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Abstract—This paper involves techniques for improving the quality indices of big data process engineering with 
respect to high-performance coded design, transmission speed, and reliability under manifold coordinate systems.  
The system formed with limited number of basis vectors. The set of modular sums of the vectors including 
themselves form t-dimensional toroidal coordinate grid over the toroid, and the basis is sub-set of general number of 
grid coordinate set. These design techniques make it possible to configure high performance information technology 
for big data coding design and vector signal processing. The underlying mathematical principles relate to the optimal 
placement of structural elements in spatially or temporally distributed systems by the appropriate algebraic 
constructions based on cyclic groups in extensions of Galois fields, and development of the scientific basis for 
optimal solutions for wide classes of  technological problems in big data process engineering and computer science. 
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1. Introduction 
   The major goals of the modern information technology are 
the expansion of big data process engineering design and use 
concept of optimize teaching approach to the practical tasks 
and assessment methods. Another goal of the systems is 
creation of unified information space with intelligent 
components of upper management levels such as large amount 
of data, high computing amount, and data flow intensity. In 
this aspect of very profitable is the development of intelligent 
components for the practical tasks and lectures studies, using 
novel interpretations of mathematical principles relating to the 
optimal placement of structural elements in spatially or 
temporally distributed systems, including the appropriate 
mathematical models of the systems.  The role of the models 
becomes evident if teacher selects methodology obviously to 
state the physical essence of a studied problem. The aim of the 
article involves techniques for improving the quality indices of 
integrating control functions of technological, business 
processes, creating unified big vector data information space. 
The main problem of designing big vector data coding systems 
is development of an approach to configure two- and 
multidimensional optimum model of the systems. The 
multidimensional coding systems,  is known to be of very 
important in information technology, for improving the quality 
indices of the systems  with optimum compressed structure 
(e.g. two-dimensional torus coordinate system). The paper 
regards innovative techniques for development of vector data 
coding design based on the idea of “perfect” spatially or  

 
 

 
 
temporally distributed systems, using the appropriate 
combinatorial configurations as a basis of expanded 
information field for big data process engineering.  
 

2. Review of Literature 
   Geometric optimization as known can be performed as 
follows: optimize the geometry in internal coordinates, in 
redundant internal coordinates, and in Cartesian coordinates. 
Each step of the geometry optimization, Gaussian written to 
the output file the current structure of the system, the energy 
for this structure, the derivative of the energy with respect to 
the geometric variables, and a summary of the convergence 
criteria [1]. The vector data-sets often involve a number of 
attributes, such as name, type, length, content, and other 
indexes, which have led to difficulties in large-scale data 
processing. In recent times, a great number of new concepts, 
parallel algorithms, processing tools, platform, and 
applications are suggested and developed to improve the value 
of big vector data [2-10]. Developing a reversible rapid 
coordinate transformation big vector data model for the 
cylindrical projection given in paper [7]. The paper [8] 
contains fast multidimensional ensemble empirical mode 
decomposition for the analysis of big spatio-temporal datasets. 
The geometric computing algorithms are always very complex 
and time-consuming, which makes  big spatial data processing 
very slow, even impossible [9]. A framework that couples 
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cloud and high-performance computing for the parallel map 
projection of vector-based big spatial data regarded in [10]. 
The projection provides large-scale spatial modeling of big 
vector data under a common coordinate system. High-
dimensional datasets can be very difficult to visualize. While 
data in two or three dimensions can be plotted to show the 
inherent structure of the data, equivalent high-dimensional 
plots are much less intuitive. To aid geometric visualization 
and processing of a dataset, the processing must be optimized 
in some way with respect to the underlying criteria. The 
research in these brunches of science and technologies probes 
in the various aspects. There were many publications related to 
combinatorial vector field topology [11-15]. In the paper [11] 
a theoretical foundation of the combinatorial 2D vector field 
topology set forth. A discrete Morse theory for general vector 
fields Forman describes in [12, 13]. Morse-Smile complexes 
definition for piecewise linear data resulting in a combinatorial 
algorithm for its extraction considered in work [14]. A slightly 
different approach by developing a discrete Morse theory for 
scalar fields defined on cell complexes we see in [15]. This 
theory applied successfully to scalar fields on triangulated 
manifolds [16]. Classification of digital n-manifolds based on 
the notion of complexity and homotopic equivalence presents 
in paper [17]. The another theoretical approach founded on 
structural perfection of toroidal and multidimensional 
manifolds, namely the concept of “Glory to Ukraine Star” 
combinatorial configurations (GUS-configurations) stated in 
[18-19].  
 

3. Optimized Torus Coordinate System 
Let us regard an n-stage ring sequence of two-dimensional 

vectors {(k11, k12), (k21, k22),..., (ki1, ki2),...,(kn1, kn2)} as a basis 
for configure optimized toroidal coordinate system, where we 
require a set  of all vector-sums combined on the basis, taking 
modulo m1 and  modulo m2 accordingly,   to be covered torus 
by coordinate grid of sizes m1×m2..   

For, example, the two-dimensional cyclic sequence {(0,1), 
(2,2), (2,1), (1,1)} containing four (n=4) 2D vectors allows an 
enumeration of all reference grid m1×m2 point coordinates, 
m1=3, m2=4, taking the (mod 3, mod 4) sums of the vectors as 
follows:  
 
(0,0) ≡(1,1)+(0,1)+(2,2),       (0,2)≡(2,1)+(1,1),  
(0,3) ≡ (2,1)+(1,1)+(0,1),      (1,0)≡(0,1)+(2,2), 
(2,0) ≡(2,2)+(2,1)+(1,1),       (1,2) ≡ (1,1)+(0,1),  
(1,3) ≡ (2,2)+(2,1),                (2,3) ≡ (0,1)+(2,2), 
 

So long as the vectors (0,1), (2,1), (2,2), (1,1) of the ring 
sequence themselves are modular vector-sums too, the vector-
sums configure the reference grid with sizes 3×4 over surface 
of torus (Table I). 

TABLE I.  REFERENCE GRID WITH SIZES 3×4 OVER SURFACE OF 
TORUS 

 
 
 
 

Hence, the basic set of four (n=4) 2D vectors {(0,1), (2,1), 
(2,2), (1,1)} forms optimized toroidal coordinate system with 
respect to minimizing basis as two-dimension reference grid of  
fixed sizes m1×m2 = 3×4, which  covers surface of usual torus 
about two (t=2) concurrent reference axes, m1=3, and  m2 = 4. 

It is now customary to represent a toroidal coordinate 
systems as two-dimension reference grid of  sizes m1×m2 

covered surface of usual torus about two (t=2) concurrent 
reference axes with (0,0) common point  (Fig.1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1  A torus coordinate systems as two-dimension reference grid of  
sizes m1×m2 covered surface of usual torus bout two (t=2) concurrent 
reference axes with common point (0,0) 
 
    Note, the optimization embedded in the underlying GUS-
configuration forms binary two-dimensional code in the same 
basis {(0,1), (2,1), (2,2), (1,1)}, namely the “Star” code with 
parameters n=4, m1=3, m2 = 4, and  code sizes S = 3×4.  

Example of binary 2D “Star” code with parameters n=4, 
m1=3, m2 = 4 under optimized torus coordinate system with 
sizes S = 3×4 formed in the basis {(0,1), (2,2), (2,1), (1,1)} 
given below (Table II).     

TABLE II.   BINARY 2D “STAR” CODE UNDER OPTIMIZED 
TORUS COORDINATE SYSTEM WITH SIZES S = 3×4 FORMED IN 
THE BASIS {(0,1), (2,2), (2,1), (1,1)} 
 

No Torus 
coordinates 

Binary 2D vector “Star” code 
(0,1) (2,2) (2,1) (1,1) 

1 (0,0) 1 1 0 1 
2 (0,1) 1 0 0 0 
3 (0,2) 0 0 1 1 
4 (0,3) 1 0 1 1 
5 (1,0) 1 1 1 0 
6 (1,1) 0 0 0 1 

(2,0) (2,1) (2,2) (2,3) 
(1,0) (1,1) (1,2) (1,3) 
(0,0) (0,1) (0,2) (0,3) 

(0,0) 

m1 

m2 
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7 (1,2) 1 0 0 1 
8 (1,3) 0 1 1 0 
9 (2,0) 0 1 1 0 
10 (2,1) 0 0 1 0 
11 (2,2) 0 1 0 0 
12 (2,3) 1 1 0 0 

    
We can see that four-stage (n=4) two-dimensional vectors 

{(0,1), (2,2), (2,1), (1,1)} forms both optimized toroidal 
coordinate systems with reference grid of sizes m1×m2 = 3×4, 
and the binary 2D vector code come as the complete systemic 
package.  

4. Manifold Optimized Coordinate 
System 

Let us regard an n-stage ring sequence of t-dimensional 
vectors {K1,K2,…,Ki,…,Kn},  Ki = (ki1, ki2, …, kit), each of them 
is an t-stage subsequence of the n-stage sequence, where we 
require a set  of all t-modular vector-sums combined on this 
sequence cover t-dimensional manifold surface as a reference 
grid. Summation are modulo m1, m2,…, mi, …, mt  accordingly 
about t of spatially disjointed concurrent reference axes with 
common ground point forming a grid of sizes m1×m2 ×…× 

mi×…× mt over a manifold, i=1,2,…,t. We define, the t-
dimensional vectors {K1, K2,…,Ki,…,Kn} is a basis for 
configure optimized t-dimensional manifold coordinate 
system, generated by GUS –configuration. Graphic 
presentation of ring ordered vectors {K1,K2,…,Ki,…,Kn} is in 
Fig.2.  

 
 
 
 
 
 
 
 
 
 
Fig.2   Graphic presentation of ring ordered vectors {K1, K2,…, Ki,…, 

Kn} 
 

Example of binary 3D “Star” code with parameters n=6, 
m1=2, m2 =3, m3 =5, and optimized manifold coordinate system 
with sizes S =2×3×5 formed by GUS –configuration {(0,2,3), 
(1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)}:  

1. (0,0,0) ≡ (0,2,3)+(1,1,2)+(0,2,2)+(1,0,3)+(0,1,0) 

2. (0,0,1) ≡ (0,2,2)+(1,0,3)+(0,1,0)+ (1,1,1) 

3. (0,0,2) ≡ (1,1,2)+(0,2,2)+(1,0,3) 

4. (0,0,3) ≡ (0,2,3)+(0,1,0) 

5. (0,0,4) ≡ (0,2,3)+ (0,2,2)+(1,0,3)+(0,1,0)+ (0,1,0) 

……………………………………………………………… 

      30.     (1,2,4) ≡ (0,2,3)+(1,1,2)+(1,0,3)+(1,1,1)+(0,1,0) 

As the vector weights of binary 3D “Star” code {(0,2,3), 
(1,1,2), (0,2,2), (1,0,3), (1,1,1), (0,1,0)} take on binary values, 
vector (0,0,0) is code word  111101, vector (0,0,1) is 001110, 
vector (0,0,2) is 011100, vector (0,0,3) – 100001, vector 
(0,0,4) – 101111, etc…. 
Finally, (1,2,4) is code word 110111.   
    We can doing computation these design, using remarkable 
properties multidimensional GUS-configurations of arbitrary 
higher dimensionality with parameters n, S, according to 
selected sizes and spatial configurations of t-dimensional 
manifold reference grid,  essentially, without theoretical 
bounds of the underlying parameters [18].  

To date, there have been no methods to optimize 
multidimensional manifold coordinate systems. A chart of 
manifold coordinate system with t-dimensional reference grid 
m1 ×m2 ×... ×mt about concurrent axes m1 , m2 ,…, mt  with 
common ground “ +” shows in Fig.3.   

  
Fig.3  A chart of manifold coordinate system based on t-dimensional 
coordinate grid m1 × m2 ×... × mt   about concurrent axes m1, m2, …, 

mt  with common ground coordinate “ +” 

The remarkable property of two- and multidimensional 
binary “Star” codes are that all modular sums of t-dimensional 
vectors in the code enumerate a set of distinct vectors of a 
finite space, which allows encoding and data processing the 
vectors as sequences of attributes, characters or their packages 
in a binary vector “star” codes combination simultaneously. 
This makes it possible to use numerous combinatorial varieties 
of methods for big vector data coded design under t-
dimensional manifold coordinate system, based on suitable 
GUS-combinatorial configurations to be applicable in needed 
situations.  

The researches [18, 19] probe in various aspects of the 
subject cover a number of vital points concerning its 
theoretical and applied problems in the area.   

The “star” codes may be separating as self-correcting 
(redundant vector codes), and the non-redundant (optimum 
codes) with merits and limitations for each of them [18].  The 
rate of number growth of 2D and 3D “star” codes with rising 
their sizes given in Table III.   

 

21 KKKn  
 

iK  
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TABLE III.  RATE OF NUMBER GROWTH OF 2D AND 3D “STAR”  
CODES WITH RISING THEIR SIZES  

Code 
length, n 

Number of 
code variants  

Code size variants, S  

2D 
codes 

3D 
codes 2D codes 3D 

codes 
2 1 - 1×2 - 
3 4 - 2×3 - 
4 24 - 3×4 - 
5 272 - 4×5, 3×7 - 
6 256 128 5×6, 3×10 2×3×5 
7 360 180 6×7, 3×14 2×3×6 

 
We can see fast growing varieties of 2D and 3D self-

correcting “star” codes under manifold reference systems with 
rising their length n and code size S. This type of the “stars” 
belong to the self-correcting codes due to monolithic arranged 
both symbols “1” and “0” for allowed code words as being 
ring n-sequences of unified blocks each of the same symbols. 
This characteristic property offers at once detect or correct 
code words by its monolithic fashion. The second class of 
“star” codes  which provide vector data coding or processing 
with the smallest possible information loss under optimized 
manifold coordinate system of fixed values n, S, R and 
dimensionality t of reference grid [18]:   

S = R 2
1

n
t

im  , (m1, m2, …, mt) =1                    (1) 

    From (1) follows, there are theoretically infinite set of  
alternate design for configure optimized manifold coordinate 
systems based on GUS combinatorial configurations, and the 
more fixed values n, S, R and dimensionality t the more 
combinatorial varieties creates manifold topological space. 

The discovery unknown remarkable properties of the 
combinatorial varieties with transforming their spatial 
structures and dimensionality as multidimensional manifolds 
provides forming optimized vector codes, signal and data 
processing, vector computing, and systemic researches based 
on the underlying configurations. There are existing whole 
classes of GUS-configurations [19].  

 

4.1 Big Vector Data Processing under t-
Dimensional Coordinate  System 
The basic ideas of BVD processing under torus (t=2) or 

manifold (t ≥ 3) coordinate system are as following: 
 determine  sizes of manifold coordinate system and its 

dimensionality accordingly to entity- attribute-value of  a BVD 
list; 
 make indexing entity- attribute- value list under the 

manifold coordinate system; 
 fetch from an information base applicable vector star-

code with respect to computer power and processing program; 
 make Big Vector Data processing under the manifold 

coordinate system. 

The underlying process engineering provides opportunities 
to apply them to configure t-dimensional vector data set 
indexed numerically with t attributes and mi categories  (i = 1, 
2,…, t) accordingly under the t- dimensional coordinate 
system. The efficiency is that the less number of encoded 
signals use for given vector data coding and processing set 
than at present.   

5. Conclusion and Outlook 
The optimized manifold coordinate systems based on the 

“Gloria to Ukraine Stars” (GUS)s combinatorial 
configurations provide, essentially, a new concept for vector 
data  coding, processing,  computing,  and  systematic 
researches originated on idea of minimizing vector basis of  
the coordinate system, using vector combining summation over 
the basis to cover the coordinate system reference grid. 
Moreover, the minization has been embedded in the 
underlying configurations. The remarkable properties and 
structural perfection of two- and multidimensional GUSs 
provide an ability to reproduce the maximum number of 
combinatorial varieties in the system with limited number of 
vectors. These researches involves techniques for improving 
the quality indices of engineering devices or systems with 
respect to big vector data processing and computing speed, 
data transfer rate, information redundancy and code security 
communication. Vector data processing under the optimized 
manifold cordinate systems and “star” codes provide  
competitive advantages of the vector information technologies 
with respect to processing speed and storage capacity due to 
data coding of compound attributes for needed their number 
and categories simultaneously. The creative qualities of the 
combinatorial structures allows classify them among intelligent 
information systems [18, 19]. Study the properties allows a 
better understanding of the role of geometric structure in the 
behaviour of artificial and natural objects in different 
dimensionalities. The underlying skills are useful at high 
schools and universities for in-depth training of students, 
which study computer sciences and information technologies, 
involving contemporary combinatorial and algebraic theory for 
increasing interest to scientific researches.  
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