
Genetic Algorithms in a Visual Declarative Programming

EMILIA GOLEMANOVA1, TZANKO GOLEMANOV1
1Department of Computer Systems and Technologies

University of Ruse
8 Studentska Str., Ruse

BULGARIA

Abstract: - Imperative languages like Java, C++, and Python are mostly used for the implementation of Genetic
algorithms (GA). Other programming paradigms are far from being an object of study. The paper explores the
advantages of a new non-mainstream programming paradigm, with declarative and nondeterministic features, in
the implementation of GA. Control Network Programming (CNP) is a visual declarative style of programming
in which the program is a set of recursive graphs, that are graphically visualized and developed. The paper
demonstrates how the GA can be implemented in an automatic, i.e. non-procedural (declarative) way, using the
built-in CNP inference mechanism and tools for its control. The CNP programs are easy to develop and
comprehend, thus, CNP can be considered a convenient programming paradigm for efficient teaching and
learning of nondeterministic, heuristic, and stochastic algorithms, and in particular GA. The outcomes of using
CNP in delivering a course on Advanced Algorithm Design are shown and analyzed, and they strongly support
the positive results in teaching when CNP is applied.

Key-Words: - genetic algorithms, declarative programming, visual programming, Control Network Programming

Received: April 14, 2021. Revised: April 17, 2022. Accepted: May 13, 2022. Published: June 21, 2022.

1 Introduction
While a lot of attention is usually being paid to a
study or improvement in the various
heuristic/stochastic operators of Genetic Algorithms
(GA), a little effort is focused on how these
algorithms can be implemented. Even though some
authors demonstrate that implementation matters
[1][2] and explore several popular imperative
languages [3][4][5] and concurrent-functional
languages [6] for implementing GA, the declarative
approaches in new languages/paradigms are not
investigated sufficiently.

This paper continues and extends the research on
the implementation of genetic algorithms in Control
Network Programming started in [7].

Control Network Programming, or CNP, is а
multi-paradigm programming style, which combines
features of imperative (procedural) programming,
declarative (non-procedural) programming, and
visual programming. The program in CNP, formally
defined in [8], is a set of recursive graphs, called
Control Network (CN). In the CNP programming
language SPIDER, and more precisely in
SpiderCNP IDE [9][10], the program is graphically
visualized and developed. The basic building blocks
of the program, named primitives, are functions in
some imperative programming language, and they
form the arrows of the CN. As the CNP program is
initially a graph, the imperative style programmer,

i.e. the traditional professional programmer is not
obliged to translate the intrinsic graph-like
description of:

● algorithms, represented in their graphical
form, similar to UML-activity diagrams or
flow-charts, in their corresponding sequential
textual form,

● and, more importantly, some problems, that
possess nondeterminism or randomness, into
their sophisticated sequential algorithmic
solution. Instead, the CNP has a built-in
inference engine (interpreter) that searches for
a solution to the problem itself. It traverses the
CN, corresponding to the nonlinear graphical
description of the problem, and in this way, it
resolves the nondeterminism. In addition,
SPIDER has powerful built-in tools for
control of the interpreter, allowing easily to
implement heuristics and randomness.

In the first case, CNP enables the programmer
with explicit program control, while in the second –
with an “automatic”, i.e. a declarative solution to the
problem. The resulting programs are easy to develop
and understand, which is important in Artificial
Intelligence, where algorithms are usually
nondeterministic, heuristic, or stochastic.

Genetic algorithms (GA) are typical examples of
such kinds of algorithms. The purpose of the paper is

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 138 Volume 19, 2022

twofolded. On one hand, it expands the application
area of CNP. SPIDER has already proven to be a very
efficient programming language for the
implementation of many heuristic and stochastic
search algorithms in Problem Solving [11][12][13]
and Constraint Satisfaction Problems [14]. Now we
present the usage of SPIDER for programming
genetic algorithms. Additionally, the intent of this
paper is to demonstrate the SPIDER and more
specifically, the SpiderCNP IDE, as convenient
teaching and learning software for presenting the
core concept layed behind the GA, both as a whole,
and as its operators. The emphasis is on how to
implement declaratively various selection methods,
the crossover and mutation Bernoulli trials [15]. The
SPIDER program is visually identical to the
aforementioned operators’ “natural” graphical
descriptions, i.e. to the manner the developer thinks
and specifies nondeterministic and randomized
algorithms. Due to the fact that the program is
intuitive, CNP implementations and SpiderCNP IDE
respectively can be successfully applied in teaching
GA.

There are two main approaches for using software
in teaching an introduction to genetic algorithms [16]
- using frameworks or libraries, and the second one -
programming а simple genetic algorithm starting
from scratch. For didactical purposes allowing
students to make their own programs is the preferable
approach, since the students have to assimilate the
basic concepts in detail. Moreover, once a sense of
control over the process is acquired, students can run
the algorithms step-by-step and review the traces of
the algorithm, analyze the effect of the operators,
while using the capabilities of current IDEs in their
own code. The best way to apply this approach is to
use more expressive programming languages.

This paper presents the expressiveness of
SPIDER and the suitability of SpiderCNP IDE in
programming GA. This IDE has been used for
several years in the Advanced Algorithm Design
master course at Ruse University and has already
proven to be very useful in teaching
nondeterministic, heuristic, and randomized
algorithms, including GA.

2 The basics of Control Network

Programming
This part is a concise description of CNP and the
methodology of programming in SPIDER. A more
in-depth description of CNP - the theoretical model,
CNP solutions to some exemplary problems, and
SPIDER IDEs, can be found in [8][17][18].

What is known in traditional programming
languages as a “program”, in CNP is named a
Control Network (CN) because it is a set of visually
represented graphs (subnets). Each subnet can
invoke another subnet, even invoking itself is viable.
The starting point of the program is the so-called
main subnet. The nodes of the subnet are named
states, and the arrows are sequences of primitives.
The states present the moments of computation and
the primitives are elementary functions created by the
CNP developer in some procedural, even object-
oriented language. The computation in CNP is not
deterministic, as it is in the imperative programming
paradigm, but a graph traversal, executing the
primitives along the way. The built-in interpreter
(computation/search engine) uses an extended
backtracking algorithm for searching a path from the
start state of the main subnet to the system state
FINISH. The primitives can be successfully or
unsuccessfully executed - the conditions for a failure
are defined by the programmer. When a primitive is
unsuccessfully executed the control backtracks,
causing the interpreter to change the direction of
traversing and executing the primitives from the
current arrow “backward” (performing “undo” of
their actions made in a forward direction). Detailed
and formal descriptions of the syntax and semantics
of SPIDER can be found in [19][9].

We can approach solving problems in CNP in two
ways. In the first approach, the CN is similar to a
UML-activity diagram or a flowchart of the problem
solution. In this case, the CN actually emulates an
algorithm and, consequently, does not involve any
nondeterminism. Having a pure imperative nature of
the CN, we refer to these kinds of CNP
implementations as imperative or procedural

implementations, and CNP manifests itself as a
universal programming paradigm. CNP offers a
much different and more interesting approach when
it is used as a declarative programming paradigm. In
this case, the CN simply describes the problem
(possibly involving nondeterminism or randomness)
and does not require the development of an explicit
procedure that implements the search process for
finding the solution. Instead, the built-in search
engine, along with a rich palette of system tools that
control it, performs the desired strategy. Such a
strategy could be even a heuristic or a stochastic one.
These “automatic” implementations of search
algorithms are called declarative or non-

procedural. However, not all strategies are suitable
for such an elegant non-procedural solution.
Algorithms that can be directly implemented should
be based on the backtracking strategy. Some more
complex strategies, such as metaheuristic and genetic

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 139 Volume 19, 2022

algorithms, require a combination of both procedural
and declarative techniques, and their
implementations are called hybrid.

An example of a CNP program will be
demonstrated using the second, more interesting

approach for development – the declarative one, on a
well-known AI toy problem - the Monkey and

Banana Problem (MBP) as is stated in [20]:

The natural graph-like representation of this

problem reflects its physical environment, i.e. the
map of the room, and is depicted in Fig. 1. The nodes
of this graph are the positions in the room (Door,
Middle, and Window), and the arrows are the possible
actions of the monkey from a given position (Walk,
Push, Climb, or Grasp). This problem definition is
nondeterministic, due to the presence of more than
one arrow coming out of a node, that can be tried in
searching for a solution.

Fig. 1: Monkey and Banana Problem

The declarative solution of MBP (with an

emphasis on CN, rather than on primitives’
implementation), corresponding to its non-
procedural specification from Fig. 1, is presented in
Fig. 2. Both screenshots are from SpiderCNP IDE –
the current CNP programming environment,

equipped with an embedded graphic editor and
debugger.

The CN consists of a main subnet
MonkeyAndBanana and the subnet Room. The task
of the main subnet is to initialize the variable
StartPlace (the starting position of the monkey, e.g.
the door in our case of problem definition), to call the
subnet Room with the StartPlace as an initial point
of traversal, and at the end – to print the solution. The
second subnet Room “copies” the definition of the
problem in its graphical form presented in Fig. 1. In
other words, the subnet Room has a descriptive
nature rather than a procedural one and the task of the
built-in interpreter is to “compute” this subnet,
searching for a path in a backtracking manner
between the initial state and the system state
RETURN.

Assigning the responsibility for finding the
solution of the problem to the built-in inference
engine, the CNP programmer, eventually, may want
to use some of its static control tools (system
options) in order to switch off/on backtracking, to
prevent infinite loop and recursion, or to specify
some parameters of the found solution paths, e.g.
their number, length, or costs. For example, if an
acyclic path of monkey’s positions is required the
option [LOOPS=0] should be used. Determining
another system option [SOLUTIONS=ALL] forces
the interpreter to find all the solution paths.

In addition to the static tools for controlling the
basic parameters of the built-in search mechanism,
the CNP programmer has the possibility to upgrade it
in a more advanced strategy like its heuristic or
stochastic variant. This can be achieved by
rearranging, selecting, or reducing the outgoing
arrows from a given state, randomly or according to
their heuristic evaluations or selection probabilities.
The programmer is provided with system tools for
performing such action even when computation is in
process. That’s why these types of tools are referred
to as dynamic control tools. In fact, to a large extent,
it is the dynamic control tools that make CNP
especially suitable for easy programming of heuristic
and stochastic strategies. Description of the SPIDER
toolkit for static and dynamic control of the main
built-in search mechanism is made in [21][22], whilst
its usage and methodology for modeling various
advanced strategies are discussed in [23][24][25].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 140 Volume 19, 2022

Fig. 2a: CNP program – Monkey and Banana Problem – the main subnet

Fig. 2b: CNP program – Monkey and Banana Problem – the “Room” subnet

3. Simple Genetic Algorithm
Following the idea to demonstrate how the genetic
algorithms, in their general form, are approached in
SPIDER, the prime genetic algorithm named a
Simple Genetic Algorithm (SGA) [20], is
implemented.

The genetic algorithms theory was developed and
published by John Holland in 1975 [26] and since
then there have been many applications in science
and economics. Genetic algorithms (GA) are
stochastic, heuristic search algorithms that mimic the
model of natural evolution to solve optimization
problems. Some candidate solutions, i.e. feasible
solutions [27] to the problem, form the so-called

population of individuals (chromosomes) and
compete for а survival based on their fitness
(objective function). A generic structure of GA
includes three basic operators - selection, crossover,
and mutation. They are performed on the population,
generating a new population, in the hope that it will
be better, and ideally containing the global optimum.
SGA simplifies offspring generation and parent
replacement by using two non-overlapping
populations. This “evolution” process is repeated
until some termination criterion is met. Algorithm 1
shows the pseudocode of SGA (a version of
[28][29]):

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 141 Volume 19, 2022

Algorithm 1: SGA
Result: best solution in the current population

[Start] Generate randomly, or heuristically
(through a greedy algorithm), a population of n
chromosomes (represented as strings) and evaluate
their fitness.
while the end condition is not satisfied do

 [Generation] repeat

 [Selection] Select two parents from the
population, with selection probability
depending on a fitness function.

 [Crossover] Cross over the parents with a
probability Pc and generate two new
individuals.

 if no crossover then
 Copy the parents into children.
 end
 [Mutation] Change the two new

chromosomes at each locus with a probability
Pm and add them to the new population.

 until the new population is complete;
 if n is odd then
 Delete randomly a new population member.
 end
 [Replace] The new population becomes a

current population. Keep the best individual
from the old population (elitism).

end

This generic idea of GA is very often presented in
graphical forms [30] [31], similar for example to the
UML-diagram depicted in Fig. 3:

SGA

Generation

Fig. 3: The Simple Genetic Algorithm

The mathematical modeling of GA is presented in
[32], and the computational complexity of SGA was
analyzed by Oliveto and Witt and has been proven to
have exponential runtime with overwhelming
probability for population sizing up to μ≤n1/8−ε for
some arbitrarily small constant ε and problem size n

[33].

4 Programming SGA in SPIDER
Intending to demonstrate the CNP programming
methodology applied to genetic algorithms we have
implemented the SGA on an example toy-problem,
namely the 8-queens. Specifically, we use the
problem instance, as it is presented in figure 4.6 from
[34], which is defined onto a population of four
chromosomes. As the algorithm’s termination
criterion the number of generations was chosen.

The population is represented as an array of four
8-digit strings along with their fitness values. Each
digit, which is a number from 1 to 8, is the column of
the chess board where the queen is placed (the row is
determined by the index of the array). The objective
function calculates the number of pairs of queens that
do not attack each other and is to be maximized, with
a maximum value of 28 for a solution.

In the previous section, the SGA was presented in
the form of a UML diagram which obviously has a
graph-like structure. Hence, it is easy to translate it
into a CN. The conversion is in an almost trivial
manner – the initial, final, and conditional UML
blocks “become” states of the CN, while the
operational UML blocks form the arrows of the CN.
As a result, the CN depicted in Fig. 4, mirrors the
algorithm’s specification from Fig. 3:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 142 Volume 19, 2022

main MainNet;

sub SGA;

sub Generation;

Fig. 4: SPIDER implementation of SGA

The main subnet MainNet has an initialization
purpose mainly. The primitive Init initializes SGA
parameters (declared as global variables) - the
number of generations (NGen), crossover probability
Pc, mutation probability Pm, and their inverse values
(InvPc and InvPm). Note that the concrete
programming implementations of the primitives in
the presented CNP solution will not be discussed as
they have simple logic and could be easily
implemented in any imperative programming
language. MainNet calls the subnet SGA and prints
the solution found. The subnet SGA implements the
main steps from the Algorithm 1 – creation of the
initial population (primitive Start), generation of a
new population (subnet Generation), and replacing
the current population with the new one (primitive
Replace). The population renewal is performed
NGen number of times. It is easily achieved by the
system option [LOOPS=NGen] for the state 0. In the
general case, the option [LOOPS=n] is designed to
limit the repeated visits to a given state, although its
most common use is to prevent loops. The solution to
the problem is found by the primitive BestSolution

as the best-fit individual in the final population. The
subnet Generation implements the inner loop of the
SGA - iterations over the offspring generating until
the new population is filled in. Therefore, it has
similar to the subnet SGA architecture – it binds the
basic SGA operators – selection, crossover, and
mutation – and repeats them two times, through the

system option [LOOPS=2], in order to generate four
children.

In the described part of the CNP implementation
(Fig. 4) we have used the first approach for CNP
programming – the procedural. What follows is the
demonstration of the second approach – the
declarative one, in implementing the randomness and
heuristics in GA. As it is well known, the GA can be
viewed as a random heuristic search in the search
space of the problem, guided by the “intelligent
ideas” of the nature - selection, crossover, and
mutation. One of the main features of the
randomized, heuristic, and nondeterministic
computation, is the existence of so-called “choice
points” [27][35], i.e. the points where a choice of the
way to proceed is to be done. These choice points
have а natural graph-like representation. The
stochastic heuristic nature of the three GA operators
is determined by the incorporation of randomness
and heuristics in their choice points – in the selection
of the mating parents and in the decisions to perform
(or not) a crossover and a mutation. In SPIDER there
is no need for the programmers to implement the
randomness and heuristics themselves. Instead,
programmers simply specify the choice points with
all the alternatives as states in CN with outgoing
arrows, corresponding to these alternatives. Then
they (the programmers) can use built-in tools (control
states and system options), which model a random or
a heuristic choice of the emanating arrow to be
traced. The resulting SPIDER implementations are
declarative and correspond to the natural
understanding of nondeterministic, heuristic, and
random choice because they keep the graphical
representation of the choice points.

The declarative implementations of the three
operators are discussed in detail in the following
subsections.

4.1 Selection
The parent selection operator determines how to
choose the individuals of a population for crossover.
In Darwin's theory of evolution, the individuals with
high fitness have a higher probability to be chosen to
reproduce. A wide variety of selection strategies have
been proposed, like Roulette Wheel Selection,
Rank Selection, Tournament Selection,
Truncation Selection, Threshold Selection,

Boltzman Selection, and Stochastic Universal

Sampling [36]. Most of them are very suitable to be
declaratively programmed in SPIDER and how to
achieve these implementations will be described
below.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 143 Volume 19, 2022

4.1.1 Roulette Wheel Selection

Roulette Wheel Selection (RWS) is the most
common approach for applying fitness-proportionate
selection [28], i.e. the scheme where the probability
of an individual being chosen is proportional to its
fitness. It simulates the roulette wheel operation - the
individuals “occupy” areas of the wheel proportional
to their fitness values and then the wheel is spun. The
wheel pointer determines the individual which is
selected for mating. In the example under
consideration, where the population size n is 4
individuals, it is necessary to spin the wheel four
times – two times for each of the two couples of
parents.

The presented idea can be easily implemented in
SPIDER through a control (not ordinary) state of a
type, named SELECT. In SPIDER, in the usual case
the outgoing arrows from an ordinary state are
traversed in the order they are defined in the CN. But
there are three types of control states (SELECT,
ORDER, and RANGE) that allow the predefined
order of arrows to be dynamically changed and
controlled according to some “heuristic” evaluations
of those arrows. The SELECT state has a property
named a selector and only the arrows with an
evaluation identical to the selector are selected to be
examined. In addition, the system options
SELECTMODE and PROXIMITY allow refining,
“tuning” this choice. The graphical sign of SELECT
state is а rhombus.

The selection of the parent couple is modeled
through the SELECT control states PARENT_1 and
PARENT_2, presented in Fig. 5. The primitive
GetFitnesses initializes the variables Fi, i∈ {1, .., 4}

with the fitness values, which play the role of arrow
evaluations of PARENT_1 and PARENT_2. Both
states use the variable WheelPoint as a selector. The
system option [SELECTMODE=ROULETTE]
determines the selection of the active arrow to be in
accordance with the principle of roulette with a wheel
pointer, presented by the state selector WheelPoint

(random number).
The selected parents are stored in the global

variables Parent1 and Parent2 by the primitives
SetParent1 and SetParent2. The parameter of these
primitives is the index of the selected chromosome
from the population.

sub Selection;

Fig. 5: SPIDER implementation of RWS

4.1.2 Rank Selection

Rank Selection is the other classical selection
operator, built-in in SPIDER. It selects parents
according to their ranks, i.e. the worst chromosome
has a fitness 1, the next one 2, etc., and the best will
have a fitness n. Therefore, it utilizes the relative
instead of the absolute fitness value. It doesn't matter
what the fitness ratio is between the fittest individual
and the next one - their selection probabilities would
be the same in all cases. The distinction between
RWS and Rank Selection is illustrated (Fig. 6) in the
following figure from [28]:

Fig. 6: RWS vs Rank Selection

The implementation of Rank Selection in
SPIDER could be achieved straightforwardly by a
slight modification of the program depicted in Fig. 5
– simply by using the option
[SELECTMODE=RANK] instead of
[SELECTMODE=ROULETTE]. The fragment of
the SPIDER solution for one of the parents is
depicted in Fig. 7:

Fig. 7: Fragment of the SPIDER implementation of
Rank Selection – choosing the first parent

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 144 Volume 19, 2022

4.1.3 Tournament Selection

The RWS and Rank Selection methods described
above are time-consuming procedures as they require
a computation of the fitness value of each individual
in the population, and/or sorting of the entire
population. Tournament Selection is similar to RWS
as an idea, but it is computationally more efficient. It
involves choosing k individuals from the population
randomly who are participants in the tournament and
selecting deterministically or stochastically the
winner from that group.

The implementation of the Tournament Selection
in CNP will be presented just for the first parent from
the mating pair (Fig. 8).

Fig. 8: Fragment of the SPIDER implementation of
Stochastic Binary Tournament Selection – choosing

the first parent

The random selection of the participants in a
binary tournament (when k=2) is achieved using
system options [ORDEROFARROWS=RANDOM]
and [NUMBEROFARROWS=2] determining that
the outgoing arrows from the state CHOOSE will be
rearranged randomly and two of them will “survive”.
The primitive Individual records the individual,
specified by the primitive’s parameter, in the global
structure Tournament_Participants and calculates its
fitness.

Tournaments can be either deterministic, in which
the best solution is always selected, or stochastic,
where less fit solutions may be probabilistically
chosen. In the stochastic binary tournament, after two
individuals are picked out of the population, a
weighted (biased) coin is then tossed. The idea of the
weighted coin toss (Bernoulli trial), coming up heads
with some probability Pt, is usually

implemented as follows: a randomly

generated number 0 ≤ r ≤ 1 is compared

with Pt. If r < Pt, the better individual is chosen,
otherwise - the other one. The probability Pt is a
parameter of the algorithm, which could be fixed, for
example, 0.75, or depending on the run, like in the
Boltzman tournament, which has clear similarities to

simulated annealing. In fact, the Bernoulli trial is
equivalent to RWS with only two sectors – with
selection probabilities Pt, and respectively 1-Pt. The
random number r is the wheel pointer. This is
implemented in SPIDER (Fig. 8) by the SELECT-
type control state, named WEIGHTED_COIN, and
the system option [SELECTMODE=ROULETTE].
The two outgoing arrows are labeled with evaluations
Pt and InvPt. The primitive SetParent1 records the
winner of the tournament as the first parent. The
primitive’s parameter identifies which one of the two
tournament participants is selected.

The CNP-implementation of the deterministic
tournament will be presented in a more general case
– k-tournament. After the k individuals are chosen
from the population, the best one is selected through
a control SELECT-state whose selector is equal to the
maximum fitness value. The system option
[PROXIMITY=NEAREST] will cause the arrow
labeled with a value Fi, i∈ {1, .., k}, closest to the
value of the selector to be chosen. Fig. 9 is a fragment
of the SPIDER implementation illustrating this idea
in the case of k=3 (see the control state

TOURNAMENT).

Fig. 9: Fragment of the SPIDER implementation
of Deterministic Tournament Selection

The correspondence between the graphical

representation of the Tournament Selection from [37]
(Fig. 10), usually used in the explanation of the idea,
and the CNP implementation is evident. This results
in easy programming and a better understanding of
the algorithm.

Fig. 10: Tournament Selection

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 145 Volume 19, 2022

4.1.4 Truncation Selection

In the previously described selection methods the
mating pool is gradually filled, while in the
Truncation Selection and Threshold Selection it is
generated at once.

In the Truncation Selection, only a percentage p
of the population participates in the crossover, i.e. the
individuals are sorted according to their fitness
values, and then some proportion p of the best ones
is chosen to reproduce.

This idea is easily implemented in SPIDER by a
control state of another type – ORDER, graphically
represented as a pentagon. Its outgoing arrows are
traversed according to the proximity of their
estimates to the state selector. Stating this selector
with the biggest possible fitness value will cause
ordering the individuals, i.e. the arrows, in decreasing
order of their fitness – the fittest one will be
attempted first. The truncation of the non-perspective
individuals is accomplished by the system option
[NUMBEROFARROWS=n*p], where n is the size
of the population. This idea is applied to the 8-queens
problem under discussion assuming p=1/2. The
resulting fragment of CN is depicted in Fig. 11. The
best half of the population, respectively the best half
of arrows emanating from the state TRUNCATION,
will be taken into account.

sub Selection;

Fig. 11: SPIDER implementation of Truncation
Selection

4.1.5 Threshold Selection

In Threshold Selection individuals that are below the
threshold fitness value are not examined. This variant
of the Truncation method determines the fraction of
the population to be chosen for reproduction, not
according to a number of individuals, but to a fitness
bound.

In SPIDER there is another, very powerful control
state, named RANGE, and graphically represented as
a hexagon, which cuts off the arrows, according to
their evaluation values. It has two parameters – lower
bound L and upper bound H, and only the arrows
whose evaluations are in the range [L, H] “survive”.
Therefore, this type of control state with a
specification of just one of the selectors is an
appropriate tool for implementing the idea of a
Threshold Selection. The corresponding SPIDER
implementation for the 8-queens problem is

presented in Fig. 12. As the fitness function is to be
maximized, the threshold of the selection method is
set as a lower bound, respectively the selector
LowBound of the control state THRESHOLD.

sub Selection;

Fig. 12: SPIDER implementation of the Threshold
Selection

Furthermore, in SPIDER we can determine the

order of entering the individuals in a mating pool,
specifying the value of the system option
RANGEORDER. This allows the mating pool to be
created in increasing or decreasing order of the
fitness values, or randomly.

4.2 Crossover
Once a couple of parents is selected, they cross over
with a probability Pc to get two children. If no
crossover occurs, then the children copy their
parents. This concept could be modeled by a
weighted coin toss, i.e. а Bernoulli trial with
probability Pc. As it has already been demonstrated
in the previous section, the weighted coin toss is
easily simulated by an RWS method with two
roulette segments, which may be chosen with
probabilities Pc, and respectively 1-Pc. Realizing
that, the SPIDER implementation of the crossover
operator is straightforward.

sub Crossover;

Fig. 13: SPIDER implementation of Crossover

The depicted in Fig. 13 subnet Crossover works

on two parent’s chromosomes and produces as an
outcome two offspring chromosomes. The method of
a weighted coin toss, determining whether the
crossover on the parent pair will be performed, is
implemented by the SELECT-type control state
WEIGHTED_COIN with two emanating arrows -
with selection probabilities Pc, and correspondingly
1-Pc. Which of these two alternatives will be chosen
is determined according to the Roulette wheel
method by setting the system option

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 146 Volume 19, 2022

[SELECTMODE=ROULETTE]. The primitive
GenChildren executes the crossover itself. If no
crossover occurs, i.e. the second arrow is active, the
primitive CopyParentsToChildren copies parents
(variables Parent1 and Parent2) into children Child1
and Child2.

4.3 Mutation
The two offspring chromosomes then undergo a
mutation process (Fig. 14).

sub Mutation;

Fig. 14: The “Mutation” subnet

In SPIDER, similarly to primitives (and to

functions in programming languages), the subnets
could have parameters. This feature serves very well
in use cases where we need to “execute” subnets with
different data. The formal parameter Child of the
subnet MutationChild (Fig. 15) determines on
which chromosome the mutation is performed.

sub MutationChild;

Fig. 15: SPIDER implementation of Mutation

The mutation is defined as a modification with
some usually very small probability Pm at each locus
in the chromosome. The global integer variable
Locus ranged from 1 to 8 is processed by the
primitives InitLocus and NextLocus. The
probabilistic mutation at a given locus is performed
again by a Bernoulli trial and implemented in
SPIDER as a SELECT-control state
WEIGHTED_COIN with an option
[SELECTMODE=ROULETTE]. In addition, the
system option [LOOPS=8] determines how many
entries are allowed to this state, corresponding to the
number of genes in the chromosome.

5 Students’ Opinion
SPIDER programming and SpiderCNP IDE have
been used for five years in a graduate course on
Advanced Algorithm Design which deals with the
design techniques that cope with hard problems (non-
polynomial time problems). The CNP approach has
been introduced and implemented as an instrument
for the realization of more advanced design

techniques such as intelligent exponential search,
randomized algorithms, heuristic algorithms, and
local search.

Fig. 16: Likert Scale multiple choice positive

questions’ results

To get a student’s feedback on the effectiveness

of SpiderCNP as an educational environment and to

18

0

0

23

23

10

6

0

8

8

28

14

9

0

0

30

15

8

17

0

8

25

18

0

31

9

28

42

9

17

31

50

55

69

31

31

42

33

46

67

15

11

18

8

15

20

9

17

20

8

0% 20% 40% 60% 80%100%

CNP paradigm is very
attractive

CNP is successful and
effective in simulating

nondeterministic,
heuristic and…

Experimenting with CNP
example solutions is

useful in understanding
concepts in AI and…

The programing
language SPIDER is easy

to learn

I like SpiderCNP IDE

SpiderCNP IDE is visually
very attractive

SpiderCNP IDE is easy to
learn

The interface of the
SpiderCNP IDE

environment is user-
friendly

I am satisfied with the
SpiderCNP IDE in the

study of Genetic
Algorithms

Overall, I am satisfied
with the CNP approach

to programming

strongly disagree disagree

undecided (neutral) agree

strongly agree

54.08

χ2

18.47

30.41

12.50

1.33

7.67

29.16

49.95

29.45

0.00

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 147 Volume 19, 2022

improve it, in the last four years, we conducted
qualitative questionnaires together with the students.
The survey was carried out on a sample of 103
Master's degree students. It includes two types of
multiple-choice questions.

The summary quantitative data of the 5-Likert
Scale multiple-choice questions are presented in
percentages in Fig. 16 and Fig. 17, for positive and
negative questions, respectively:

Fig. 17: Likert Scale multiple choice negative
questions’ results

The quantitative results from the second type of

closed questions are presented graphically in Fig. 18
and Fig. 19:

Which of the following features of CNP do you

like? [Mark all answers that apply]

A: Programming by drawing graphs

B: Flow of control is clear and understandable

C: The programmer need not bother about the

existence of multiple possible solution paths

D: Powerful means for computation (inference)

control are available

E: The programming environment helps me develop

the solution easily

F: Other

Fig. 18: Question chart: “Which of the following
features of CNP do you like?”

Which of the following features of CNP do you

dislike? [Mark all answers that apply]

A: Installation is difficult

B: Understanding is difficult

C: Writing and testing primitives is difficult

D: Drawing and editing the Control Network using a

graphical editor is annoying

E: The separation of the control (the Control

Network) and the primitives used is counter-

intuitive and confusing

F: Other:

✔ “We come from a traditional programming

background, so it is slightly easier for us to do

things using imperative and object-oriented

programming styles. I accept that the CNP is

easy to use. C, C++, Java, etc. might be more

complicated than CNP, but they are much

more flexible and fast.”

✔ “In CNP, we draw graphs, and then the GUI

generates the code behind it. It might seem

nice, but it is not.”

✔ “We were given just some simple problems.

Real-life problems would be really

complicated, and someone cannot draw all of

them by hand.”

✔ “In addition, there is no updated version of CNP

in MacOS and Linux. It works only on

Windows. IMHO, you should have written a

plug-in to Eclipse or Netbeans, then it can run

on any platform. Or, just make it open source

maybe.”

✔ “The habits can be the reason but I don't prefer

CNP unless my work is related to AI. It is good

to visualize the working progress of the

program basically with arrows and maps. But

because of the insufficient map-drawing tool,

it takes much time to draw the map. It is not

reasonable for me to make an effort and spend

much time only to see the progress of the

program.”

Fig. 19: Question chart: “Which of the following
features of CNP do you dislike?”

15

40

23

25

31

22

31

8

0

5

0% 50% 100%

The programming in
SPIDER is complex

SpiderCNP IDE often
freeze, crash, or does not

behave as expected

strongly disagree disagree

undecided (neutral) agree

strongly agree

0

10

13

33

20

24

0 10 20 30 40

F

E

D

C

B

A

5

10

14

29

38

4

0 10 20 30 40

F

E

D

C

B

A

34.67

χ2

0.71

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 148 Volume 19, 2022

The survey response data from the Likert scale is
analyzed through Chi-square statistical test, which is
used in order to examine the differences between
actual responses and expected responses. Chi-square
evaluates the statistical significance of a particular
hypothesis. We set the null hypothesis as follows:
“There is no difference in the proportion of ‘agree’
and ‘disagree’ answers.“. Thus, we combine the
answers ‘strongly agree’ and ‘agree’ into one
category, ‘strongly disagree’ and ‘disagree’ into
another, and skip the neutrals. The χ2 statistic
displayed in Fig. 16 and Fig.17 is calculated for each
of the questions: χ2 = ∑(Oi – Ei)

2/Ei, where Oi is the
observed (actual) value and Ei is the expected value.
The critical χ2 value is 3.84 in the case of the
significance level 0.05 and the degrees of freedom 1.
If the calculated χ2 value is greater than the critical χ2

value, there is strong evidence to reject the null
hypothesis of ‘no difference’. Therefore, it is
concluded that in most of the questions there is a
significant difference in the proportion of ‘agree’ and
‘disagree’ responses.

The survey conducted with our students shows
that 75% of them are satisfied with the CNP approach
to programming. Other results reveal that 61% think
that CNP is successful and effective in simulating
nondeterministic, heuristic, and randomized
algorithms while 66% find SpiderCNP IDE helpful
in studying genetic algorithms. According to 51% of
answers, SpiderCNP IDE is visually very attractive
and easy to learn, while the most significant difficulty
is coding the primitives and encountering a new very
different programming paradigm. The most liked
features of CNP (77% of students) are programming
through drawing graphs, the understandable control
flow, the lack of necessity to work with
nondeterminism, and the existence of multiple
possible solution paths.

Based on the presented results, it can be assumed
that the overall impression is positive. According to
the majority, the CNP, SPIDER, and SpiderCNP IDE
are useful and supportive for students in their efforts
to apprehend and master the uneasy concept of
genetic algorithms.

6 Discussion
In this section we summarize and comment on the
results of the presented study and its contributions
and limitations in comparison with the corresponding
studies.

While imperative programming has been
extensively studied and used to implement GA [3],
exploration of the feasibility of the declarative
paradigm is not a focus of attention for software

researchers. The efforts to implement declaratively
GA are aimed at logic programming in Prolog and
programming in languages with functional features.
Prolog was used many years ago [38] [39] in the
implementation of GA. Despite the advantages
presented over imperative languages such as compact
code and built-in 'don't care' operator, the approach is
of limited use due to the limited control means of
the logic inference mechanism. More recent research
[6] explores the feasibilities of some concurrent-
functional languages like Erlang, Scala, Clojure, etc.
to develop GA, but in its parallel versions.

SPIDER is distinguished from the conventional
imperative and declarative approaches by the
following features:

● SPIDER applications are multi-paradigm
projects in which the imperative object-
oriented paradigm is enhanced by adding
means for programming nondeterministic,
heuristic, and genetic algorithms.

● SPIDER program is visually presented as a set
of recursive graphs. GA is implemented in the
same way. The graphical declarative
specification of SGA reflects clearly the logic
of the algorithm.

● SPIDER provides built-in ‘RWS’ and ‘Rank’
operators. Other heuristic and stochastic
system tools allow experimentation with
different genetic operators to obtain a wide
variety of GA.

● Imperative and functional languages may be
trickier to debug GA programs. Unlike them,
SPIDER supports a visual graphical tracing
facility, i.e. step-by-step tracking of the
computation flow on the graph program.

● The graphical presentation of the program and
the possibility of graphical debugging allow
SPIDER, and more specifically SpiderCNP
IDE, to be used as appropriate software for
teaching and learning GA.

As a result of the study of the feasibility of
SPIDER for GA programming in solving complex
problems and in GA teaching, some limitations of the
CNP approach have been noticed:

● The SPIDER modeling of choice points with a
lot of alternatives leads to difficulties in their
graphical representation.

● The traditional programming background of
students is imperative and the development of
declarative programs is slightly unusual for
them.

● Some students find difficulties in the visual
development of a program by drawing graphs
instead of program textual specification.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 149 Volume 19, 2022

7 Conclusion
Many problems, especially those involving
nondeterminism, are usually presented in the form of
a graph, because of their innate nonlinear structure.
SPIDER and its supporting visual IDE - SpiderCNP
were developed in response to the desire to eliminate
the “representational gap” and allow the program to
be a graph, moreover, the program could be a
recursive network. Unlike another declarative
programming language – PROLOG, where the
program also has the form of a graph, but it is
implicit, in SpiderCNP the program is represented
graphically which is more comprehensive and easily
verifiable. It is unnecessary for programmers to cope
with the nondeterminism, instead, the built-in
interpreter does it for themselves. Furthermore, the
programmers are enabled with a powerful visual
toolkit for interpreter control which allows for
automatic, i.e. declarative implementation, not only
of nondeterministic but also heuristic and
randomized strategies [11][40][13].

GA are examples of such kinds of algorithms. The
fundamental operators of GA – selection, crossover,
and mutation have choice points where a choice
(often random or heuristic) of the way to proceed is
to be done. These choice points have an inherent
graph-like representation, which helps for a better
understanding of the idea. Keeping this graphical
description in the SPIDER implementation and
automating the stochastic and heuristic choice
through built-in tools, makes this implementation
easily programmed and intuitive.

In our teaching experience, the notion of “genetic
algorithms'' causes significant difficulties for
students due to the complexity of this type of
metaheuristics. SpiderCNP IDE not only allows for
easy programming of the basic GA but also enables
students to experiment with the different methods for
selection, crossover, and mutation (even ones
developed by themselves) using the rich palette of
heuristic and stochastic SPIDER tools. The resulting
SPIDER programs are visually identical to their
“natural” graphical descriptions, i.e. to the manner
the developer thinks and specifies nondeterministic
and randomized algorithms. This makes the concept
of GA more comprehensive. Due to the fact that the
resulting CNP programs are intuitive, SPIDER
implementations and SpiderCNP IDE respectively
can be successfully used in teaching GA. Our current
experience in delivering a course on Advanced
Algorithm Design strongly supports this statement.

We are currently investigating two main
enhancements to SPIDER. We are adding system
tools to provide other variants of GA operators, e.g.
Boltzman Selection and Stochastic Universal

Sampling. Thus the language will cover a wider class
of GA and will increase the flexibility of the
SpiderCNP IDE as a teaching software. Secondly,
CNP can be extended to other programming
languages. Currently, the host languages of SPIDER
are Delphi Object Pascal and Lazarus Free Pascal.
C++-based SPIDER is under development and the
other candidates could be C#, Java, and Python.

Another direction for future efforts could also be
the improvement of SpiderCNP IDE.

Acknowledgments
The paper is supported by project No. 2022-EEA-01,
funded by the Research Fund of the University of
Ruse.

References:

[1] J. L. J. Merelo, J.J., Romero, G., Arenas,
M.G., Castillo, P.A., Mora, A.M., Laredo,
“Implementation Matters: Programming Best
Practices for Evolutionary Algorithms,” in
Advances in Computational Intelligence.

IWANN 2011. Lecture Notes in Computer

Science, vol 6692, G. Cabestany, J., Rojas, I.,
Joya, Ed. Springer, 2011, pp. 333–340.

[2] G. J.-J. Merelo, M. García-Valdez, and S.
Rojas-Galeano, “Implementation matters,
also in concurrent evolutionary algorithms,”
in Proceedings of the 2020 Genetic and

Evolutionary Computation Conference

Companion, 2020, pp. 1591–1598.
[3] J. et al. Merelo-Guervós, “Ranking

Programming Languages for Evolutionary
Algorithm Operations,” in Applications of

Evolutionary Computation. EvoApplications

2017. Lecture Notes in Computer Science, vol

10199, G. Squillero and K. Sim, Eds.
Springer, 2017, pp. 689–704.

[4] E. Wirsansky, Hands-On Genetic Algorithms

with Python, 1st editio. Packt Publishing,
2020.

[5] I. Gridin, Learning Genetic Algorithms with

Python. BPB Publications, 2021.
[6] J. A. Cruz, J. J. Merelo, L. Acevedo-Martínez,

and P. Cuevas, “Implementing Parallel
Genetic Algorithm Using Concurrent-
functional Languages,” in Proceedings of the

International Joint Conference on

Computational Intelligence - Volume 1

(IJCCI 2014), 2014, pp. 169–175.
[7] Е. Golemanova and T. Golemanov,

“Declarative Implementations of Genetic
Algorithms in Control Network
Programming,” in Computer Systems and

Technologies, 2019, pp. 91–97.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 150 Volume 19, 2022

[8] K. Kratchanov, “CINNAMONS: A
Computation Model Underlayng Control
Network Programming,” in 7th International

Conference on Computer Science,

Engineering & Applications (ICCSEA 2017),
2017, pp. 1–20.

[9] T. Golemanov, “Development and Study of
an Integrated Development Environment for
Control Network Programming, Ph. D
Thesis,” Ruse University, 2014.

[10] T. Golemanov, “SpiderCNP: An Integrated
Environment for Visual Control Network
Programming,” in Annals of Ruse University,

51, ser. 3.2, 2012, p. 123–127 (in Bulgarian).
[11] K. Kratchanov, E. Golemanova, T.

Golemanov, and Y. Gökçen, “Implementing
Search Strategies in Winspider II:
Declarative, Procedural, and Hybrid
Approaches,” in Knowledge-Based

Automated Software Engineering, I. Stanev
and K. Grigorova, Eds. Cambridge Scholars
Publishing, 2012, pp. 115–135.

[12] K. Kratchanov, E. Golemanova, T.
Golemanov, and T. Ercan, “Non-procedural
Implementation of Local Heuristic Search in
Control Network Programming,” in 14th Int.

Conf. on Knowledge-Based and Intelligent

Information & Engineering Systems (KES

2010), 2010, pp. 263–272.
[13] K. Kratchanov, E. Golemanova, T.

Golemanov, T. Ercan, and B. Ekici,
“Procedural and Nonprocedural
Implementation of Search Strategies in
Control Network Programming,” in Intern.

Symposium on Innovations in Intelligence

Systems and Applications (INISTA 2010),
2010, pp. 386–390.

[14] E. Golemanova, “Declarative
Implementations of Search Strategies for
Solving CSPs in Control Network
Programming,” WSEAS Trans. Comput., vol.
12, no. 4, pp. 176–182, 2013.

[15] “Encyclopedia of Mathematics: Bernoulli
trials.” [Online]. Available: url:
http://www.encyclopediaofmath.org/index.p
hp?title=Bernoulli_trials&oldid=26363.

[16] S. Valverde, “What is the best software for
teaching an introduction to genetic
algorithms?,” 2012. [Online]. Available:
https://www.researchgate.net/post/What-is-
the-best-software-for-teaching-an-
introduction-to-genetic-algorithms.

[17] K. Kratchanov, E. Golemanova, and T.
Golemanov, “Control Network Programming
Illustrated: Solving Problems with Inherent

Graph-Like Representation,” in Seventh

IEEE/ACIS International Conference on

Computer and Information Science (ICIS

2008), 2008, pp. 453–459.
[18] K. Kratchanov, B. Yüksel, Т. Golemanov,

and E. Golemanova, “Control Network
Programming Development Environments,”
WSEAS Trans. Comput., vol. 13, pp. 645–659,
2014.

[19] K. Kratchanov, “Syntax and Semantics for
Cinnamon Programming,” Int. J. Comput.

Sci. Inf. Technol., vol. 9, no. 5, pp. 127–150,
2017.

[20] I. Bratko, Prolog Programming for Artificial

Intelligence, 4th ed. Pearson Education, 2011.
[21] K. Kratchanov, T. Golemanov, and E.

Golemanova, “Control Network
Programming: Static Search Control With
System Options,” in 8th WSEAS Int. Conf. on

Artificial Intelligence, Knowledge

Engineering and Data Bases (AIKED 2009),
2009, pp. 423–428.

[22] K. Kratchanov, T. Golemanov, E.
Golemanova, and T. Ercan, “Control Network
Programming with SPIDER: Dynamic Search
Control,” in 14th International Conference on

Knowledge-Based and Intelligent

Information & Engineering Systems (KES

2010), 2010, pp. 253–262.
[23] E. Golemanova, “Study of the Paradigm of

Search and Development of a Methodology
for Implementation of Search Algorithms in
Control Network Programming, Ph. D
Thesis,” Ruse University, 2014.

[24] K. Kratchanov, E. Golemanova, T.
Golemanov, and B. Külahçıoǧlu, “Using
control network programming in teaching
nondeterminism,” in International

Conference on Computer Systems and

Technologies (CompSysTech’12), 2012, pp.
391–398.

[25] K. Kratchanov, E. Golemanova, T.
Golemanov, and B. Külahçıoǧlu, “USING
CONTROL NETWORK PROGRAMMING
IN TEACHING RANDOMIZATION,” in
International Conference on Electronics,

Information and Communication

Engineering, 2012, pp. 67–72.
[26] J. H. Holland, “Adaptation in Natural and

Artificial Systems,” Ann Arbor Univ.

Michigan Press, vol. 1, no. 97, p. 5, 1975.
[27] J. Hromkovic, Algorithmics for Hard

Problems: Introduction to Combinatorial

Optimization, Randomization,

Approximation, and Heuristics. Springer,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 151 Volume 19, 2022

2010.
[28] “Introduction to Genetic Algorithms,

www.obitko.com/tutorials/genetic-
algorithms/ga-basic-description.php.”
[Online]. Available:
www.obitko.com/tutorials/genetic-
algorithms/ga-basic-description.php.

[29] M. Mitchell, An Introduction to Genetic

Algorithms, Fifth prin. The MIT Press, 1999.
[30] “LEARN GENETIC ALGORITHMS:

Genetic Algorithms - Fundamentals.”
[Online]. Available:
https://www.tutorialspoint.com/genetic_algo
rithms/genetic_algorithms_fundamentals.htm
.

[31] S. L. Yadav and A. Sohal, “Comparative
Study of Different Selection Techniques in
Genetic Algorithm,” Int. J. Eng. Sci. Math.,
vol. 6, no. 3, pp. 174–180, 2017.

[32] D. Liu, “Mathematical modeling analysis of
genetic algorithms under schema theorem,” J.

Comput. Methods Sci. Eng., vol. 19, no. S1,
pp. 131–137, 2019.

[33] P. S. Oliveto and C. Witt, “On the runtime
analysis of the Simple Genetic Algorithm,”
Theor. Comput. Sci., vol. 545, no. C, pp. 2–
19, 2014.

[34] S. Russell and P. Norvig, Artificial

Intelligence: A Modern Approach, 4th ed.
Pearson, 2020.

[35] M. Sipser, Introduction to the Theory of

Computation, Third Edition. Cengage
Learning, 2013.

[36] S. Katoch, S. S. Chauhan, and V. Kumar, “A
review on genetic algorithm: past, present,
and future,” Multimed. Tools Appl., vol. 80,
pp. 8091–8126, 2021.

[37] “LEARN GENETIC ALGORITHM: Genetic
Algorithms - Parent Selection.” [Online].
Available:
https://www.tutorialspoint.com/genetic_algo
rithms/genetic_algorithms_parent_selection.
htm.

[38] C. Medsker and I. Y. Song, “ProloGA: a
Prolog implementation of a genetic
algorithm,” in Proceedings IEEE

International Conference on Developing and

Managing Intelligent System Projects, 1993,
pp. 77–84.

[39] W. Erben and J. Keppler, “A genetic
algorithm solving a weekly course-
timetabling problem,” in Practice and Theory

of Automated Timetabling. PATAT 1995.

Lecture Notes in Computer Science, vol 1153,
1995, pp. 198–211.

[40] K. Kratchanov, E. Golemanova, T.
Golemanov, and Y. Gokcen, “Declarative and
Procedural Search Strategy Implementations
in WinSpider,” in Fundamental Sciences and

Applications, Plovdiv, Bulgaria, J. of

Technical Univ. at Plovdiv, 2011, p. v.16,
book1, 217-22.

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)
Both authors have contributed equally to the creation
of this article.

Sources of funding for research

presented in a scientific article or

scientific article itself

Creative Commons Attribution

License 4.0 (Attribution 4.0

International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.14 Emilia Golemanova, Tzanko Golemanov

E-ISSN: 2224-3402 152 Volume 19, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

