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Abstract: - In this paper two types of classifiers of Distributed Denial of Service (DDoS) attacks, based on 

Support Vector Machines, are presented – a binary and a multiclass one. They use numerical samples, 

aggregated from packet switched network connections records, captured between attacking machines, most 

typically IoT bots and a victim machine. Ten of the most popular DDoS attacks are studied and represented as 

either 10- or 8-feature vectors. Detection rate and classification accuracy is being measured in both cases, along 

with lots of other parameters, such as Precision, Recall, F1-measure, training and testing time, and others. 

Variations with Linear, Polynomial, RBF and Sigmoid kernels are being tried with the SVM. The most accurate 

turns out to be the RBF SVM, both as detector and multiclass classifier, achieving classification accuracy as 

high as 0.9999 for some of the attacks. Testing times reveal the practical fitness of the implemented classifiers 

for real-world application. 
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1 Introduction 
DDoS attacks induce large financial losses [1] by 

interrupting mass-type services, causing data loss 

and sometimes ease the process of compromising 

various Internet based machines, leading to data 

theft and other malicious activities. One of the more 

recent challenges, related to the prevention of DDoS 

attacks, is connected to the Software Defined 

Networks (SDN) and the ways of efficiently 

limiting their scale extension, analyzing the 

influence over the SDN controller [2]. Neural 

networks are not considered practical solution for 

this particular instance as Ye et al. [2] show, while 

employing 6 component features from the flow of 

the switch. They use them as training samples for 

Support Vector Machines (SVM) and get 95.24% 

accuracy of detecting DDoS attacks. 

Detection and classification of DDoS attacks, 

along with their further prediction, has been 

proposed by Yusof et al. [3], using K-Nearest 

Neighbor as a combination with SVM (KNN-SVM). 

Good partitioning of the pre-attack data flow and the 

actual influence over the network with a peak traffic 

and other effects have been achieved. The proposed 

approach is considered useful for intrusion detection 

as well. The classification rate is in the order of 

96.4% for the SVM and 96.6% for the KNN when 

using the KDD99 dataset. In [4] Daneshgadeh et al. 

combine Kernel Online Anomaly Detection, SVM 

and principles from the Information Theory with the 

aim of differentiating DDoS and Flash Events, the 

latter being completely legitimate activities. The 

authors also find their scheme useful for normal 

traffic discrimination. Another study, performed by 

Khuphiran et al. [5] gives a comparison between 

Deep Feed Forward (DFF) and SVM models, which 

are able of detecting DDoS attacks. Testing over 

DARPA 2009 dataset with these models, produce an 

accuracy of 99.63% for the DFF and 93.01% - for 

the SVM. DFF appears to be around 1.28 times 

faster than the SVM as per the training phase. 

Despite this relation, the authors report that SVM is 

faster during the testing phase and should be 

preferred if the accuracy is not the primary issue. 

More general approach is undertaken in [6], 

where Ali et al. propose a framework, based on 

machine learning, directed towards the prevention 

of the DDoS attacks in SDN and in the same time it 

is capable of reducing the dimensionality of 

processed data, transferred in huge amounts. Thus, it 

becomes possible to reduce the risk of launching a 

spoof controller and changing the routing tables. 

Principal Component Analysis (PCA) is also 

implemented in the framework, along with SVM, 
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which goes as successful solution towards smaller 

false positive rate, and the overall accuracy 

increased. Another more complex approach, relying 

on a hybrid algorithm for spotting DDoS attacks is 

developed by Adhikary et al. [7]. It is specifically 

oriented towards Vehicular Adhoc Networks 

(VANETs). Kernel methods, based on AnovaDot 

and RBFDot, lie at the base of a SVM for solving 

that task. With regard to the normal traffic lots of 

real-world acting factors, e.g. packets loss, jitter and 

collisions, are being introduced to make the testbed 

as close to real networks as possible when the time 

comes to discriminate a DDoS attack from that 

normal traffic. AnovaDot and RBFDot realizations 

seem to be more efficient when combined than 

when applied independently. 

During the recent years, it was also 

demonstrated that simpler realizations of SVM 

classifiers, such as the linear l1 type, developed by 

Nazih et al. [8], could be efficiently exploited for 

discovering of attacks in Session Initiation Protocol 

(SIP) Voice over Internet Protocol (VoIP) networks. 

Denial of Service (DoS) and Spam over Internet 

Telephony (SPIT) attacks have been successfully 

discovered due to the introduction of n-gram string 

features, projected in a space with high 

dimensionality. Detection speed is higher for the l1-

SVM when discovering SPIT attacks, compared to 

the combined classifier, comprised of Markov Chain 

and SVM in the order of 20 times and in the same 

time the F1 measure for the proposed classifier is 

close to 100%, while the accuracy rate for the 

combined model is 96.3%. The l1-SVM has almost 

the same accuracy into discovering DoS attacks 

with comparison to the Dual SVM and also 

considering the Malformed Msgs when compared to 

the SDP Parser.  

Malware and spoofing discovery, along with 

DDoS attacks, is an object of the study, presented in 

[9] by Kajal and Nandal. Feature selection is done 

with the use of Genetic Algorithm as a first step, 

refining them later by Artificial Bee Colony and 

Discrete Wavelet Transform algorithms. Combining 

in a hybrid approach an Artificial Neural Network 

(ANN) and SVM allows the more accurate detection 

of malicious behaviors of separate nodes in the 

communication network. The increase in precision 

and recall while detecting DDoS attacks, compared 

to earlier strategy of query expansion with 

convolution kernels and dependency parses, is 0.112 

and 0.049, respectively.  The applicability of SVM 

into discovering DDoS network attacks, consisting 

primarily from HTTP (Hypertext Transfer Protocol) 

flood and DDoS using SQL (Structured Query 

Language) injection (SIDDoS) has been 

investigated in [10]. Multiple classifiers for the 

same task have been compared, such as Naïve 

Bayes, Decision Trees and Multilayer Perceptron 

(MPL). It appears that an Enhanced Multi Class 

SVM (EMCSVM) could detect accurately enough 

DDoS related events, while maintaining low false 

alarm rate, when taking as an input 14 components 

in a feature vector and trying to discriminate 10 

kinds of attacks. 

Based on all recent developments, as described 

above, in the field of detection and classification of 

DDoS attacks with the independent or combined use 

of SVM, we seek to find within this study the most 

optimal configuration of a single SVM, capable of 

detecting the presence of at least 1 type of such 

attack, discriminating it from normal traffic. Then, 

in a second, extended configuration, an SVM that 

could classify 1 of 10 kinds of attacks precisely 

enough, given the contemporary efficiency of 

comparable classifiers. Consideration has been 

made on the kernel function and configuration 

parameters while taking as an input 10- and 8-

elements (reduced set) features from a recent and 

popular UNSW (University of New South Wales, 

Canberra, Australia) IoT-based (Internet of Things) 

DDoS attacks dataset [11]. 

In the Second part of the paper a brief 

description has been given of the distribution of 

features, depending on the present attack in the test 

dataset, as well as the general mathematical 

description of an SVM, using various kernel 

functions and their related parameters, and general 

optimization procedure to get the most efficient 

configuration of a classifier of this type. In Section 

3, experimental results are given from testing SVMs 

as detectors and classifiers of DDoS attacks, 

revealing the most optimal configuration, followed 

by a discussion in Section 4. Finally, a conclusion is 

presented in part 5 of the paper. 

 

 

2 Classifier Structure 
 

2.1 Dataset and Feature Distribution 
The dataset [11], used in this study, which is freely 

available and used by other authors in their research, 

contains 2934817 training and 733705 test samples. 

Each sample has 10 components, that are being 

aggregated from IP network flows – packets rate 

between source and destination machine (srate), the 

rate in opposite direction (drate), the estimated 

variance by its square root of the number of 

recorded connections (stddev), the consecutive 

number of a captured sequence (seq), the minimal, 

average and maximal period of exchange (min, 
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mean, max), identifier of a state for a feature 

(state_number), and the number of connections that 

get into the destination and the source machine 

(N_IN_Conn_P_DstIP, N_IN_Conn_P_SrcIP). All 

the feature components are represented as numerical 

values and the target variables are 2 kinds – a binary 

one with value 0 (non-attack) and 1 (attack) for 

testing the binary SVM classifier (attack detector); 

and numerical one with values 0 (non-attack), 1 

(DoS TCP attack), 2 (DoS UDP attack), 3 (DoS 

HTTP attack), 4 (DDoS TCP attack), 5 (DDoS UDP 

attack), 6 (DDoS HTTP attack), 7 (Keylogging), 8 

(Data Exfiltration), 9 (OS Fingerprint), 10 (Service 

Scan) for testing the SVM with multiclass outputs. 

Within the training set the number of non-attack 

records is 370, and in the test set – 107. 

All the records are gathered from internal 

network setup with 4 simulated IoT devices, acting 

as bots and generating malicious traffic, 

corresponding to the attacks, described above. For 

this purpose the Kali Linux is used on conventional 

machines, a workstation with Windows 7, Mobile 

station and a Server under the control of Ubuntu 

operating systems play the role of attacked 

machines. The information of established 

connections is recorded by a separate monitoring 

station, connected to the switch, through which all 

other machines are communicating. 

Ranking of the features based on their 

informative significance, related to the various 

classes separability, is being performed with the use 

of the χ2 parameter, according to [14]: 

 

 𝜒𝐷𝑓
2 = ∑

(𝑂𝑖−𝐸𝑖)
2

𝐸𝑖

𝑁
𝑖=1 , (1) 

 

where Df is the number of the degrees of freedom, N – 

the sample size, Oi – observed values, Ei – expected 

values for i = 1, 2, …, N. The number of degrees of 

freedom is associated with the number of independent 

values by any logical connection, that is they very 

independently one from another. Most often, it is true 

that [14]: 

 

 𝐷𝑓 = 𝑁 − 1, (2) 

 

where 1 represents the number of constraints, being 

introduced independently when gathering all the 

samples during testing. In that case, the random 

variable χ  will correspond to  χ2-distribution and it 

will be true that it is equal to the superposition of a 

number of variables, e.g. M, following a normal 

distribution [14]: 

 

 𝜒2 = ∑ 𝑥𝑖
2𝑀

𝑖=1 . (3) 

The results are  given in Table 1. 

 

Table 1. χ2 values for all features 
mean 1357708.10 drate 621785.11 

srate 1324153.22 min 515194.56 

max 1168444.70 
N_IN_Conn 

_P_DstIP 
192709.72 

state_number 1121064.98 seq 121856.09 

stddev 666877.36 
N_IN_Conn 

_P_DstIP 
23049.61 

 

The probability distribution each feature to be 

connected to a particular attack, being present with a 

given value, is shown in Fig. 1. The first 6 cases 

(Fig. 1 a-f) clearly indicate relatively good 

separability among the attacks over the range of 

these features – state_number, srate, max, mean, 

stddev and min. For the N_IN_Conn_P_DstIP the 

1st, 2nd and 10th attack are covered altogether with 

their distributions almost over the entire range of 

this feature, and also significant portions of that 

range is covered of the distributions for other 

attacks. For drate, the 9th and 10th attack are 

somewhat hard to distinct. And then, for the seq and 

N_IN_Conn_P_SrcIP the distribution by attack are 

almost identical between these 2 features, but also 

overlapped for each one of them within the typical 

range of their change. Given the almost 59 times 

difference in the χ2 parameter between the most 

informative mean feature and N_IN_Conn_P_DstIP, 

it is reasonable to try a classification without that 

feature and also the seq feature, since their 

distributions are very similar. In other words, in our 

experimentation we perform classification tests once 

with the full set of 10 features, and a second time – 

with only 8 features in order to evaluate the 

efficiency of this reduction by classification 

accuracy and execution time. 

 

 
a – state_number   b – srate (x1e+06) 
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c – max    d – mean 

  
e – stddev   f – min 

  
g – N_IN_Conn_P_DstIP h – drate (x1e+03)  

  
    i – seq       j – N_IN_Conn_P_SrcIP 

 
k – color legend of the attacks 

Fig. 1: Probability of different kinds of attacks, 

given particular value of a feature 

 

 

2.2 SVM Description 
SVM is supervised training algorithm [12], which 

for the purposes of the current study produce a 

model, capable of discriminating samples from 

malicious network activities from those of the 

normal traffic, and also as a separate model – 

classifying various types of DDoS attacks. In the 

first case, which could also be viewed as binary 

classification problem, the following simplified 

graphical representation (Fig. 2) may be used. 

A hyperplane needs to be found, which will 

separate in the most discriminating fashion the 

clusters of samples, corresponding to the different 

classes, in this instance the attack samples and 

those, calculated from the normal traffic (non-attack 

samples). All samples, which are located in minimal 

distance to the hyperplane, are known as support 

vectors, while the distance itself is called a margin. 

The very idea of the algorithm is to find a 

hyperplane, which maximizes the margin. 

 
Fig 2: SVM operational principle 

 

In N dimensions, the hyperplane equation could 

be expressed as [12]: 

 

 𝑦 = 𝑤0 +𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑁𝑥𝑁 = 𝑤0 +
∑ 𝑤𝑖𝑥𝑖
𝑁
𝑖=1 = 𝑤0 +𝒘𝑇𝑿 = 𝑏 +𝒘𝑇𝑿, (4) 

 

where wi = (w0i, w1i, …, wNi)T is a vector of weights, b 

is a bias, equal to w0, and Xi = (x1i, x2i, …, xNi) is a 

vector, representing an input sample to be 

discriminated from the samples, belonging to the other 

cluster. If the following condition is met [12]: 

 

 𝑦𝑖(𝒘
𝑇𝑿𝑖 + 𝑏) ≥ 1, (5) 

 

then Xi would be associated with the correct class. If 

all vector points from both classes are linearly 

separable, then the hyperplane, satisfying the above 

relations will completely separate the classes, but if a 

new point comes to a class, and falls on the other side 

of the hyperplane – it will be incorrectly classified. 

This is known as SVM with hard margin. 

In order to overcome the limitations of the strict 

rule from above, a slack variable ξ is put in (5) [12]: 

 

 𝑦𝑖(𝒘
𝑇𝑿𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, (6) 

 

and there will be correct classification only when ξi = 

0. For every case ξi > 0, ξi represents the error of 

classification, which in average after all classifications 

will be [12]: 

 

 𝜉̅ =
1

𝑛
∑ 𝜉𝑖
𝑛
𝑖=1 . (7) 

 

Then, naturally the following objective function 

emerges [12]: 

 

 min
𝑤,𝑏

1

2
‖𝑤‖2 +∑ 𝜉𝑖

𝑛
𝑖=1 , (8) 
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which must hold true, when (6) is satisfied for all i = 

1, 2, …, n, and all input samples are correctly 

classified. This is known as SVM with soft margin. 

The loss function is zero, given Zi = yi(wTXi + b) ≥ 1, 

and increasing with the ever stronger condition Zi < 1 

[12]. So the loss could be derived from max(0, 1-Zi). 

Using Lagrange multiplier it becomes possible 

project data from low-dimensional space to higher 

number of dimensions in order to get better 

separability of samples from different classes, which 

is known as the SVM dual form [12]: 

 

 max
𝛼

∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑛
𝑗=1 𝑦𝑖𝑦𝑗(𝑿𝑖

𝑇𝑿𝑗)
𝑛
𝑖=1

𝑛
𝑖=1 , (9) 

 

which should be satisfied, given αi ≥ 0 for i = 1, 2, …, 

n, while ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 . Every Xi represents a support 

vector when αi ≥ 0 and not being such, given αi = 0. 

The dependence of finding the solution for the dual 

form of SVM falls over α, since intermediate results 

depend on the scalar product of vector pairs, including 

the bias b. An ease into the process of finding the dot 

products is the introduction of kernel and perform all 

calculations in another space, with higher number of 

dimensions than the initial one [12]: 

 

 max
𝛼

∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛
𝑗=1 𝐾(𝑿𝑖

𝑇 . 𝑿𝑗)
𝑛
𝑖=1   (10) 

 

for 0 ≤ αi ≤ C, when i = 1, 2, …, n and ∑ 𝛼𝑖𝑦𝑖 = 0𝑛
𝑖=1 . 

In our study we use 4 different kernel functions. A 

linear one, defined by [12]: 

 

 𝐾(𝑿1, 𝑿2) = 𝑿1
𝑇𝑿2, (11) 

 

where K is the kernel function, and X1 and X2 are 

input vectors. 

A polynomial kernel could be expressed as [12]: 

 

 𝐾(𝑿1, 𝑿2) = (𝑐 + 𝑔𝑿1
𝑇𝑿2)

𝑑, (12) 

 

where d – is degree of the kernel, c – a constant, and g 

– coefficient of proportion (gamma). 

A Gaussian Radial Basis Function (RBF) as a kernel 

is another option, which could be represented as [12]: 

 

 𝐾(𝑿1, 𝑿2) = 𝑒𝑥𝑝(−𝑔|𝑿1 − 𝑿2|
2), (13) 

 

where |X1 – X2| is the Euclidean distance between the 

vectors X1 and X2. With the change of g from small to 

large values the general observed effect is that the 

classifier goes from underfitting to overfitting, passing 

through some optimal configuration  

The sigmoidal function as a kernel corresponds to the 

following equation [12]: 

 

 𝐾(𝑿1, 𝑿2) = tanh⁡(𝑔𝑿1
𝑇𝑿2 + 𝑐). (14) 

 

2.3 SVM Optimization Procedure 
During experimental testing the following 

evaluation parameters are found from both the 

validation process over the full training set and 

classification over the full test set: 

 AUC – the Area under ROC – the Receiver 

Operating Curve; 

 CA – Classification Accuracy – the ratio of 

correctly marked samples with regard to all 

input samples; 

 Precision – the part of the actual truly 

classified instances among all marked as 

positive instances; 

 Recall – the part of the actual truly 

classified instances with regard to the whole 

number of positive instances in the dataset 

of the same type (class); 

 F1 – harmonic mean, taking as input the 

precision and recall parameters; 

 Specificity – the part of the actual marked 

true negatives, related to all negative 

samples from the input; 

 LogLoss – it is the loss value, for which the 

cross-entropy function is used, and it 

accounts for the uncertainty level of the 

prediction being made (to which class a test 

sample belongs); it depends on the variation 

degree from the actual class. 

 Train Time – the full time needed to train 

the classifier; 

 Test Time – the full time, necessary to make 

classification over the testset after the 

classifier has been completely trained.  

 Confusion Matrix – a square matrix 

representation of the predicted samples by 

class (as rows) and the actual class of each 

sample (as columns). 

The general optimization procedure that we 

propose here is presented in Fig. 3. According to the 

recommendations, given in [13], the initial value for 

the Cost parameter of the SVM is C = 1, the 

constant term c = 1, the degree d = 3, the Numerical 

Tolerance NT = 10-3, the Iteration Limit IL = 105. 

One of the major effects from the training is finding 

the optimal value for g. As empirical rule [13], the 

initial value for it may be set to 1/k, where k is the 

number of components of the feature vectors, that is 

0.1 in our case. The following categorical variable is 

introduced, denoting the type of the SVM kernel – t 

= 1 for Linear, t = 2 – for Polynomial, t = 3 – for 
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RBF, and t = 4 – for Sigmoid. The current iteration 

during training is denoted with il.  

 

 

 
Fig. 3: Optimization procedure for the SVM 
 

 

3 Experimental Results 
Experimental results are gathered using the IBM PC 

compatible computer with Intel Xeon E5-1620 

processor, comprising of 4 cores operating in hyper 

threading mode at 3.5 GHz. The amount of cache at 

first level is 256 kB, 1 MB – at the second and 10 

MB – at the third one, while the size of the RAM is 

64 GB. Testing is being performed within the 

Orange v. 3.28 application for machine learning 

under the control of Microsoft Windows 10 

Professional operating system. 

Processing times for the training and testing 

phase of the SVM, which performs simple 

discrimination of the traffic to normal (Class 0) and 

attack (Class 1), are given in Table 2. 

The time periods from Table 2 correspond to 

maximum number of 100 000 training iterations, set 

in advance as a limit. In an additional experiment 

SVM for binary discrimination is tested at 1 

000 000 maximum iterations only for the RBF 

kernel. It turns out that the training time is 62 620 s, 

the validation time – 115 s, and the testing time 31 

s, using 10 features. Obviously, the criteria for 

terminating the learning process is met long before 

reaching the iterations number limit, almost equal to 

100 000 iterations. 

 

Table 2. SVM processing times for detecting 

malicious network activities vs. normal traffic 

SVM type 
Features 

number 

Training 

time, s 

Validation 

time, s 

Testing 

time, s 

Linear 
8 8 776 68 15 

10 11 760 134 34 

Polynomial 
8 21 341 85 26 

10 12 677 143 36 

RBF 
8 76 539 228 57 

10 71 458 272 70 

Sigmoid 
8 137 980 218 54 

10 23 425 145 32 

 

The processing times when classifying multiple 

attacks with a set limit of 1 000 000 iterations for 

the SVM, using RBF, which turns out to be the best 

option among the tested kernels, as the experimental 

results from below demonstrate, are given in Table 

3. 

 
Table 3: SVM processing times for classifying various attacks  

SVM  

type 

Features 

number 

Training 

time, s 

Validation 

time, s 

Testing 

time, s 

RBF 
8 1124612 55 543 32 558 

10 508 111 133 136 33 237 

 

The detection rate of attacks vs. non-attacks, 

measured both during the testing and training phase 

are given in Table 4.  

 

Table 4. Detected attacks as proportion of the actual 

attacks  

SVM  

type 

Features 

number 

Non-attacks, % Attacks, % 

Train Test Train Test 

Linear 
8 2.7 3.7 100.0 100.0 

10 2.7 3.7 100.0 100.0 

Polyno-

mial 

8 10.5 8.4 100.0 100.0 

10 33.8 29.9 100.0 100.0 

RBF 
8 11.9 11.2 100.0 100.0 

10 35.7 33.6 100.0 100.0 

Sigmoid 
8 0.8 0.9 100.0 100.0 

10 2.2 1.9 100.0 100.0 

 

All evaluation parameters of the detection 

efficiency, using all 10 features on the train set as a 

full validation for the 4 kernels (Fcn.) of the SVM, 

are visible in Table 5. Class (Cl.) 0 corresponds to 

non-attack, and 1 – to attack.  

 

 

 

 

 

Start

f=8

C=1, c=1, d=3,

NT=10-3, IL=105

T=1, il=1

Train SVM

Input Trainset Trf

Input Testset Tff

f={8, 10}

Ccur>=C?

il = il + 1

il>=IL?

Train Confusion Matrix

Test SVM

Test Confusion Matrix

f==8?

f=f+2

topt = max{Scoret}

End

Yes

No

Yes

No

Yes

No
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Table 5. Attack detection efficiency on the train set, 

using 10 features 
Cl. Fnc AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 

Lin. 0.9866 0.9998 0.0526 1.0 0.0270 0.0010 1.0 

Pol. 0.9977 0.9999 0.4882 0.8802 0.3378 0.0020 0.9999 

Rbf 0.8322 0.9999 0.5217 0.9705 0.3567 0.0010 0.9999 

Sig. 0.6936 0.9998 0.0295 0.0465 0.0216 0.0022 0.9999 

1 

Lin. 0.9866 0.9998 0.9999 0.9998 1.0 0.0010 0.0270 

Pol. 0.9977 0.9999 0.9999 0.9999 0.9999 0.0020 0.3378 

Rbf 0.8322 0.9999 0.9999 0.9999 0.9999 0.0010 0.3567 

Sig. 0.6936 0.9998 0.9999 0.9998 0.9999 0.0022 0.0216 

 

The detection efficiency results for 10 features 

when working with the test set are given in Table 6. 

 

Table 6. Attack detection efficiency on the test set, 

using 10 features 
Cl. Fnc AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 

Lin. 0.9809 0.9998 0.0720 1.0 0.0373 0.0017 1.0 

Pol. 0.9972 0.9998 0.4475 0.8888 0.2990 0.0024 0.9999 

Rbf 0.8121 0.9999 0.5 0.9729 0.3364 0.0013 0.9999 

Sig. 0.6973 0.9997 0.0246 0.0363 0.0186 0.0024 0.9999 

1 

Lin. 0.9809 0.9998 0.9999 0.9998 1.0 0.0017 0.0373 

Pol. 0.9972 0.9998 0.9999 0.9998 0.9999 0.0024 0.2990 

Rbf 0.8121 0.9999 0.9999 0.9999 0.9999 0.0013 0.3364 

Sig. 0.6973 0.9997 0.9998 0.9998 0.9999 0.0024 0.0186 

 

Complete validation over the train set for the 

detection capabilities of the SVM, using 8 features, 

leads to the results from Table 7. 

 

Table 7. Attack detection efficiency on the train set, 

using 8 features 
Cl. Fnc AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 

Lin. 0.9846 0.9998 0.0526 1.0 0.0270 0.0017 1.0 

Pol. 0.9250 0.9998 0.1884 0.8863 0.1054 0.0021 0.9999 

Rbf 0.7235 0.9998 0.2110 0.9361 0.1189 0.0011 0.9999 

Sig. 0.6076 0.9997 0.0097 0.0122 0.0081 0.0020 0.9999 

1 

Lin. 0.9846 0.9998 0.9999 0.9998 1.0 0.0017 0.0270 

Pol. 0.9250 0.9998 0.9999 0.9998 0.9999 0.0021 0.1054 

Rbf 0.7235 0.9998 0.9999 0.9998 0.9999 0.0011 0.1189 

Sig. 0.6076 0.9997 0.9998 0.9998 0.9999 0.0020 0.0081 

 

The unknown samples from the test set cause 

the detection results, again for 8 features, shown in 

Table 8. 

 

Table 8. Attack detection efficiency on the test set, 

using 8 features 
Cl. Fnc AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 

Lin. 0.9781 0.9998 0.0720 1.0 0.0373 0.0019 1.0 

Pol. 0.9157 0.9998 0.1525 0.8181 0.0841 0.0024 0.9999 

Rbf 0.6884 0.9998 0.2016 1.0 0.1121 0.0014 1.0 

Sig. 0.6109 0.9997 0.0107 0.0126 0.0093 0.0023 0.9998 

1 

Lin. 0.9781 0.9998 0.9999 0.9998 1.0 0.0019 0.0373 

Pol. 0.9157 0.9998 0.9999 0.9998 0.9999 0.0024 0.0841 

Rbf 0.6884 0.9998 0.9999 0.9998 1.0 0.0014 0.1121 

Sig. 0.6109 0.9997 0.9998 0.9998 0.9998 0.0023 0.0093 

 

When working with the SVM as a classifier of 

multiple attacks, using only the RBF kernel, the 

relative amount of correctly discovered attack 

instances is given in Table 9.  

 

 

 

Table 9. Correctly classified attacks as portion of 

the actual attacks in % 

Attack 
Train set 

8 feats. 

Test set 

8 feats. 

Train set 

10 feats. 

Test set 

10 feats. 

0 27.0 26.2 66.5 66.4 

1 71.6 71.7 96.7 96.6 

2 98.9 98.8 99.0 99.0 

3 8.8 10.0 25.8 26.6 

4 94.0 93.9 91.7 91.7 

5 95.0 95.0 97.1 97.1 

6 0.0 0.0 4.2 2.0 

7 22.0 35.7 18.6 35.7 

8 0.0 0.0 0.0 0.0 

9 4.7 5.1 14.6 15.5 

10 96.3 96.2 95.5 95.6 

 

The RBF kernel is used for that purpose, 

because it yields the highest detection rate with 

comparison to the other 3 types of kernels, as shown 

in Tables 4-8. 

The confusion matrices from classifying attacks 

over the test set at 10 and 8 features are depicted in 

Fig. 4. 

 

 
a 

 
b 

 
c 

Fig. 4: Confusion matrix from classification if the 

test set at a – 10 features, b – 8 features, c- color 

legend of the classes 
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Classification efficiency at 10 features is shown 

in Table 10 for the train set. 

 

Table 10. Classification efficiency of SVM over all 

types of attacks at 10 features after full validation 

over the training set 
Cl. AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 0.9992 0.9999 0.6852 0.7068 0.6648 0.0003 0.9999 

1 0.9949 0.9739 0.9255 0.8879 0.9666 0.0634 0.9753 

2 0.9988 0.9895 0.9816 0.9735 0.9898 0.0362 0.9894 

3 0.9993 0.9996 0.4002 0.8970 0.2576 0.0009 0.9999 

4 0.9959 0.9716 0.9451 0.9747 0.9173 0.0690 0.9913 

5 0.9981 0.9895 0.9796 0.9887 0.9706 0.0375 0.9961 

6 0.9994 0.9997 0.0805 1.0 0.0419 0.0006 1.0 

7 0.9999 0.9999 0.2972 0.7333 0.1864 4.66e-5 0.9999 

8 0.9999 0.9999 N/A N/A N/A 2.45e-5 1.0 

9 0.9942 0.9954 0.2381 0.6502 0.1458 0.0115 0.9996 

10 0.9986 0.9930 0.8456 0.7585 0.9553 0.0142 0.9938 

 

Applying the test set as input to the RBF SVM 

classifier at 10 features, we get the results from 

Table 11. 

 

Table 11. Classification efficiency of SVM over all 

types of attacks at 10 features after processing the 

test set 
Cl. AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 0.9992 0.9999 0.6826 0.7029 0.6635 0.0003 0.9999 

1 0.9949 0.9737 0.9252 0.8876 0.9661 0.0637 0.9753 

2 0.9988 0.9895 0.9816 0.9736 0.9898 0.0363 0.9894 

3 0.9975 0.9996 0.4123 0.9195 0.2657 0.0009 0.9999 

4 0.9958 0.9715 0.9448 0.9744 0.9170 0.0692 0.9912 

5 0.9981 0.9895 0.9797 0.9887 0.9708 0.0375 0.9961 

6 0.9994 0.9997 0.0386 1.0 0.0197 0.0006 1.0 

7 0.9999 0.9999 0.5263 1.0 0.3571 3.84e-5 1.0 

8 0.9936 0.9954 0.2511 0.6631 0.1549 0.0115 0.9996 

9 0.9987 0.9930 0.8458 0.7582 0.9564 0.0140 0.9938 

10 0.9986 0.9930 0.8456 0.7585 0.9553 0.0142 0.9938 

 

Using just only the 8 features cause the RBF 

SVM to produce a classification result over the train 

set, as shown in Table 12. 

 

Table 12. Classification efficiency of SVM over all 

types of attacks at 8 features after full validation 

over the training set 
Cl. AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 0.9853 0.9998 0.3816 0.6493 0.2702 0.0005 0.9999 

1 0.9852 0.9386 0.7966 0.8971 0.7163 0.1269 0.9834 

2 0.9970 0.9839 0.9719 0.9558 0.9885 0.0564 0.9820 

3 0.9677 0.9996 0.1569 0.7375 0.0878 0.0021 0.9999 

4 0.9887 0.9366 0.8877 0.8412 0.9395 0.1316 0.9355 

5 0.9965 0.9839 0.9682 0.9870 0.9502 0.0556 0.9956 

6 0.9523 0.9997 N/A N/A N/A 0.0014 1.0 

7 0.9884 0.9999 0.3421 0.7647 0.2203 0.0001 0.9999 

8 0.9909 0.9999 N/A N/A N/A 5.43e-5 1.0 

9 0.9882 0.9952 0.0894 0.7784 0.0474 0.0138 0.9999 

10 0.9960 0.9905 0.8022 0.6874 0.9630 0.0173 0.9910 

 

The test set in the same time at 8 features has 

been classified to an extent, represented by the 

parameters from Table 13. 

 

 

 

 

Table 13. Classification efficiency of SVM over all 

types of attacks at 8 features after processing the test 

set 
Cl. AUC CA F1 

Pre-

cision 
Recall 

Log-

loss 

Specifi-

city 

0 0.9857 0.9998 0.3708 0.6363 0.2616 0.0006 0.9999 

1 0.9851 0.9385 0.7966 0.8964 0.7167 0.1271 0.9832 

2 0.9968 0.9838 0.9718 0.9558 0.9883 0.0574 0.9821 

3 0.9707 0.9996 0.1780 0.8333 0.0996 0.0020 0.9999 

4 0.9886 0.9365 0.8873 0.8410 0.9391 0.1318 0.9356 

5 0.9965 0.9838 0.9682 0.9868 0.9503 0.0562 0.9955 

6 0.9512 0.9997 N/A N/A N/A 0.0015 1.0 

7 0.9878 0.9999 0.5263 1.0 0.3571 0.0001 1.0 

8 0.9882 0.9952 0.0950 0.7922 0.0505 0.0138 0.9999 

9 0.9960 0.9905 0.8008 0.6858 0.9622 0.0173 0.9910 

10 0.9960 0.9905 0.8022 0.6874 0.9630 0.0173 0.9910 

 

 

4 Discussion 
The fastest SVM detector of DDoS attacks in 

terms of learning time is the one, using a Linear 

kernel, followed by that with Polynomial 

kernel, 1.08 times at 10 features (Table 2). Then 

follows the classifier with Sigmoid kernel, 

around 2 times slower than the linear one and 

the last is the implementation with the RBF 

kernel – around 6 times slower. It is worth 

noting that for all detectors, apart the linear one, 

the training time at 8 features is longer than that 

at 10 features – the reduction of the 

information, included in the training set affects 

the number of iterations until reaching the target 

value of the cost function or until using the 

whole designated learning period value. Similar 

are the relations of the time periods during the 

validation phase. The RBF based SVM is the 

slowest one with almost 2 times longer 

classification process than the fastest Linear 

SVM. This tendency is preserved at the testing 

phase as well. With the exception of the 

Sigmoid SVM, for all other implementations it 

takes less time to classify at 8 features, than at 

10, e.g. more than twice a difference for the 

Linear SVM. 
The most accurate SVM detector of DDoS 

attacks is the one with RBF kernel, achieving 35.7 

% at 10 features detection rate for the non-attack 

samples (Table 4) during validation and 33.6% 

during testing. More than 3 times lower is the 

detection rate for the same samples when applying 

only 8 features. All attack samples in the same time 

are being completely correctly discriminated during 

both phases. The latter is also true for the rest of the 

detectors with the Sigmoid SVM detecting just 0.8 

% of the attack samples during training and 0.9% - 

during testing. Only the Linear SVM yields identical 

detection rate when operating over 8 or 10 features, 

which means that if is being applied in practice, it 
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would be preferable to work with 8 features, due to 

the twice faster classification. These results led to 

the conclusion that further testing with classifiers, 

capable of discriminating all 10 types of attacks 

should be done with a SVM, using RBF kernel. All 

observations from above are also supported by the 

evaluating parameters from Tables 5-8. 

Classifying all 10 DDoS attacks (indexes from 1 

to 10) and recognizing non-attack samples in the 

same time (index 0) took the RBF SVM almost 

twice longer, using 8 features rather than 10, during 

training (Table 3). In the same time, 8 feature lead 

to more than twice faster validation with 

comparison to the 10 feature implementation. The 

most accurately spotted attack is DoS UDP flood 

(Table 9), followed by the DDoS UDP flood, DoS 

TCP flood, Service Scan, and so on. The most hard 

to discover attacks are the Data Exfiltration and 

DDoS HTTP flood. The most probable reason for 

this is the considerably smaller number of samples 

for these attacks, present in the training set, 

compared to the amount of samples for the rest 

types of attacks. Nevertheless, the proportion of data 

exchanged during the various tested attacks 

corresponds to real-world scenarios and the 

observed dependency should be taken as inherited 

peculiarity of the single SVM classifier itself. 

Obviously, to get as close as possible detection rate 

for these rarely spot types of attacks, one possible 

direction for future work it would be to construct a 

cascade of classifiers. The variation between the 

number of discovered attacks between the phases of 

training and testing is negligible. When using 8 

features, differences in detection accuracy for some 

of the attacks, compared to that for 10 features, goes 

as high as 3 times, as it is in the case of OS 

Fingerprint, or around 40% for the non-attack 

samples (Table 9). 

The most mismatched non-attack samples, using 

10 features (Fig. 4 a), are recognized as DoS TCP 

flood (25.2%), the DoS TCP attack – with DDoS 

TCP flood (3.0%), DoS UDP flood – with DDoS 

UDP flood (1.0%), DoS HTTP flood – with DDoS 

TCP flood (45.2%), which is with 81.6% higher 

than the correctly found samples, DDoS TCP flood 

– with DoS TCP flood (7.5%), DDoS UDP flood – 

with DoS UDP flood (2.9%), DDoS HTTP flood – 

with DDoS TCP flood (62.1%), close to 60% higher 

than the number of the correctly recognized samples 

for this particular attack, Keylogging – with Service 

Scan (57.1%), OS Fingerprint – with Service Scan 

(71.2%), again serious mismatch rate, and Service 

Scan – with DDoS TCP (2.0%). All this ratios could 

be observed from the confusion matrix after 

classification over the test set, representing the 

proportion of the classified samples by attack from 

the actual number of samples for the same attack, as 

shown in Fig. 4 – for 10 features in Fig. 4 a and for 

8 features – in Fig. 4. b. Using 8 features, lead to 

increase of the proportion of mismatches with closes 

incorrect type of attack, as follows: twice for non-

attack samples, 9 times for the DoS TCP flood, 1.2 

times for the DoS UDP flood, 1.08 times for the 

DoS HTTP flood, 1.5 times decrease for the DDoS 

TCP flood, 1.7 times for the DDoS UDP flood, 1.2 

times decrease for the DDoS HTTP flood, 57.1% 

decrease for the Keylogging, and 1.7 times decrease 

– for the Service Scan (Fig. 4 b). Apart from 

worsening of the classification accuracy for some of 

the attacks, such as the DoS TCP flood or the non-

attack samples, there is also a positive trend for 

other types of attacks, such as the Keylogging. 

Decrease of the information redundancy in the 

training set at 8 features, compared to 10, obviously 

preserves better some of the relations for attacks, 

which have smaller intensity as per the exchanged 

data over the network, such as the Keylogging. It 

would be practical to use this feature set, although 

considerably more inaccurate for attacks with high 

intensity of the generated traffic, for some more rare 

activities, when specifically searching for them in a 

monitored network. All these results are also 

supported by the evaluating parameters, shown in 

Tables 10-13. For some of the attacks with really 

small number of instances in the training and the 

testing set, some of the parameters are hard to 

calculate, as the denominator of the equations for 

them, tends to be very small, almost equal to 0, so 

they are marked I the tables with N/A. 

At the end of the discussion section, we make a 

comparison with another implementation of a binary 

SVM classifier (detector) of DDoS attacks, 

proposed by other authors in [11]. It is tested over 

the same dataset with the same 10 features as in this 

study and it has the cost parameter being put to C = 

1, using a Linear kernel, and having a training time 

limit of 100 000 iterations. The confusion matrices 

for this classifier and the best of our binary SVM 

classifiers (10 features, RBF kernel, 100 000 

iterations limit, C = 1) are shown in Table 14 as 

proportion of the detected samples to all actual of 

that type ones, given in %. 
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Table 14. Confusion matrices of compared SVM 

detectors 
Ours, in % Proposed in [11], in % 

Attack 0 1 Attack 0 1 

0 33.6 66.7 0 100.0 0 

1 0.0 100.0 1 11.63 88.37 

 

One of the advantages of the SVM detector, 

proposed in [11], is the higher detection rate of non-

attack samples, practically 100%. On the other hand, 

our implementation achieves 100% correct 

identification of all attacks, while the SVM from 

[11] achieves 88.37% correct classifications. Other 

evaluating parameters, denoting the detection 

efficiency of both classifiers, are presented in Table 

15. 

 

Table 15. Evaluation parameters of compared SVM 

detectors 
Parameter Ours Proposed in [11] 

Accuracy 0.9999 0.8837 

Precision 0.9998 1 

Recall 0.9999 0.8837 

F1-measure 0.9998 0 

 

Taken on average among both classes – 0 (non-

attack) and 1 (attack), given also the size of the test 

set of close to a million samples, our 

implementation of a SVM detector show better 

performance with the exception of the Precision 

parameter, which is 0.0002 smaller, but this is a 

difference, which makes both classifiers by this 

criterion relatively equal. Nonetheless, more work is 

needed to make the RBF SVM detector more 

efficient in terms of detecting non-attack samples 

better. One of the directions for future work is to try 

a combined type of a classifier, which could achieve 

better accuracy. Another possible path for further 

research is the introduction of a sampling, which 

will increase the number of non-attack samples 

artificially – an interpolation, which will lead to 

equalization of the number of normal traffic samples 

and those from DDoS attacks (floods), which 

always prevail the normal ones and create a 

disbalance, into which the non-attack samples is 

harder to find. 

 

 

5 Conclusion 
In this paper two types of SVM classifiers for DDoS 

attacks are presented – binary and multiclass ones, 

covering 10 type of the most popular malicious 

activities, carried out often with the help of IoT 

botnets. The most accurate detector is using a RBF 

kernel, which is also thought as the most proper 

solution for the multiclass classification. The fastest 

SVM classifier is the Linear one, followed by the 

Polynomial, the Sigmoid and the RBF at the end, 

which holds true for both most of the cases of 

training and testing. Training with 8 features turns 

out slower in most of the cases than with 10 

features, but testing may be significantly faster with 

8 features for some of the kernels, used in SVM. In 

the multiclass classification, the 10-feature set leads 

to observable higher accuracy, than the 8-feature 

set. This effect is less expressed in the binary 

classification, but still holds true as a general trend. 

Given achieved accuracies, both the binary and 

multiclass SVMs, presented in this study in thier 

optimal configurations, are thought to be applicable 

in real-world monitoring systems against DDoS 

attacks. Still, more work is needed, especially into 

increasing the accuracy of the binary SVM in to 

discovering non-attack samples over the background 

of ongoing DDoS attack with its characteristic high 

intensity. Various strategies could be applied, which 

include cascade of classifiers, intelligent sampling 

of the training set and others. All these will be 

considered during the future work on the problem. 
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