e+03

Max 4.086e+03 4.952e+01 1.274e+03 1.975e+04 1.291e+02 5.277e+03

Mean 2.624e+03 4.798e+01 1.025e+03 9.008e+03 1.133e+02 3.888e+03

SD 9.518e+02 1.225e+00 1.700e+02 6.730e+03 1.224e+01 9.382e+02

Median 2.470e+03 4.770e+01 1.028e+03 6.894e+03 1.106e+02 3.558e+03

Schwefel

Min 2.891e+06 6.737e+06 2.539e+06 1.760e+07 3.162e+07 1.683e+07

Max 5.272e+06 8.258e+06 4.207e+06 2.398e+07 4.426e+07 2.323e+07

Mean 4.103e+06 7.634e+06 3.021e+06 2.039e+07 3.795e+07 2.041e+07

SD 1.092e+06 7.966e+05 7.974e+05 2.551e+06 5.225e+06 2.303e+06

Median 3.948e+06 7.906e+06 2.669e+06 2.004e+07 3.847e+07 2.068e+07

Weierstrass

Min -5.374e+01 -6.041e+01 -4.834e+01 -1.209e+02 -9.540e+01 -1.070e+02

Max -4.901e+01 -5.047e+01 -4.534e+01 -9.452e+01 -8.522e+01 -9.422e+01

Mean -5.151e+01 -5.402e+01 -4.728e+01 -1.022e+02 -8.969e+01 -1.006e+02

SD 1.962e+00 4.588e+00 1.331e+00 1.067e+01 3.765e+00 5.975e+00

Median -5.089e+01 -5.261e+01 -4.771e+01 -9.858e+01 -8.878e+01 -9.747e+01

VS: Variable selection, SM:Sammon mapping

Table 4: Test statistics–Airfoil problem

d = 50 d = 100

Function Statistic VS SM Baseline VS SM Baseline

airfoil

Min -1.809e+02 -1.788e+02 -1.725e+02 -1.675e+02 -1.331e+02 -1.403e+02

Max -1.188e+02 -1.233e+02 -1.149e+02 -1.263e+02 -7.038e+01 -1.380e+02

Mean -1.488e+02 -1.477e+02 -1.473e+02 -1.466e+02 -9.372e+01 -1.392e+02

SD 2.485e+01 2.005e+01 2.415e+01 1.550e+01 2.780e+01 1.643e+00

Median -1.389e+02 -1.433e+02 -1.509e+02 -1.496e+02 -8.571e+01 -1.392e+02

VS: Variable selection, SM:Sammon mapping
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analysis based both on mathematical test functions

and an engineering problem showed the effectiveness

of the proposed approaches.

A The Kriging Metamodel

The metamodel combines two components: a ‘drift’

function, which is a global coarse approximation of

the true function, and a local correction based on the

correlation between the interpolation vectors. Given

a set of evaluated vectors, ~xi ∈ R
d , i = 1 . . . n , the

metamodel is trained such that it exactly interpolates

the observed values, that is, m(~xi) = f(~xi) , where

m(~x) and f(~x) are the metamodel and true objective

function, respectively. Using a constant drift function

yields the Kriging metamodel as

m(~x) = 1 , (6)

with the drift function β and local correction κ(~x) .

The latter is defined by a stationary Gaussian process

with a zero mean and covariance

Cov[κ(~x)κ(~y)] = σ2c(~θ , ~x, ~y) , (7)

where c(~θ , ~x, ~y) is a user-prescribed correlation func-

tion. A common choice for the latter is the Gaussian

correlation function [22], defined as

c(~θ , ~x, ~y) =

d
∏

i=1

exp
(

−θi (xi − yi)
2
)

, (8)

and combining it with the constant drift function

transforms the metamodel in (6) into

m(~x) = β̂ + ~r(~x)TR−1(~f −~1β̂) . (9)

Here, β̂ is the estimated drift coefficient, R is the sym-

metric matrix of correlations between all interpolation

vectors, ~f is the vector of objective values, and ~1 is a

vector with all elements equal to 1. ~rT is the corre-

lation vector between a new vector ~x and the sample

vectors, namely,

~rT = [c(~θ, ~x , ~x1), . . . , c(~θ , ~x , ~xn)] . (10)

The estimated drift coefficient β̂ and variance σ̂2 ,

which are required in Equation (9), are calculated as

β̂ =
(

~1TR−1~1
)

−1
~1TR−1 ~f , (11a)

σ̂2 =
1

n

[

(~f −~1β̂)TR−1(~f −~1β̂)
]

. (11b)

Fully defining the metamodel requires the cor-

relation parameters ~θ which are commonly taken as

the maximizers of the metamodel likelihood. This is

achieved by minimizing the expression [22]

ψ(θ) = |R|1/nσ̂2 , (12)

which is a function only of ~θ and the sample data [22,

23].
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