
Random Forest Detector and Classifier of Multiple IoT-based DDoS 

Attacks  
 

VANYA IVANOVA, TASHO TASHEV, IVO DRAGANOV 

PhD School, French Faculty of Electrical Engineering 

Technical University of Sofia 

8 Kliment Ohridski Blvd., 1756 Sofia 

BULGARIA 
 

Abstract: - In this paper two new models for Random Forest (RF) classifiers are presented. The first one 

discriminates Distributed Denial of Service (DDoS) network attacks from normal IP (Internet Protocol) traffic 

and the second one classifies 10 types of attacks. General optimization procedures are proposed based on the 

parameters of the RF classifiers. The observed DDoS attacks are typical for botnets, comprised of IoT (Internet 

of Things) devices. Bot-master plays central role into coordinating the bots. The explicit aim is either resource 

exhaustion of the targeted machine or bandwidth saturation of the supporting channels to it. Both activities 

render the legitimate services unavailable. The detection process has an accuracy of 0.9999. The classification 

process deviates between 0.9992 and 0.9999. Processing times allow the proposed approach to be used in real-

world applications. 
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1 Introduction 
Information services, both in the Software Defined 

Networks (SDN) and in Cloud Environment, as well 

as in general purpose networks, has been deeply 

affected by Distributed Denial of Service (DDoS) 

attacks over the years [1]. In many instances of such 

attacks IoT devices have been engaged as bots, or 

malicious nodes, to carry out flooding over the 

target machine over multiple paths and thus render 

the offered services inaccessible. Researchers have 

been trying to limit their negative effect by 

introducing various predictors, analyzing the 

network traffic, using high level features and 

applying different techniques from the machine 

learning field [2].  

Random Forest (RF) is one of the algorithms, 

extensively used for this particular task. Hypertext 

Transfer Protocol (HTTP) DDoS attacks, as one of 

the most common ones, is an object of study of 

Idhammad et al. [3], where the Low and Slow, as 

well as the typical flood attack, have been 

considered. Combining Information Theoretic 

Entropy with RF, the authors developed detection 

system for the cloud environment. Classification 

accuracy is being reported as high as 99.54%, with 

the False Positive Rate (FPR) as low as 0.4% and 

processing time of about 18.5 sec. Another example 

of the application of the RF algorithm is the 

detection of Domain Name System (DNS) DDoS 

attacks [4]. Traffic classification within this study 

led to 99.2% accuracy and the developed model is 

considered applicable over large-scale query flows. 

Execution time is also thought to allow real-time 

operation. As alternative approach to the direct 

discovery of the DDoS attack itself, Lu et al. [5] 

propose the detection of the Command and Control 

(C&C) session detection by application of RF. This 

technique allows to early spot a sign of forthcoming 

DDoS attack by preparing the bots to accomplish it 

by exchanging data with them from the so called 

C&C server. A feature vector, comprised of 55 

elements from the network traffic, is feeding the 

input of an RF classifier, which not only achieves 

99.05% classification accuracy and just 1.23% false 

alarms rate, but also is capable of better high-

dimensional training and finds the importance of the 

various features. It turns out that this classifier is 

more efficient as a solution to this problem than the 

Support Vector Machine (SVM) and the Naïve 

Bayes (NB). Aiming specifically on the IoT-based 

DDoS attacks, Farukee et al. [6] apply the RF as a 

feature selector, while also using the deep learning 

as a major technique for classification. 

Classification accuracy of 99.63% is achieved for 

the 1D-CNN (Convolutional Neural Network) and 

99.58% - for the MLP (Multilayer Perceptron) over 

the test set with network samples, consisting the 

attacks. Another attempt to propose an efficient 
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measure against the pernicious influence of C&C 

mechanism over the network availability when 

saturated with unwanted traffic by the DDoS attack 

is presented in [7] by Pande et al. They also 

consider issues, related to confidentiality and 

integrity of data being exchanged over the network 

in such situations. Discrimination of normal vs. 

attack samples tends to be successful at a rate of 

99.76%. 

Behavioral analysis of the network flows are 

being done also by comparing the RF algorithm 

with the Dense Neural Networks [8]. It is shown 

that, although they could perform almost equally 

well, the RF classifier demands less samples, 

achieving satisfactory accuracy. RF reaches a 

Precision between 0.87 and 1.0, Recall between 

0.56 and 1.00 and F1-score between 0.68 and 1.00 

over 7 types of anomalies, coming from DDoS 

attacks. In [9] it is demonstrated that the Random 

Forest classifier takes the leading position under an 

unified scale with a ranking of 8.50, followed by the 

Decision Tree algorithm with 7.25, k-NN (k-Nearest 

Neighbors) – with 6.75, the MLP – with 2.75 and 

lastly the Naïve Bayes – with 2.25, when compared 

by efficiency of solving the DDoS detection task. 

The overall accuracy of the RF is 98.9%, with a 

Precision of 99.9 for the normal samples and 99.6% 

for the DDoS ones. Experimentation with a more 

diverse dataset [10], including samples from 11 

DDoS attacks, reveal slightly lower classification 

efficiency for the RF algorithm, but still it takes the 

leading position in front of Naïve Bayes and 

Logistic Regression. It gets Precision of 0.77, 0.56 

for Recall and 0.62 – for the F1-measure. Only the 

ID3 algorithm achieved slightly higher values – 

0.78, 0.65 and 0.69, respectively. 

Early detection of DDoS attacks and their further 

mitigation from a practical standpoint has been 

proposed in [11]. A Ryu framework and the RF 

algorithm are the base of an implementation, used 

for SDNs. Taking into account the flow entries, the 

RF classifier distinguishes the normal and attack 

packets and for the latter additional rules are 

imposed to the switches in order to limit their flow. 

Average accuracy of 98.38% is being reported with 

an average detection time of 36 ms. The mitigation 

system itself needs 1179 ms in order to lend an 

effect of reducing the attack, during which process a 

sparing of 44.9% of usage of the targeted machine 

CPU has been measured. The nmeta2 traffic 

classification platform is another example of a tool 

for SDN based study of the efficiency of various 

machine learning algorithms towards the discovery 

of DDoS attacks [12]. With its help the following 

F1-measures are being registered over a network 

dataset, containing 8 features: RF – 0.9548, k-NN – 

0.9484, and SVM – 0.9311. RF and the k-NN turns 

out to be very close in initialization times with the 

SVM far away behind them, more than 74 times 

slower. In another comparison [13], the RF shows 

almost equal Precision with the NB and MLP about 

the detection of normal traffic and UDP flood 

(between 0.95 and 0.99). It was less effective in 

discovering Smurf attacks (just above 0.5), 

compared to the MLP (close to 1.0), but close to it 

when spotting SIDDOS (SQL (Structured Query 

Language) Injection DDoS) and HTTP-FLOOD 

(around 0.85 and 0.93, respectively). In the latter 3 

cases, the NB has significantly lower Precision. 

With the exception of the Smurf attacks, all 3 

classifiers show similar Recall, varying between 0.9 

(for the SIDDOS) and almost 1.0 (for the normal 

traffic). For the Smurf attacks the Recall for RF and 

MLP are as low as 0.3 with the NB going down to 

almost 0. Obviously, extending the range of 

detectable attacks would require a combined type of 

a classifier, rather than a single one, undergoing 

prolonged training. Blockchain IoT based systems 

are also affected by the DDoS attacks and fog 

computing has been applied in order to limit their 

influence on the basis of distributed framework [14]. 

Threats on the smart contracts, as revealed in 2016 

and 2017 with massive types of decentralized 

attacks, firmly point out the need of protection of 

this systems as well, which currently does not exist 

as a complete solution. RF and XGBoost are 

thought to be two of the perspective machine 

learning techniques for discovering of such threats. 

Effectiveness of the protection process is being 

sought into the introduction of the interplanetary file 

system as addition. Fog computing is the mean, 

which Kumar et al. [14], propose for implementing 

a distributed framework, incorporating these 2 

mechanisms. RF achieves detection rate as high as 

99.99%, using 10 features, aggregated from 

simulated network data flows.  Reducing the 

computational burden of the discovery process of 

DDoS attacks is another aspect of the research in 

this field, which plays a crucial role into the 

practical application of developed methods. In [15], 

Ustebay et al. propose a reduction of the features by 

a recursion, using the RF algorithm and also a deep 

learning technique, while constructing an Intrusion 

Detection System (IDS). The introduction of 

importance value of the features ease this process 

and leads to intrusion detection of 91% from the 

generated features, being further processed by a 

Deep MLP (DMLP). 

The RF algorithm is being implemented in 

enhanced version in order to get a mobile 
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application for detecting DDoS attacks as shown by 

Prasad et al. [16]. The authors use that technique to 

get in-app notifications about forthcoming attacks 

and to block certain IP addresses, posing a threat. 

Continuous traffic analysis by the RF algorithm led 

to 95.19% Accuracy with 95.10% Precision and 

94.47% F1-measure. The accuracy of the k-NN and 

the Decision Tree (DT) algorithms in the same time 

is 87,34% and 93.83%, respectively. Subsequent 

tuning of the RF algorithm leads to 97% Accuracy, 

using 15 features from 80 initially aggregated from 

the network flow. Another path towards obtaining 

higher levels of Accuracy into detecting DDoS 

attacks is proposed by Nandi et al. [17] by the 

introduction of a hybrid feature selection approach. 

It includes several criteria, related to various 

statistical significance parameters (Information 

Gain, ReliefF and others) based on contained 

information in the features, and then applying few 

classifiers. Using this hybridly selected features the 

RF algorithm achieves 99.86% Detection Rate, 

followed by the J48 algorithm with 99.79% and then 

the Decision Table algorithm with 99.48%. 

Multiagent Intrusion Detection Systems (IDS) are 

another approach against the spreading of DDoS 

attacks, used for securing IoT networks in particular 

[18]. Combining J48 algorithm with multidirectional 

selection of features, yielding the highest 

Information Gain, leads to especially efficient 

Detection Rate of such attacks. When varying the 

number of features between 15 and 56, that 

combination reaches Detection Rate of up to 0.998, 

which is also reached by the RF algorithm in most 

of the cases, and followed by the NB algorithm with 

as high result as 0.965. The most informative 

selection of features is also primary aim of the study 

of Gaur and Kumar [19]. They use chi-square, Extra 

Tree and ANOVA methods for feature selecting, 

which are then passed to the RF, DT, k-NN and the 

XGBoost classifiers. Feature reduction rate has been 

reported as 82.5% and leading to accuracy of 

98.34% for the XGBoost with ANOVA as selection 

criterion. The data samples are gathered from 

attacks aimed at IoT devices. Gaussian Mixture 

Models (GMM) and Universal Background Model 

(UBM) are relatively new approaches in the field of 

DDoS attacks detection, successfully applied by 

Osorio et al. [20]. RF is also tried over the same, 

real-world, dataset. It has an accuracy varying 

between 85.13% and 96.7%, while the UBM has it 

between 60% and 77.5%, and the GMM – 80.3% on 

average. 

In this study, the main aim is to find the optimal 

configuration of the RF algorithm in its basic form, 

applied over freely available and commonly used 

IoT-Bot dataset [21], once as a detector of IoT-

based DDoS attacks and secondly – as a classifier 

for each type, out of 10 attack types, so it could be 

further used either as a standalone implementation , 

or as a part of combined classifier. Experimentation 

has been done over the full set of 10 features, 

originally selected in the dataset, and once more 

over a reduced set of 8 of them, corresponding to 

the most informative content of the dataset to the 

dominant part of the attacks.  

In the Section 2 of the paper a brief description 

of the dataset is given with the types of attacks in it, 

associated features, and then their mutual 

distribution by attack is presented, and also 

rearranged in space using the PCA [22] 

transformation method. Then, description of the RF 

algorithm from mathematical standpoint is 

presented, and finally in this section an optimization 

procedure of finding the optimal parameters of the 

RF classifier is given. In Section 3 all experimental 

results are given, being discussed later in Section 4. 

Section 5 contains the conclusions over the main 

results from this study. 

 

 

2 Dataset and Classifier Description 
 

2.1 Applied Dataset Description 
The dataset [21], used within this study, contains 

records of network connections, established for both 

typical data exchange and for carrying out IoT-

based DDoS attacks from a botnet towards victim 

machines. It is called Bot_IoT and is publicly 

available. The latter are Windows 7 workstation, 

Ubuntu Mobile terminal, an Ubuntu Server with 

FTP, HTTP, SSH, DNS and E-mail services running 

on it, and also a Metasploitable. The bots are 4 Kali 

machines. All victims and bots are connected in 

internal network with an address space 

192.168.100.* through a Local Area Network 

(LAN) interface. Ubuntu tap machine records all the 

network traffic for further study.  

In Table 1 the relative portion of the normal 

traffic connections, being totally 9543, is presented. 

 

Table 1. Non-malicious data transfer connections in 

the Bot-IoT dataset, [21] 
Protocol Relative portion, % 

UDP 75.71 

TCP 18.34 

ARP 4.90 

IPv6-ICMP 0.92 

ICMP 0.09 

IGMP 0.02 

RARP 0.01 
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The typical data, being transferred between the 

IoT devices, working in normal mode and the 

server,  include information and control signals from 

smart fridge, a garage door, weather station, 

adjustable lights, and intelligent thermostat. 

The malicious traffic, a result from operating the 

bots, is summarized in Table 2 as statistics of the 

attacks, 73360900 in number as a whole. 

 

Table 2. Attacks as a relative portion from all 

attacks in %, [21] 

Reconnaissance 
Service scanning (10) 1.99 

OS Fingerprinting (9) 0.49 

Denial of 

Service 

DDoS 

TCP (4) 26.65 

UDP (5) 25.85 

HTTP (6) 0.03 

DoS 

TCP (1) 16.79 

UDP (2) 28.16 

HTTP (3) 0.04 

Information 

Theft 

Keylogging (7) 0.0002 

Data Theft (8) 0.0002 

 

There is an excerpt from the whole dataset, used 

in our experimentation, that includes 2934817 

samples as a training set, of which 370 relate to 

normal traffic, and 733705 samples in a test set with 

107 instances of ordinary data transfer. These are all 

10-feature vectors with 11th – categorical target 

variable, which denotes the type of attack as a 

number (shown in brackets in Table 2). Normal 

traffic instances are indexed with 0. The features 

and their distribution is described in Section 2.2.  

 

2.2 Dataset Features and Their Distribution 
Each sample from the dataset contains the following 

10 features as numeric values: seq (sequence) – the 

sequence identifier of a record, stddev (standard 

deviation) – samples’ standard deviation after 

aggregation, N_IN_Conn_P_SrcIP (Number of 

Incoming Connection per Source IP address) – 

count of the inwards connections for the source IP 

address, min – minimum value for the time of 

existence of the registered records, state_number – 

feature state, indexed by a dedicated number, mean 

– mean period, taken by a connection for a 

particular record to be generated, 

N_IN_Conn_P_DstIP (Number of Incoming 

Connection per Destination IP address) – the count 

of inwards connections for the destination IP 

address, drate (destination rate) – destination to 

source packets rate, srate (source rate) – source to 

destination packets rate,  max (maximum) – the time 

taken by the connections, for which the most 

prolonged records exist. 

The initial distribution of the features from the 

dataset by a type of attack, projected on a 2D space 

with equidistant position of the 10 components, is 

given in Fig. 1 a. Most of the samples from the 

various attacks are being overlapped and not clearly 

separable in that projection. In order to get the most 

informative components in front of the least 

significant one, the Principal Component Analysis 

(PCA) [22] has been applied over the input set of 

data. The main stages include the following 

transformations – from the input data V, arranged in 

a matrix form, separate rows v(n), processed as 

vectors, are being projected to new vectors s(n) = (s1, 

s2, …, sM)(n), using q-dimensional vectors of 

coefficients of proportion p(m) = (p1, p2, …, pq)(m), 

where m = 1, 2, …, M with the M showing the size 

of the set, and n = 1, 2, …, N – with the N – the 

number of principle components. The overall 

transformation is in the form [22]: 

 𝑠𝑚(𝑛) = 𝒗(𝑛)𝒑(𝑚). (1) 

The components s1, s2, ..., sM should have 

projections of values from the input dataset over 

them with maximum variance after the 

transformation. This condition could be met, given 

[22]: 

 𝒑(1) = 𝑎𝑟𝑔𝑚𝑎𝑥
‖𝒑‖=1

{∑ (𝑠1)(𝑛)
2

𝑛 } =

argmax
‖𝒑‖=1

{∑ (𝒗(𝑛). 𝒑)
2

𝑛 }. (2) 

Equation (2) includes the total variation of the 

newly projected n components si, denotes now as 

v(i), over the space, defined by the unit vectors p, 

which yields maximal possible deviation for them.

   

For all subsequent components, it is true [22]: 

 𝑽̂𝑚 = 𝑽 − ∑ 𝑽𝒑(𝑖)𝒑(𝑖)
𝑇𝑚−1

𝑖=1 . (3) 

The final components of proportion, then, would 

be [22]: 

 𝒑(𝑚) = 𝑎𝑟𝑔max {
𝒑𝑇𝑿𝑚

𝑇 𝑿𝑚𝒑

𝒑𝑇𝒑
}. (4) 

The result of applying the PCA could be seen in 

Fig. 1 b. 
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a 

Fig. 1: Training samples, projected on 2D space – a, 

and after PCA transformation – b, with color legend 

– c 
 

 

 
b 

 
c 

Fig. 1 (contn’d): Training samples, projected on 2D 

space – a, and after PCA transformation – b, with 

color legend – c 

 

After rotating all initial axes, corresponding to 

the various features to the designated angles and 

scaling them with regard to the total variance of the 

samples, projected over them, it is clearly seen that 

the seq transformed vector is the smallest one and 

also that the N_IN_Conn_P_SrcIP and the 

N_IN_Conn_P_DstIP are very close both in 

direction and in magnitude (Fig. 1 b). This is the 

reason to select as a second feature set for testing in 

this study, apart from the full set of 10 features - 

seq, stddev, N_IN_Conn_P_SrcIP, min, 

state_number, mean, N_IN_Conn_P_DstIP, drate, 

srate, max, only 8 of them – the most expressed 

components – stddev, min, state_number, mean, 

N_IN_Conn_P_DstIP, drate, srate, max. The first 2 

Principal Components (PC1 and PC2) by features 

are given with their magnitudes in Table 3. 

 

Table 3. First two principal components magnitudes 

by features 
Feature PC1 PC2 Feature PC1 PC2 

stddev -0.30 0.15 min -0.32 -0.1 

mean -0.55 0.02 state_number -0.42 0.15 

max -0.55 0.08 N_IN_DstIP -0.1 -0.69 

seq -0.07 -0.10 Drate 0.01 0.01 

N_IN_SrcIP -0.09 -0.67 srate 0.006 0.01 

 

The relation of the proportion of the variance to 

the number of principal components, being 

preserved for further processing during the 

classification process, when using just 8 features, is 

shown in Fig. 2. The cumulative variance is 0.985 

and the component variance is just 0.053. More than 

98% of the energy, and thus the information, has 

been preserved in the remaining components of the 

reduced in dimensionality dataset. 

 

 
Fig. 2: Proportion of the variance of input data as a 

function of the number of principal components, 

with a fixed excerpt at 8 components 
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2.3 Random Forest Operation Principle 
The Random Forest (RF) algorithm [23, 24] is a 

supervised learning algorithm, which is used for 

both classification and regression analysis. Each RF 

has been built by Decision trees (DT) and with the 

growth of the number of trees, that is more dense 

becomes the RF, the more robust is the classifier. 

Subsets of training samples are used to generate the 

DTs and later predictions are being made by every 

DT, while the final decision is taken by majority 

voting. This is an ensemble type of a classifier. Its 

operation could be represented as 4-step process: 

starting with random samples from a training set, 

followed by building a tree for each sample, and 

making prediction from each tree for getting a 

decision with a voting among all predictions for 

every sample, and at the very end the outcomes, 

which gathered the most votes, are being selected as 

a final result from the prediction. 

Ensemble of classifiers could be defined as c1(v), 

c2(v), …, ck(v), where the input set of samples v is 

drawn randomly from the entire training set C,V 

[24]. V is just the set of training samples, while the 

complement to C is comprised from the validation 

and test subsets. The class of a particular attack is 

denoted with C. Then, a margin function could be 

proposed, according to [24]: 

 

 ℳ(𝑽,𝐶) = 〈ℐ(𝑐𝑘(𝑽) = 𝐶〉 − 𝑚𝑎𝑥𝑗≠𝐶〈ℐ(𝑐𝑘(𝑽) =

𝑗)〉,  (5) 

 

where ℐ denotes an indicator function. The increase 

of the margin corresponds to the overall confidence 

of classification [24]. The error in the generalization 

process of the RF algorithm could then be expressed 

as [24]: 

 

 ℰ = 𝑃𝑽,𝐶(ℳ(𝑽, 𝐶) < 0), (6) 

 

where ck(V) = c(V,θk). When the number of trees is 

ever growing, then the following relation holds ever 

stronger [24]: 

 

𝑃𝑽,𝐶(𝑃𝜃(𝑐(𝑽, 𝜃) = 𝐶) − 𝑚𝑎𝑥𝑗≠𝐶𝑃𝜃(𝑐(𝑽, 𝜃) = 𝑗) <

0)   (7) 

 

and this is the reason for a lack of overfitting in the 

execution of the algorithm. 

It has been proven [24], that the error of 

generalization of the classifier could go up as high 

as: 

 

 ℰ∗ ≤ 𝜌̅(1 − 𝑠2)/𝑠2, (8) 

 

where 𝑠 = 〈ℳ(𝑽, 𝐶)〉𝑽,𝐶 is the strength of the 

classifier and 𝜌̅ – the average magnitude of the 

correlation coefficient among the different 

realizations of the raw margin function of the RF 

implementation.  For a multiclass tasks, solved by 

the RF, the following relation could be used as a 

base for further estimation of the possible accuracy, 

as shown in [24]: 

 

 ℰ∗ ≤ ∑ 𝜎2{𝑃𝜃(𝑐(𝑽, 𝜃) = 𝐶) − 𝑃𝜃(𝑐(𝑽, 𝜃) = 𝑗)}/𝑗

𝑠𝑗
2,   (9) 

 

where 𝜎2(.) is the variance operator, and in the same 

time c/s2 = 𝜌̅/s2. There are certain simplifications of 

(9) in a 2-class tasks (binary classifier, or also 

detector), but both cases are of interest to us in this 

study. In the first case, we classify testing samples 

into attack and non-attack ones, and in the second 

case – to non-attack samples and 10 different types 

of samples, corresponding to 10 different attacks as 

ordered in Table 2. 

Some of the major benefits of using the RF 

algorithm is that there is no overfitting, the overall 

good accuracy over big sets of data (higher than that 

for a single tree), the smaller variance in the results, 

the lack of necessity to have prior scaling of input 

variables and the relatively good accuracy, given 

missing data samples for particular outcomes. 

On the other hand, RF are slower to build than 

separate Decision Trees, and it is harder to interpret 

the final structure of the forest, compared to DTs. 

The prediction, being made with RF, is a longer 

process with regard to the prediction, made by other 

algorithms. 

 

2.4 Optimization Procedure for the Random 

Forest Algorithm 
There are two tunable parameters in our 

implementation of the RF algorithm, classifying 

DDoS attakcs from aggregated network samples 

(Fig. 3). The first one is the number of trees t, which 

typically is around 10 [25], and in our study it varies 

between 1 and 11. The other parameter is the 

minimum number of subsets s, which should not be 

split further during training and testing. This 

variable we tune from 3 to 7, which range as we 

shall see in Section 3 causes some actual change of 

the detection rate of various attacks. All testing has 

been done with 10 and 8 feature sets, for which 

purpose the parameter f is included in the algorithm 

chart from below. 
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Fig. 3: RF optimization procedure 

 

For each triplet of values <f, t, s> a training, with 

complete validation over the training set, followed 

by a testing with the test set is done. Once, the mode 

is detecting DDoS attacks vs. normal traffic 

discovery and secondly – classifying all present 

attacks in the dataset with clear distinction of the 

non-attack samples. The confusion matrices from 

validation and test phase are being calculated and 

compared later for finding the optimal set of 

parameters for both modes of operation of the RF 

algorithm – fopt, topt,  and sopt. 

The following parameters are used for evaluating 

the efficiency of the classifiers in the two modes of 

operation – Area Under the Curve (Receiver 

Operating Characteristic) – AUC, Classification 

Accuracy (CA), F1-measure, Precision, Recall, Log-

loss, Specificity [26]. Training and testing time over 

the train set and test set, respectively, for each 

realization of the RF algorithm, and the confusion 

matrix for every case are the other set of parameters, 

found for comparative analysis. 

 

 

3 Experimental Results 
The hardware setup, used during testing is described 

in Table 4. The software for implementation of the 

RF algorithm is Orange v. 3.28, running over 64-bit 

MS Windows Professional 10. Orange is freely 

redistributable software. It allows for visual 

programming and ease of use, which are the main 

factors for selecting it as a working environment. 

One of its drawbacks is the inability to introduce 

changes in particular classification function without 

recompiling the whole application. 

 

Table 4. Hardware test platform 
CPU Frequency CPU cache RAM HDD 

Xeon 

E5-

1620 

3.5 GHz 

(4 

cores) 

L1 L2 L3 
64 

GB 

2 TB 

7200 

rpm 

256 

kB 

1 

MB 

10 

MB 

 

Running the optimization procedure, proposed in 

Section 2.4 (Fig. 3), led to the results, presented in 

Fig. 4 as per the number of trees tried, when 

performing the detection process (binary 

classification).  

 

 
Fig. 4: Detection rate of DDoS attacks of the 

number of trees 

 

The detection rate of the attacks remains constant 

and almost equal to 100% in virtually all cases, 

when the number of trees is varied between 1 and 

11. In the same time, there is a peak at 10 trees, 

reaching detection rate of around 94% for the non-

attack samples. Because of that, topt = 10 for all 

further experiments. 

The dependency of the detection rate as a 

function of the minimal number of subsets to split 

(Fig. 5) offers a bit different picture to that of the 

total number of trees as independent parameter. 

Again, the detection rate is constant and almost 

equal to 100% in virtually all cases, but the success 

into detecting the non-attack samples goes into a 

saturation level for the interval between 4 and 6 

subsets – close to 94%. Prior and after that interval, 

there are drops in the detection rate, going down to 

almost 90%. A selection has been made in the center 

of that saturation interval, that is sopt = 5, which is 

preferred for further testing in the rest of the 

experiments. 
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Fig. 5: Detection rate of DDoS attacks of the 

number of subsets 
 

Detecting DDoS attacks regardless of their type 

and discriminating them from the non-attack 

samples, when applying all 10 features, leads to the 

evaluating parameters, given in Table 5. The Class 

(Cl.) labels of 0 and 1 correspond to normal and 

attack malicious traffic, respectively. Average 

performance has been also calculated for both 

classes, denoted with Av. All parameters are found 

from validation over the complete train set (Train) 

and from testing over the complete test set (Test). 
 

Table 5: DDoS detection efficiency using 10 

features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
ra

in
 0 1.0000 0.9999 0.9973 0.9946 1.0000 1.5494 0.9999 

1 1.0000 0.9999 0.9999 1.0000 0.9999 1.5494 1.0000 

Av. 1.0000 0.9999 0.9999 0.9999 0.9999 1.5494 0.9999 

T
es

t 0 0.9999 0.9999 0.9615 0.9901 0.9346 3.5837 0.9999 

1 0.9999 0.9999 0.9999 0.9999 0.9999 3.5837 0.9346 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 3.5837 0.9346 

 

Evaluating parameters with their values when 

applying the RF detector with only 8 features, as 

described in Section 2.2, are given in Table 6.  
 

Table 6: DDoS detection efficiency using 8 features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
ra

in
 0 0.9999 0.9999 0.9850 0.9918 0.9784 1.6839 0.9999 

1 0.9999 0.9999 0.9999 0.9999 0.9999 1.6839 0.9784 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 1.6839 0.9784 

T
es

t 0 0.9999 0.9999 0.9717 0.9810 0.9626 3.1653 0.9999 

1 0.9999 0.9999 0.9999 0.9999 0.9999 3.1653 0.9626 

Av. 0.9999 0.9999 0.9999 0.9999 0.9999 3.1653 0.9626 

 

The confusion matrices from detecting attacks 

over the test set, using 10 and 8 features are 

graphically presented in Fig. 6 a and b, respectively. 

 

 

 a b 

 

Fig. 6: Confusion matrices from the test set of 

detecting DDoS attacks at a – 10 features, b – 8 

features 
 

After carrying out multiclass discrimination, that 

is full classification over 10 types of attacks 

(indexes 1-10 as described in Table 2) and non-

attack instances (index 0), the result when validating 

over the train set is visible in Table 7. That 

experiment has been done for 10 features. The class 

category, as in the detector case, is shortly denoted 

here with the Cl. abbreviation as well (for 0-10). 

 

Table 7. DDoS classification efficiency from full 

validation using 10 features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
ra

in
in

g
 

0 0.9999 0.9999 0.9959 0.9919 1.0000 1.6509 0.9999 

1 0.9999 0.9999 0.9999 0.9999 0.9999 2.9639 0.9999 

2 0.9999 0.9999 0.9999 0.9999 0.9999 1.0465 0.9999 

3 0.9999 0.9999 0.9996 0.9992 1.0000 1.1980 0.9999 

4 0.9999 0.9999 0.9999 0.9999 0.9999 2.9664 0.9999 

5 0.9999 0.9999 0.9999 0.9999 0.9999 0.5259 0.9999 

6 1.0000 0.9999 0.9994 1.0000 0.9987 0.8330 1.0000 

7 0.9999 0.9999 0.9915 1.0000 0.9831 0.4201 1.0000 

8 1.0000 1.0000 1.0000 1.0000 1.0000 0.1726 1.0000 

9 0.9999 0.9998 0.9821 0.9820 0.9822 78.406 0.9999 

10 0.9999 0.9998 0.9956 0.9957 0.9956 78.389 0.9999 

Av. 0.9999 0.9998 0.9998 0.9998 0.9998 84.585 0.9999 

 

The next experiment is realized with 

classification of the test samples (from the test set) 

of the same RF model, using 10 features, after its 

training over the larger train set, and the resulting 

values of the evaluation parameters are presented in 

Table 8.  

Also, in both Table 7 and Table 8, the average 

values of all parameters – from AUC to Specificity 

are found and shown in the last row of the tables, 

denoted with the abbreviation of Av. 

 

Table 8. DDoS classification efficiency over 

unknown samples using 10 features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
es

ti
n
g

 

0 0.9999 0.9999 0.9423 0.9703 0.9159 4.8651 0.9999 

1 0.9999 0.9999 0.9999 0.9999 0.9999 15.715 0.9999 

2 0.9999 0.9999 0.9999 0.9999 0.9999 2.8318 0.9999 

3 0.9999 0.9999 0.9901 0.9836 0.9967 2.5862 0.9999 

4 0.9999 0.9999 0.9999 0.9999 0.9999 20.388 0.9999 

5 0.9999 0.9999 0.9999 0.9999 0.9999 1.4053 0.9999 

6 0.9975 0.9999 0.9950 1.0000 0.9901 6.5501 1.0000 

7 0.9999 0.9999 0.9630 1.0000 0.9286 0.6696 1.0000 

8 0.9971 0.9992 0.9230 0.9339 0.9125 295.77 0.9997 

9 0.9997 0.9992 0.9808 0.9779 0.9838 297.33 0.9995 

10 0.9999 0.9998 0.9956 0.9957 0.9956 78.389 0.9999 

Av. 0.9994 0.9992 0.9992 0.9992 0.9992 329.93 0.9999 
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In Table 9 the results from validation with the 

full train set are given. 

 

Table 9. DDoS classification efficiency from full 

validation using 8 features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
ra

in
in

g
 

0 0.9999 0.9999 0.9893 0.9788 1.0000 1.8002 0.9999 

1 0.9999 0.9992 0.9977 0.9971 0.9982 152.82 0.9994 

2 0.9999 0.9999 0.9999 0.9999 0.9999 1.2414 0.9999 

3 0.9999 0.9999 0.9992 1.0000 0.9983 1.9361 1.0000 

4 0.9999 0.9990 0.9981 0.9981 0.9982 270.42 0.9993 

5 0.9999 0.9999 0.9999 0.9999 0.9999 0.6737 0.9999 

6 0.9999 0.9999 0.9994 1.0000 0.9987 1.7368 1.0000 

7 0.9999 0.9999 0.9508 0.9206 0.9831 0.9243 0.9999 

8 0.9999 1.0000 1.0000 1.0000 1.0000 0.2020 1.0000 

9 0.9974 0.9959 0.4248 0.6688 0.3112 792.74 0.9992 

10 0.9994 0.9959 0.9037 0.8553 0.9579 778.18 0.9967 

Av. 0.9979 0.9950 0.9944 0.9945 0.9950 1009.0 0.9996 

 

In Table 10 are presented the values of 

evaluating parameters when classifying the test set 

with 8 features. 

 

Table 10. DDoS classification efficiency over 

unknown samples using 8 features 

Set Cl. AUC CA F1 
Pre-

cision 
Recall 

Log-

loss, 

.10-5 

Specifi-

city 

T
es

ti
n
g

 

0 0.9999 0.9999 0.9528 0.9619 0.9439 4.8993 0.9999 

1 0.9998 0.9988 0.9966 0.9962 0.9969 510.33 0.9992 

2 0.9999 0.9999 0.9999 0.9999 0.9999 2.7224 0.9999 

3 0.9999 0.9999 0.9901 0.9868 0.9934 3.8869 0.9999 

4 0.9998 0.9986 0.9975 0.9973 0.9976 628.37 0.9990 

5 0.9999 0.9999 0.9999 0.9999 0.9999 1.9314 0.9999 

6 0.9951 0.9999 0.9876 0.9950 0.9803 12.708 0.9999 

7 0.9643 0.9999 0.9231 1.0000 0.8571 5.8171 1.0000 

8 0.9756 0.9952 0.3475 0.5373 0.2568 1614.0 0.9989 

9 0.9987 0.9953 0.8873 0.8397 0.9405 1603.5 0.9964 

10 0.9994 0.9959 0.9037 0.8553 0.9579 778.18 0.9967 

Av. 0.9938 0.9939 0.9933 0.9932 0.9939 469.67 0.9995 

 

Execution (processing) times are being measured 

both during the train and the test phases for both sets 

of features – 10 and 8 in number (Table 11). Testing 

is split in 2 parts. The first one is the validation over 

the complete training set after the training itself, and 

the second one is the  
 

Table 11. Proposed RF classifiers processing times 

RF mode 
Features 

number 

Training 

time, s 

Validation 

time, s 

Testing 

time, s 

Detection 
8 179.94 15.00 6.21 

10 335.88 31.24 7.87 

Classification 
8 311.35 54.94 13.63 

10 399.77 55.14 12.69 

 

The Confusion Matrices from conducting the 

testing phase with just unknown to the RF samples 

are visualized in Fig. 7 for 10 features and in Fig. 8 

– for 8 features. 

The indexes of attacks are over the horizontal 

and vertical first series and inside the matrices are 

the absolute number of classified instances of 

particular type. Below and to the right of each 

matrix are the total number of attacks by type being 

predicted (below) and the actual one (on the right 

side).  

 

 

 
Fig. 7: Confusion matrices from the test set of classifying DDoS attacks using 10 features 

 

Comparison with comments between the 

resulting matrices could be found in Section 4, 

where a discussion has been made. The total number 

of test instances is in the bottom-right corner. 
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Fig. 8: Confusion matrices from the test set of classifying DDoS attacks using 8 features 

 

4 Discussion 
Below is given the relation between observations 

from Section 3 regarding the reduced combined set 

of 8 features and the performance of the classifier. 

Then, it is compared to the performance when using 

the full set of 10 features. 

The first observation of the behavior of the RF 

DDoS attack detector is related to the slight 

difference in performance between discriminating 

the non-attack samples and attacks ones with a 

difference in the F1-measure of around 0.0026 

during validation (Table 5). During testing this 

difference gets higher – around 0.0384. With the 

exception of the slight variation of AUC and some 

other parameters, the first of which is 0.0001 higher 

during training, compared to testing, most of the 

other parameters are relatively stable between these 

two phases. It means that the RF detector is stable 

and is slightly more inaccurate for non-attack 

samples, than for attack ones, when employing the 

full set of 10 features. AUC and CA at 8 features are 

almost identical to those at 10 features (Table 6 vs. 

Table 5). F1-score falls a bit with 0.0123 during 

training, but it’s catching up with 0.0102 when 

testing with unknown samples, compared to the 

value of detecting at 10 features. Most of the other 

parameters are relatively equal between the two 

cases of 8 and 10 features. This leads to the 

conclusion that in its optimal configuration, derived 

from optimization according Fig. 3, the use of 8 

features for DDoS detection by the RF binary 

classifier is efficient enough and could be used with 

the benefit of processing smaller amount of data – 

by 2 components from a sample. This property is 

supported also by the results, contained in the 

Confusion Matrices on Fig. 6. Only 7 out of 107 

non-attack samples are misclassified, using 10 

features, and there are just 4 out of 107 

misclassifications of normal traffic instances, using 

8 features, which is even lower error rate. Only 1 

instance from the attack samples more is being 

wrongly classified on the background of 733598 

present malicious records, given 8 features, with a 

single misclassification at 10 features, which in both 

cases is really negligible. Training the RF with 8 

features as a detector is 1.87 times faster than the 

model with 10 features (Table 11). Validation 

process takes almost twice less time, using 8-

featured vector samples, than 10-featured ones. 

These relations, connected to the processing times 

of the tested RF DDoS detectors, along with the 

detection accuracy, reveal that the 8-featured 

version is fully applicable as an implementation for 

real-world monitoring of the attack types at hand 

and could be a substitute of the 10-feature version, 

which is also fully admissible for the same task. 

Classification accuracy of the multiclass RF 

model is very close among all types of attacks, both 

during training and testing (Table 7 and Table 8). 

For the Data Theft (8) and OS Fingerprinting (9) 

attacks the discovery rate is about 0.07% less to all 

the others with indexes from 1 to 7, and for the 

Service Scanning (10) – it is 0.01% less. These 

differences could be explained to some extent with 

the lower relative portion of samples from these 

attacks, being much less intensive than the DoS and 

DDoS floods. F1-measure and the rest parameters 

vary a bit more during the testing phase from attack 
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to attack, with a value for the first of 0.0007. In 

general, the classification ability of the RF model at 

10 features remain robust regardless of the type of 

attack to spot. Classification accuracy, when using 8 

features (Tables 9 and 10), and especially during the 

test phase (Table 10) varies more – for the DoS TCP 

(1) with 0.11% less, DDoS TCP (4) – with 0.13% 

less, Data Theft (8) – with 0.47% less, OS 

Fingerprinting – with 0.46% less, and for the 

Service Scanning – with 0.40% less than the rest of 

the attacks, for which CA is 0.9999. F1-measure in 

the same time deviates with a variance of 0.0363. It 

definitely shows that the RF multi-attack classifier, 

using 8 features, is not that robust as the 10-featured 

one. In confirmation to these generalized numbers, a 

more detailed look into the recognition rate of the 

various attacks, visible from the Confusion Matrices 

(Fig. 7 and Fig. 8), the following tendencies could 

be noted: 

 At 10 features – 91.6% of the 

normal traffic samples (0) are correctly classified 

with 5.6% erroneously marked as Service Scanning 

(10) attack as the major group of misclassification; 

100 % of DoS TCP (1) and UDP (2), DDoS TCP (4) 

and UDP (5) samples are correctly recognized; 

99.7% of the DoS HTTP (3) are correctly 

recognized with just 0.3% misclassifications as 

normal traffic (0) samples; DDoS HTTP (6) attacks 

are found in the 99.0% of the cases with 0.5% 

misclassifications in equal proportion between 

DDoS TCP (4) and OS Fingerprinting (9) attacks; 

92.9% is the recognition rate of the Keylogging (7) 

with 7.1% of the samples categorized as Service 

Scanning (10); 91,2% of the samples, when 

performing OS Fingerprinting (9), are correctly 

discovered with 8.7% of them wrongly marked as 

Service Scanning (10) activity; at last, 98.4% of the 

Service Scanning (10) samples are correctly found, 

but 1.6% are labeled as OS Fingerprinting (9); 

 At 8 features – 94.4% correctly 

found non-attack samples (0) – the larger group of 

misclassifications, equal to 1.9% of the normal 

samples is recognized as DoS UDP (2) records; 

99.7% of the DoS TCP (1) samples are recognized 

with 0.3% - marked as DDoS TCP (4) instances; 

100% of the DoS UDP (2) and the DDoS UDP (5) 

samples are discovered; 99.3% of the DoS HTTP 

(3) with 0.3% misclassifications as DDoS TCP (4) 

and DDoS HTTP (6) attacks; 99.8% - correct DDoS 

TCP (4) attack vectors vs. 0.2% recognized wrongly 

as DoS TCP (1); almost the same result of 98% truly 

found DDoS HTTP (6) flood related samples 

against 0.5% incorrectly found ones, equally spread 

among DoS TCP (1), DoS HTTP (3), DDoS TCP 

(4) and Service Scanning (10) attacks; 85.7% 

correct Keylogging activities with 7.1% mistakenly 

fixed as non-attacks (0) and Service Scanning (10) 

samples; only 25.7% of the OS Fingerprinting 

samples are recognized, which is the only type of 

attack with that significantly low recognition rate – 

72.0% of the instances of this type are listed to be 

Service scanning (10) samples – further examination 

of the feature distribution when using the full set of 

10 components against the 8-featured samples 

would reveal which exactly of the 2 missing 

elements are contributing the most to have that 

reduction of 65.5% drop in the recognition rate for 

this particular attack; 94.1% of the Service Scanning 

(10) samples are correctly found with 5.5% as the 

largest group of erroneous samples being marked as 

OS Fingerprinting (9). 

Multiclass training of the RF at 10 features takes 

1.28 times longer than the 8-featured 

implementation, but the validation process and 

testing with unknown samples (test set) do not 

produce any noticeable time difference between the 

two models (Table 11). Pursuing the most accurate 

result in recognizing the precise type of attack, it 

would be preferable to use the 10-featured RF 

model. On the other hand, only the Keylogging (7) 

(by 7.2% decrease) and the OS Fingerprinting (9) 

(by 65.5% decrease) are being significantly 

misclassified by the 8-featured RF model. In cases, 

where these type of activities are not expected to 

emerge, and given the smaller portions of data to 

handle at 8 features, it would be preferable to use 

that particular model. 

Comparison with another RF model, developed 

to detect DDoS malicious actions from network 

traffic aggregated samples [27] and the proposed in 

this study 8- and 10-component RF detectors of 

DDoS attacks, is given in Table 12. For all 4 

evaluating parameters – CA, Precision, Recall and 

F1-score, there has been an increase in the 

registered values for the newly proposed detectors, 

which proves the applicability of the optimization 

procedure and feature selection methods, suggested 

here. 

Similar, although smaller, are the ratios between 

the evaluating parameters for the RF model from 

[27] and the two implementations proposed here, 

when processing multiclass samples (Table 13) – 

another confirmation of the correctness of the 

undertaken approach. 

 

Table 12. Comparison between two RF models in 

detection mode 

Parameter RF, [27] 
Proposed RF 

- 10 features 

Proposed RF 

- 8 features 

CA 0.9532 0.9999 0.9999 
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Precision 0.9580 0.9999 0.9999 

Recall 0.9532 0.9999 0.9999 

F1-score 0.9481 0.9999 0.9999 

 

Comparing the 10-featured version of a detector 

from this study and the already developed one [27] 

shows increase of 4.67% for the CA, 4.19% - for the 

Precision, 4.67% - for the Recall, and 5.18% - for 

the F1-score. When classifying multiple attacks, 

these increments are: 2.26%, 1.68%, 2.26%, and 

3.35%, respectively. 

 

Table 13. Comparison between two RF models in 

classification mode 

Parameter RF, [27] 
Proposed RF 

- 10 features 

Proposed RF 

- 8 features 

CA 0.9766 0.9992 0.9939 

Precision 0.9824 0.9992 0.9932 

Recall 0.9766 0.9992 0.9939 

F1-score 0.9657 0.9992 0.9933 

 

Similar comparison could be made with earlier 

works in the field [28-32]. 

 

 

5 Conclusion 
In this paper two new Random Forest models are 

proposed, based on 8- and 10-component features 

from aggregated network connection records, 

capable to detect and classify 10 types of DDoS 

attacks apart from normal traffic. There is no 

significant difference in terms of detection 

efficiency between the 8- and 10-featured 

implementations of detectors. The first is preferred 

for application due to the smaller amount of data to 

process and the smaller training and testing time. 

Classification accuracy rises significantly for 

Service Scanning and OS Fingerprinting attacks 

when using 10 features by the multiclass RF 

classifier. That would be the preferable classifier to 

use for the full spectrum of attacks under 

consideration. Due to the smaller processing times 

at 8 features and the smaller amounts of handled 

data, there could be practical cases when this 

classifier would be also preferable to use. Further 

work is needed in order to find the optimal set of 

features, representing the OS Fingerprinting and 

Keylogging attacks, where less than 10 components 

would lead to comparable, high enough 

classification rate for them, as it is for the rest 8 

types of investigated attacks. 

Incorporation of the proposed RF classifier in 

multicomponent classifiers of DDoS network 

attacks is one possible direction for a future work. 

Extending the feature set to more than 10 elements 

could allow for a broader list of attacks to be 

discovered by either the standalone RF classifier or 

by a cascade of classifiers. Wider investigation of 

dependencies among raw traffic parameters is 

needed in order to define this set of new features. 

Future work would be needed in this case in order to 

optimize the structure of randomly generated 

decision trees to retain the processing time as low as 

possible and allow for the new classifiers to stay 

applicable in the practice. 
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