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Abstract: - Imperative languages like Java, C++, and Python are mostly used for the implementation of Genetic 
algorithms (GA). Other programming paradigms are far from being an object of study. The paper explores the 
advantages of a new non-mainstream programming paradigm, with declarative and nondeterministic features, in 
the implementation of GA. Control Network Programming (CNP) is a visual declarative style of programming 
in which the program is a set of recursive graphs, that are graphically visualized and developed. The paper 
demonstrates how the GA can be implemented in an automatic, i.e. non-procedural (declarative) way, using the 
built-in CNP inference mechanism and tools for its control. The CNP programs are easy to develop and 
comprehend, thus, CNP can be considered a convenient programming paradigm for efficient teaching and 
learning of nondeterministic, heuristic, and stochastic algorithms, and in particular GA. The outcomes of using 
CNP in delivering a course on Advanced Algorithm Design are shown and analyzed, and they strongly support 
the positive results in teaching when CNP is applied.  
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1 Introduction 
While a lot of attention is usually being paid to a 
study or improvement in the various 
heuristic/stochastic operators of Genetic Algorithms 
(GA), a little effort is focused on how these 
algorithms can be implemented. Even though some 
authors demonstrate that implementation matters 
[1][2] and explore several popular imperative 
languages [3][4][5] and concurrent-functional 
languages [6] for implementing GA, the declarative 
approaches in new languages/paradigms are not 
investigated sufficiently. 

This paper continues and extends the research on 
the implementation of genetic algorithms in Control 
Network Programming started in [7]. 

Control Network Programming, or CNP, is а 
multi-paradigm programming style, which combines 
features of imperative (procedural) programming, 
declarative (non-procedural) programming, and 
visual programming.  The program in CNP, formally 
defined in [8], is a set of recursive graphs, called  
Control Network (CN). In the CNP programming 
language SPIDER, and more precisely in 
SpiderCNP IDE [9][10], the program is graphically 
visualized and developed. The basic building blocks 
of the program, named primitives, are functions in 
some imperative programming language, and they 
form the arrows of the CN. As the CNP program is 
initially a graph, the imperative style programmer, 

i.e. the traditional professional programmer is not 
obliged to translate the intrinsic graph-like 
description of: 

● algorithms, represented in their graphical 
form, similar to UML-activity diagrams or 
flow-charts, in their corresponding sequential 
textual form, 

● and, more importantly, some problems, that 
possess nondeterminism or randomness, into 
their sophisticated sequential algorithmic 
solution. Instead, the CNP has a built-in 
inference engine (interpreter) that searches for 
a solution to the problem itself. It traverses the 
CN, corresponding to the nonlinear graphical 
description of the problem, and in this way, it 
resolves the nondeterminism. In addition, 
SPIDER has powerful built-in tools for 
control of the interpreter, allowing easily to 
implement heuristics and randomness. 

In the first case, CNP enables the programmer 
with explicit program control, while in the second – 
with an “automatic”, i.e. a declarative solution to the 
problem. The resulting programs are easy to develop 
and understand, which is important in Artificial 
Intelligence, where algorithms are usually 
nondeterministic, heuristic, or stochastic. 

Genetic algorithms (GA) are typical examples of 
such kinds of algorithms. The purpose of the paper is 
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twofolded. On one hand, it expands the application 
area of CNP. SPIDER has already proven to be a very 
efficient programming language for the 
implementation of many heuristic and stochastic 
search algorithms in Problem Solving [11][12][13] 
and Constraint Satisfaction Problems [14]. Now we 
present the usage of SPIDER for programming 
genetic algorithms. Additionally, the intent of this 
paper is to demonstrate the SPIDER and more 
specifically, the SpiderCNP IDE, as convenient 
teaching and learning software for presenting the 
core concept layed behind the GA, both as a whole, 
and as its operators. The emphasis is on how to 
implement declaratively various selection methods, 
the crossover and mutation Bernoulli trials [15]. The 
SPIDER program is visually identical to the 
aforementioned operators’ “natural” graphical 
descriptions, i.e. to the manner the developer thinks 
and specifies nondeterministic and randomized 
algorithms. Due to the fact that the program is 
intuitive, CNP implementations and SpiderCNP IDE 
respectively can be successfully applied in teaching 
GA. 

There are two main approaches for using software 
in teaching an introduction to genetic algorithms [16] 
- using frameworks or libraries, and the second one - 
programming а simple genetic algorithm starting 
from scratch. For didactical purposes allowing 
students to make their own programs is the preferable 
approach, since the students have to assimilate the 
basic concepts in detail. Moreover, once a sense of 
control over the process is acquired, students can run 
the algorithms step-by-step and review the traces of 
the algorithm, analyze the effect of the operators, 
while using the capabilities of current IDEs in their 
own code. The best way to apply this approach is to 
use more expressive programming languages. 

This paper presents the expressiveness of 
SPIDER and the suitability of SpiderCNP IDE in 
programming GA. This IDE has been used for 
several years in the Advanced Algorithm Design 
master course at Ruse University and has already 
proven to be very useful in teaching 
nondeterministic, heuristic, and randomized 
algorithms, including GA. 
 

2 The basics of Control Network 

Programming 
This part is a concise description of CNP and the 
methodology of programming in SPIDER. A more 
in-depth description of CNP - the theoretical model, 
CNP solutions to some exemplary problems, and 
SPIDER IDEs, can be found in [8][17][18].  

What is known in traditional programming 
languages as a “program”, in CNP is named a 
Control Network (CN) because it is a set of visually 
represented graphs (subnets). Each subnet can 
invoke another subnet, even invoking itself is viable. 
The starting point of the program is the so-called 
main subnet. The nodes of the subnet are named 
states, and the arrows are sequences of primitives. 
The states present the moments of computation and 
the primitives are elementary functions created by the 
CNP developer in some procedural, even object-
oriented language. The computation in CNP is not 
deterministic, as it is in the imperative programming 
paradigm, but a graph traversal, executing the 
primitives along the way. The built-in interpreter 
(computation/search engine) uses an extended 
backtracking algorithm for searching a path from the 
start state of the main subnet to the system state 
FINISH. The primitives can be successfully or 
unsuccessfully executed -  the conditions for a failure 
are defined by the programmer. When a primitive is 
unsuccessfully executed the control backtracks, 
causing the interpreter to change the direction of 
traversing and executing the primitives from the 
current arrow “backward” (performing “undo” of 
their actions made in a forward direction). Detailed 
and formal descriptions of the syntax and semantics 
of SPIDER can be found in [19][9]. 

We can approach solving problems in CNP in two 
ways. In the first approach, the CN is similar to a 
UML-activity diagram or a flowchart of the problem 
solution. In this case, the CN actually emulates an 
algorithm and, consequently, does not involve any 
nondeterminism. Having a pure imperative nature of 
the CN, we refer to these kinds of CNP 
implementations as imperative or procedural 

implementations, and CNP manifests itself as a 
universal programming paradigm. CNP offers a 
much different and more interesting approach when 
it is used as a declarative programming paradigm. In 
this case, the CN simply describes the problem 
(possibly involving nondeterminism or randomness) 
and does not require the development of an explicit 
procedure that implements the search process for 
finding the solution. Instead, the built-in search 
engine, along with a rich palette of system tools that 
control it, performs the desired strategy. Such a 
strategy could be even a heuristic or a stochastic one. 
These “automatic” implementations of search 
algorithms are called declarative or non-

procedural. However, not all strategies are suitable 
for such an elegant non-procedural solution. 
Algorithms that can be directly implemented should 
be based on the backtracking strategy. Some more 
complex strategies, such as metaheuristic and genetic 
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algorithms, require a combination of both procedural 
and declarative techniques, and their 
implementations are called hybrid. 

An example of a CNP program will be 
demonstrated using the second, more interesting 

approach for development – the declarative one, on a 
well-known AI toy problem - the Monkey and 

Banana Problem (MBP) as is stated in [20]: 
 
The natural graph-like representation of this 

problem reflects its physical environment, i.e. the 
map of the room, and is depicted in Fig. 1. The nodes 
of this graph are the positions in the room (Door, 
Middle, and Window), and the arrows are the possible 
actions of the monkey from a given position (Walk, 
Push, Climb, or Grasp). This problem definition is 
nondeterministic, due to the presence of more than 
one arrow coming out of a node, that can be tried in 
searching for a solution. 

 

 
 

Fig. 1: Monkey and Banana Problem 
 
The declarative solution of MBP (with an 

emphasis on CN, rather than on primitives’ 
implementation), corresponding to its non-
procedural specification from Fig. 1, is presented in 
Fig. 2. Both screenshots are from SpiderCNP IDE – 
the current CNP programming environment, 

equipped with an embedded graphic editor and 
debugger. 

The CN consists of a main subnet 
MonkeyAndBanana and the subnet Room. The task 
of the main subnet is to initialize the variable 
StartPlace (the starting position of the monkey, e.g. 
the door in our case of problem definition), to call the 
subnet Room with the StartPlace as an initial point 
of traversal, and at the end – to print the solution. The 
second subnet Room “copies” the definition of the 
problem in its graphical form presented in Fig. 1. In 
other words, the subnet Room has a descriptive 
nature rather than a procedural one and the task of the 
built-in interpreter is to “compute” this subnet, 
searching for a path in a backtracking manner 
between the initial state and the system state 
RETURN. 

Assigning the responsibility for finding the 
solution of the problem to the built-in inference 
engine, the CNP programmer, eventually, may want 
to use some of its static control tools (system 
options) in order to switch off/on backtracking, to 
prevent infinite loop and recursion, or to specify 
some parameters of the found solution paths, e.g. 
their number, length, or costs. For example, if an 
acyclic path of monkey’s positions is required the 
option [LOOPS=0] should be used. Determining 
another system option [SOLUTIONS=ALL] forces 
the interpreter to find all the solution paths. 

In addition to the static tools for controlling the 
basic parameters of the built-in search mechanism, 
the CNP programmer has the possibility to upgrade it 
in a more advanced strategy like its heuristic or 
stochastic variant. This can be achieved by 
rearranging, selecting, or reducing the outgoing 
arrows from a given state, randomly or according to 
their heuristic evaluations or selection probabilities. 
The programmer is provided with system tools for 
performing such action even when computation is in 
process. That’s why these types of tools are referred 
to as dynamic control tools. In fact, to a large extent, 
it is the dynamic control tools that make CNP 
especially suitable for easy programming of heuristic 
and stochastic strategies. Description of the SPIDER 
toolkit for static and dynamic control of the main 
built-in search mechanism is made in [21][22], whilst 
its usage and methodology for modeling various 
advanced strategies are discussed in [23][24][25].
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Fig. 2a: CNP program – Monkey and Banana Problem – the main subnet 

 

Fig. 2b: CNP program – Monkey and Banana Problem – the “Room” subnet

3. Simple Genetic Algorithm 
Following the idea to demonstrate how the genetic 
algorithms, in their general form, are approached in 
SPIDER, the prime genetic algorithm named a 
Simple Genetic Algorithm (SGA) [20], is 
implemented.  

The genetic algorithms theory was developed and 
published by John Holland in 1975 [26] and since 
then there have been many applications in science 
and economics. Genetic algorithms (GA) are 
stochastic, heuristic search algorithms that mimic the 
model of natural evolution to solve optimization 
problems. Some candidate solutions, i.e. feasible 
solutions [27] to the problem, form the so-called 

population of individuals (chromosomes) and 
compete for а survival based on their fitness 
(objective function). A generic structure of GA 
includes three basic operators - selection, crossover, 
and mutation. They are performed on the population, 
generating a new population, in the hope that it will 
be better, and ideally containing the global optimum. 
SGA simplifies offspring generation and parent 
replacement by using two non-overlapping 
populations. This “evolution” process is repeated 
until some termination criterion is met. Algorithm 1 
shows the pseudocode of SGA (a version of 
[28][29]): 
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Algorithm 1: SGA 
Result: best solution in the current population 
 
[Start] Generate randomly, or heuristically 
(through a greedy algorithm), a population of n 
chromosomes (represented as strings) and evaluate 
their fitness. 
while the end condition is not satisfied do 

 [Generation] repeat 

  [Selection] Select two parents from the 
population, with selection probability 
depending on a fitness function. 

  [Crossover] Cross over the parents with a 
probability Pc and generate two new 
individuals. 

   if no crossover then 
   Copy the parents into children.  
   end  
  [Mutation] Change the two new 

chromosomes at each locus with a probability 
Pm and add them to the new population. 

 until the new population is complete; 
 if n is odd then   
  Delete randomly a new population member. 
 end    
 [Replace] The new population becomes a 

current population. Keep the best individual 
from the old population (elitism). 

end    
 

This generic idea of GA is very often presented in 
graphical forms [30] [31], similar for example to the 
UML-diagram depicted in Fig. 3: 

 
SGA 

 
 

 

 

 

Generation 

 
 

Fig. 3: The Simple Genetic Algorithm 
 

The mathematical modeling of GA is presented in 
[32], and the computational complexity of SGA was 
analyzed by Oliveto and Witt and has been proven to 
have exponential runtime with overwhelming 
probability for population sizing up to μ≤n1/8−ε for 
some arbitrarily small constant ε and problem size n 

[33]. 
 

4 Programming SGA in SPIDER 
Intending to demonstrate the CNP programming 
methodology applied to genetic algorithms we have 
implemented the SGA on an example toy-problem, 
namely the 8-queens. Specifically, we use the 
problem instance, as it is presented in figure 4.6 from 
[34], which is defined onto a population of four 
chromosomes. As the algorithm’s termination 
criterion the number of generations was chosen. 

The population is represented as an array of four 
8-digit strings along with their fitness values. Each 
digit, which is a number from 1 to 8, is the column of 
the chess board where the queen is placed (the row is 
determined by the index of the array). The objective 
function calculates the number of pairs of queens that 
do not attack each other and is to be maximized, with 
a maximum value of 28 for a solution. 

In the previous section, the SGA was presented in 
the form of a UML diagram which obviously has a 
graph-like structure. Hence, it is easy to translate it 
into a CN. The conversion is in an almost trivial 
manner – the initial, final, and conditional UML 
blocks “become” states of the CN, while the 
operational UML blocks form the arrows of the CN. 
As a result, the CN depicted in Fig. 4, mirrors the 
algorithm’s specification from Fig. 3: 
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main MainNet; 

 

sub SGA; 

 

sub Generation; 

 

Fig. 4: SPIDER implementation of SGA 
 

The main subnet MainNet has an initialization 
purpose mainly. The primitive Init initializes SGA 
parameters (declared as global variables) - the 
number of generations (NGen), crossover probability 
Pc, mutation probability Pm, and their inverse values 
(InvPc and InvPm). Note that the concrete 
programming implementations of the primitives in 
the presented CNP solution will not be discussed as 
they have simple logic and could be easily 
implemented in any imperative programming 
language. MainNet calls the subnet SGA and prints 
the solution found. The subnet SGA implements the 
main steps from the Algorithm 1 – creation of the 
initial population (primitive Start), generation of a 
new population (subnet Generation), and replacing 
the current population with the new one (primitive 
Replace). The population renewal is performed 
NGen number of times. It is easily achieved by the 
system option [LOOPS=NGen] for the state 0. In the 
general case, the option [LOOPS=n] is designed to 
limit the repeated visits to a given state, although its 
most common use is to prevent loops. The solution to 
the problem is found by the primitive BestSolution 

as the best-fit individual in the final population. The 
subnet Generation implements the inner loop of the 
SGA - iterations over the offspring generating until 
the new population is filled in. Therefore, it has 
similar to the subnet SGA architecture –  it binds the 
basic SGA operators – selection, crossover, and 
mutation – and repeats them two times, through the 

system option [LOOPS=2], in order to generate four 
children. 

In the described part of the CNP implementation 
(Fig. 4) we have used the first approach for CNP 
programming – the procedural. What follows is the 
demonstration of the second approach – the 
declarative one, in implementing the randomness and 
heuristics in GA. As it is well known, the GA can be 
viewed as a random heuristic search in the search 
space of the problem, guided by the “intelligent 
ideas” of the nature - selection, crossover, and 
mutation. One of the main features of the 
randomized, heuristic, and nondeterministic 
computation, is the existence of so-called “choice 
points” [27][35], i.e. the points where a choice of the 
way to proceed is to be done. These choice points 
have а natural graph-like representation. The 
stochastic heuristic nature of the three GA operators 
is determined by the incorporation of randomness 
and heuristics in their choice points – in the selection 
of the mating parents and in the decisions to perform 
(or not) a crossover and a mutation. In SPIDER there 
is no need for the programmers to implement the 
randomness and heuristics themselves. Instead, 
programmers simply specify the choice points with 
all the alternatives as states in CN with outgoing 
arrows, corresponding to these alternatives. Then 
they (the programmers) can use built-in tools (control 
states and system options), which model a random or 
a heuristic choice of the emanating arrow to be 
traced. The resulting SPIDER implementations are 
declarative and correspond to the natural 
understanding of nondeterministic, heuristic, and 
random choice because they keep the graphical 
representation of the choice points. 

The declarative implementations of the three 
operators are discussed in detail in the following 
subsections. 

 
4.1 Selection 
The parent selection operator determines how to 
choose the individuals of a population for crossover. 
In Darwin's theory of evolution, the individuals with 
high fitness have a higher probability to be chosen to 
reproduce. A wide variety of selection strategies have 
been proposed, like Roulette Wheel Selection, 
Rank Selection, Tournament Selection, 
Truncation Selection, Threshold Selection, 

Boltzman Selection, and Stochastic Universal 

Sampling [36]. Most of them are very suitable to be 
declaratively programmed in SPIDER and how to 
achieve these implementations will be described 
below. 
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4.1.1 Roulette Wheel Selection 

Roulette Wheel Selection (RWS) is the most 
common approach for applying fitness-proportionate 
selection [28], i.e. the scheme where the probability 
of an individual being chosen is proportional to its 
fitness. It simulates the roulette wheel operation - the 
individuals “occupy” areas of the wheel proportional 
to their fitness values and then the wheel is spun. The 
wheel pointer determines the individual which is 
selected for mating. In the example under 
consideration, where the population size n is 4 
individuals, it is necessary to spin the wheel four 
times – two times for each of the two couples of 
parents. 

The presented idea can be easily implemented in 
SPIDER through a control (not ordinary) state of a 
type, named SELECT. In SPIDER, in the usual case 
the outgoing arrows from an ordinary state are 
traversed in the order they are defined in the CN. But 
there are three types of control states (SELECT, 
ORDER, and RANGE) that allow the predefined 
order of arrows to be dynamically changed and 
controlled according to some “heuristic” evaluations 
of those arrows. The SELECT state has a property 
named a selector and only the arrows with an 
evaluation identical to the selector are selected to be 
examined. In addition, the system options 
SELECTMODE and PROXIMITY allow refining, 
“tuning” this choice. The graphical sign of SELECT 
state is а rhombus. 

The selection of the parent couple is modeled 
through the SELECT control states PARENT_1 and 
PARENT_2, presented in Fig. 5. The primitive 
GetFitnesses initializes the variables Fi, i∈ {1, .., 4} 

with the fitness values, which play the role of arrow 
evaluations of PARENT_1 and PARENT_2. Both 
states use the variable WheelPoint as a selector. The 
system option [SELECTMODE=ROULETTE] 
determines the selection of the active arrow to be in 
accordance with the principle of roulette with a wheel 
pointer, presented by the state selector WheelPoint 

(random number). 
The selected parents are stored in the global 

variables Parent1 and Parent2 by the primitives 
SetParent1 and SetParent2. The parameter of these 
primitives is the index of the selected chromosome 
from the population. 

 
 
 
 
 
 
 
 

sub Selection; 

 

 
 

Fig. 5: SPIDER implementation of RWS  
 

4.1.2 Rank Selection 

Rank Selection is the other classical selection 
operator, built-in in SPIDER. It selects parents 
according to their ranks, i.e. the worst chromosome 
has a fitness 1, the next one 2, etc., and the best will 
have a fitness n. Therefore, it utilizes the relative 
instead of the absolute fitness value. It doesn't matter 
what the fitness ratio is between the fittest individual 
and the next one - their selection probabilities would 
be the same in all cases. The distinction between 
RWS and Rank Selection is illustrated (Fig. 6) in the 
following figure from [28]: 
 

 
 

Fig. 6: RWS vs Rank Selection 
 

The implementation of Rank Selection in 
SPIDER could be achieved straightforwardly by a 
slight modification of the program depicted in Fig. 5 
– simply by using the option 
[SELECTMODE=RANK] instead of 
[SELECTMODE=ROULETTE]. The fragment of 
the SPIDER solution for one of the parents is 
depicted in Fig. 7: 

 

 
 

Fig. 7: Fragment of the SPIDER implementation of 
Rank Selection – choosing the first parent 
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4.1.3 Tournament Selection 

The RWS and Rank Selection methods described 
above are time-consuming procedures as they require 
a computation of the fitness value of each individual 
in the population, and/or sorting of the entire 
population. Tournament Selection is similar to RWS 
as an idea, but it is computationally more efficient. It 
involves choosing k individuals from the population 
randomly who are participants in the tournament and 
selecting deterministically or stochastically the 
winner from that group. 

The implementation of the Tournament Selection 
in CNP will be presented just for the first parent from 
the mating pair (Fig. 8). 

 

 
 

Fig. 8: Fragment of the SPIDER implementation of 
Stochastic Binary Tournament Selection – choosing 

the first parent 
 

The random selection of the participants in a 
binary tournament (when k=2) is achieved using 
system options [ORDEROFARROWS=RANDOM] 
and [NUMBEROFARROWS=2] determining that 
the outgoing arrows from the state CHOOSE will be 
rearranged randomly and two of them will “survive”. 
The primitive Individual records the individual, 
specified by the primitive’s parameter, in the global 
structure Tournament_Participants and calculates its 
fitness. 

Tournaments can be either deterministic, in which 
the best solution is always selected, or stochastic, 
where less fit solutions may be probabilistically 
chosen. In the stochastic binary tournament, after two 
individuals are picked out of the population, a 
weighted (biased) coin is then tossed. The idea of the 
weighted coin toss (Bernoulli trial), coming up heads 
with some probability Pt, is usually 

implemented as follows: a randomly 

generated number 0 ≤ r ≤ 1 is compared 

with Pt. If r < Pt, the better individual is chosen, 
otherwise - the other one. The probability Pt is a 
parameter of the algorithm, which could be fixed, for 
example, 0.75, or depending on the run, like in the 
Boltzman tournament, which has clear similarities to 

simulated annealing. In fact, the Bernoulli trial is 
equivalent to RWS with only two sectors – with 
selection probabilities Pt, and respectively 1-Pt. The 
random number r is the wheel pointer. This is 
implemented in SPIDER (Fig. 8) by the SELECT-
type control state, named WEIGHTED_COIN, and 
the system option [SELECTMODE=ROULETTE]. 
The two outgoing arrows are labeled with evaluations 
Pt and InvPt. The primitive SetParent1 records the 
winner of the tournament as the first parent. The 
primitive’s parameter identifies which one of the two 
tournament participants is selected. 

The CNP-implementation of the deterministic 
tournament will be presented in a more general case 
– k-tournament. After the k individuals are chosen 
from the population, the best one is selected through 
a control SELECT-state whose selector is equal to the 
maximum fitness value. The system option 
[PROXIMITY=NEAREST] will cause the arrow 
labeled with a value Fi, i∈ {1, .., k}, closest to the 
value of the selector to be chosen. Fig. 9 is a fragment 
of the SPIDER implementation illustrating this idea 
in the case of k=3 (see the control state 

TOURNAMENT). 
 

 
 

Fig. 9: Fragment of the SPIDER implementation 
of Deterministic Tournament Selection 

 
The correspondence between the graphical 

representation of the Tournament Selection from [37] 
(Fig. 10), usually used in the explanation of the idea, 
and the CNP implementation is evident. This results 
in easy programming and a better understanding of 
the algorithm. 

 

 
 

Fig. 10: Tournament Selection 
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4.1.4 Truncation Selection 

In the previously described selection methods the 
mating pool is gradually filled, while in the 
Truncation Selection and Threshold Selection it is 
generated at once. 

In the Truncation Selection, only a percentage p 
of the population participates in the crossover, i.e. the 
individuals are sorted according to their fitness 
values, and then some proportion p of the best ones 
is chosen to reproduce. 

This idea is easily implemented in SPIDER by a 
control state of another type – ORDER, graphically 
represented as a pentagon. Its outgoing arrows are 
traversed according to the proximity of their 
estimates to the state selector. Stating this selector 
with the biggest possible fitness value will cause 
ordering the individuals, i.e. the arrows, in decreasing 
order of their fitness – the fittest one will be 
attempted first. The truncation of the non-perspective 
individuals is accomplished by the system option 
[NUMBEROFARROWS=n*p], where n is the size 
of the population. This idea is applied to the 8-queens 
problem under discussion assuming p=1/2. The 
resulting fragment of CN is depicted in Fig. 11. The 
best half of the population, respectively the best half 
of arrows emanating from the state TRUNCATION, 
will be taken into account. 

 
sub Selection; 

 
 

Fig. 11: SPIDER implementation of Truncation 
Selection 

 
4.1.5 Threshold Selection 

In Threshold Selection individuals that are below the 
threshold fitness value are not examined. This variant 
of the Truncation method determines the fraction of 
the population to be chosen for reproduction, not 
according to a number of individuals, but to a fitness 
bound. 

In SPIDER there is another, very powerful control 
state, named RANGE, and graphically represented as 
a hexagon, which cuts off the arrows, according to 
their evaluation values. It has two parameters – lower 
bound L and upper bound H, and only the arrows 
whose evaluations are in the range [L, H] “survive”. 
Therefore, this type of control state with a 
specification of just one of the selectors is an 
appropriate tool for implementing the idea of a 
Threshold Selection. The corresponding SPIDER 
implementation for the 8-queens problem is 

presented in Fig. 12. As the fitness function is to be 
maximized, the threshold of the selection method is 
set as a lower bound, respectively the selector 
LowBound of the control state THRESHOLD. 

 

sub Selection; 

 
 

Fig. 12: SPIDER implementation of the Threshold 
Selection 

 
Furthermore, in SPIDER we can determine the 

order of entering the individuals in a mating pool, 
specifying the value of the system option 
RANGEORDER. This allows the mating pool to be 
created in increasing or decreasing order of the 
fitness values, or randomly. 

 
4.2 Crossover 
Once a couple of parents is selected, they cross over 
with a probability Pc to get two children. If no 
crossover occurs, then the children copy their 
parents. This concept could be modeled by a 
weighted coin toss, i.e. а Bernoulli trial with 
probability Pc. As it has already been demonstrated 
in the previous section, the weighted coin toss is 
easily simulated by an RWS method with two 
roulette segments, which may be chosen with 
probabilities Pc, and respectively 1-Pc. Realizing 
that, the SPIDER implementation of the crossover 
operator is straightforward. 

 
sub Crossover; 

 
 

Fig. 13: SPIDER implementation of Crossover 
 
The depicted in Fig. 13 subnet Crossover works 

on two parent’s chromosomes and produces as an 
outcome two offspring chromosomes. The method of 
a weighted coin toss, determining whether the 
crossover on the parent pair will be performed, is 
implemented by the SELECT-type control state 
WEIGHTED_COIN with two emanating arrows - 
with selection probabilities Pc, and correspondingly 
1-Pc. Which of these two alternatives will be chosen 
is determined according to the Roulette wheel 
method by setting the system option 
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[SELECTMODE=ROULETTE]. The primitive 
GenChildren executes the crossover itself. If  no 
crossover occurs, i.e. the second arrow is active, the 
primitive CopyParentsToChildren copies parents 
(variables Parent1 and Parent2) into children Child1 
and Child2. 

 
4.3 Mutation 
The two offspring chromosomes then undergo a 
mutation process (Fig. 14). 
 
sub Mutation; 

 
Fig. 14: The “Mutation” subnet 

 
In SPIDER, similarly to primitives (and to 

functions in programming languages), the subnets 
could have parameters. This feature serves very well 
in use cases where we need to “execute” subnets with 
different data. The formal parameter Child of the 
subnet MutationChild (Fig. 15) determines on 
which chromosome the mutation is performed.  

 
sub MutationChild; 

 
 

Fig. 15: SPIDER implementation of Mutation 
 

The mutation is defined as a modification with 
some usually very small probability Pm at each locus 
in the chromosome. The global integer variable 
Locus ranged from 1 to 8 is processed by the 
primitives InitLocus and NextLocus. The 
probabilistic mutation at a given locus is performed 
again by a Bernoulli trial and implemented in 
SPIDER as a SELECT-control state 
WEIGHTED_COIN with an option 
[SELECTMODE=ROULETTE]. In addition, the 
system option [LOOPS=8] determines how many 
entries are allowed to this state, corresponding to the 
number of genes in the chromosome. 
 

5 Students’ Opinion 
SPIDER programming and SpiderCNP IDE have 
been used for five years in a graduate course on 
Advanced Algorithm Design which deals with the 
design techniques that cope with hard problems (non-
polynomial time problems). The CNP approach has 
been introduced and implemented as an instrument 
for the realization of more advanced design 

techniques such as intelligent exponential search, 
randomized algorithms, heuristic algorithms, and 
local search.  

 

 
Fig. 16: Likert Scale multiple choice positive 

questions’ results 
 
To get a student’s feedback on the effectiveness 

of SpiderCNP as an educational environment and to 
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improve it, in the last four years, we conducted 
qualitative questionnaires together with the students. 
The survey was carried out on a sample of 103 
Master's degree students. It includes two types of 
multiple-choice questions. 

The summary quantitative data of the 5-Likert 
Scale multiple-choice questions are presented in 
percentages in Fig. 16 and Fig. 17, for positive and 
negative questions, respectively:  

 

 
 

Fig. 17: Likert Scale multiple choice negative 
questions’ results 

 
The quantitative results from the second type of 

closed questions are presented graphically in Fig. 18 
and Fig. 19: 

 
Which of the following features of CNP do you 

like? [Mark all answers that apply] 

 
 
A: Programming by drawing graphs 

B: Flow of control is clear and understandable 

C: The programmer need not bother about the 

existence of multiple possible solution paths 

D: Powerful means for computation (inference) 

control are available 

E: The programming environment helps me develop 

the solution easily 

F: Other 
 

Fig. 18: Question chart: “Which of the following 
features of CNP do you like?” 

 
Which of the following features of CNP do you 

dislike? [Mark all answers that apply] 

 
 
A: Installation is difficult   

B: Understanding is difficult   

C: Writing and testing primitives is difficult   

D: Drawing and editing the Control Network using a 

graphical editor is annoying   

E: The separation of the control (the Control 

Network) and the primitives used is counter-

intuitive and confusing   

F: Other: 

✔ “We come from a traditional programming 

background, so it is slightly easier for us to do 

things using imperative and object-oriented 

programming styles. I accept that the CNP is 

easy to use. C, C++, Java, etc. might be more 

complicated than CNP, but they are much 

more flexible and fast.”   

✔ “In CNP, we draw graphs, and then the GUI 

generates the code behind it. It might seem 

nice, but it is not.”   

✔ “We were given just some simple problems. 

Real-life problems would be really 

complicated, and someone cannot draw all of 

them by hand.” 

✔ “In addition, there is no updated version of CNP 

in MacOS and Linux. It works only on 

Windows. IMHO, you should have written a 

plug-in to Eclipse or Netbeans, then it can run 

on any platform. Or, just make it open source 

maybe.”   

✔ “The habits can be the reason but I don't prefer 

CNP unless my work is related to AI. It is good 

to visualize the working progress of the 

program basically with arrows and maps. But 

because of the insufficient map-drawing tool, 

it takes much time to draw the map. It is not 

reasonable for me to make an effort and spend 

much time only to see the progress of the 

program.” 

 

Fig. 19: Question chart: “Which of the following 
features of CNP do you dislike?” 
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The survey response data from the Likert scale is 
analyzed through Chi-square statistical test, which is 
used in order to examine the differences between 
actual responses and expected responses. Chi-square 
evaluates the statistical significance of a particular 
hypothesis. We set the null hypothesis as follows: 
“There is no difference in the proportion of ‘agree’ 
and ‘disagree’ answers.“. Thus, we combine the 
answers ‘strongly agree’ and ‘agree’ into one 
category, ‘strongly disagree’ and ‘disagree’ into 
another, and skip the neutrals. The χ2 statistic 
displayed in Fig. 16 and Fig.17 is calculated for each 
of the questions: χ2 = ∑(Oi – Ei)

2/Ei, where Oi is the 
observed (actual) value and Ei is the expected value. 
The critical χ2 value is 3.84 in the case of the 
significance level 0.05 and the degrees of freedom 1. 
If the calculated χ2 value is greater than the critical χ2 

value, there is strong evidence to reject the null 
hypothesis of ‘no difference’. Therefore, it is 
concluded that in most of the questions there is a 
significant difference in the proportion of ‘agree’ and 
‘disagree’ responses.  

The survey conducted with our students shows 
that 75% of them are satisfied with the CNP approach 
to programming. Other results reveal that 61% think 
that CNP is successful and effective in simulating 
nondeterministic, heuristic, and randomized 
algorithms while 66% find SpiderCNP IDE helpful 
in studying genetic algorithms. According to 51% of 
answers, SpiderCNP IDE is visually very attractive 
and easy to learn, while the most significant difficulty 
is coding the primitives and encountering a new very 
different programming paradigm. The most liked 
features of CNP (77% of students) are programming 
through drawing graphs, the understandable control 
flow, the lack of necessity to work with 
nondeterminism, and the existence of multiple 
possible solution paths. 

Based on the presented results, it can be assumed 
that the overall impression is positive. According to 
the majority, the CNP, SPIDER, and SpiderCNP IDE 
are useful and supportive for students in their efforts 
to apprehend and master the uneasy concept of 
genetic algorithms. 
 

6 Discussion 
In this section we summarize and comment on the 
results of the presented study and its contributions 
and limitations in comparison with the corresponding 
studies. 

While imperative programming has been 
extensively studied and used to implement GA [3], 
exploration of the feasibility of the declarative 
paradigm is not a focus of attention for software 

researchers. The efforts to implement declaratively 
GA are aimed at logic programming in Prolog and 
programming in languages with functional features. 
Prolog was used many years ago [38] [39] in the 
implementation of GA. Despite the advantages 
presented over imperative languages such as compact 
code and built-in 'don't care' operator, the approach is 
of limited use due to the limited   control means of 
the logic inference mechanism. More recent research 
[6] explores the feasibilities of some concurrent-
functional languages like Erlang, Scala, Clojure, etc. 
to develop GA, but in its parallel versions. 

SPIDER is distinguished from the conventional 
imperative and declarative approaches by the 
following features: 

● SPIDER applications are multi-paradigm 
projects in which the imperative object-
oriented paradigm is enhanced by adding 
means for programming nondeterministic, 
heuristic, and genetic algorithms.  

● SPIDER program is visually presented as a set 
of recursive graphs. GA is implemented in the 
same way. The graphical declarative 
specification of SGA reflects clearly the logic 
of the algorithm. 

● SPIDER provides built-in ‘RWS’ and ‘Rank’ 
operators.  Other heuristic and stochastic 
system tools allow experimentation with 
different genetic operators to obtain a wide 
variety of GA. 

● Imperative and functional languages may be 
trickier to debug GA programs. Unlike them, 
SPIDER supports a visual graphical tracing 
facility, i.e. step-by-step tracking of the 
computation flow on the graph program. 

● The graphical presentation of the program and 
the possibility of graphical debugging allow 
SPIDER, and more specifically SpiderCNP 
IDE, to be used as appropriate software for 
teaching and learning GA. 
 

As a result of the study of the feasibility of 
SPIDER for GA programming in solving complex 
problems and in GA teaching, some limitations of the 
CNP approach have been noticed: 

● The SPIDER modeling of choice points with a 
lot of alternatives leads to difficulties in their 
graphical representation. 

● The traditional programming background of 
students is imperative and the development of 
declarative programs is slightly unusual for 
them. 

● Some students find difficulties in the visual 
development of a program by drawing graphs 
instead of program textual specification. 
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7 Conclusion 
Many problems, especially those involving 
nondeterminism, are usually presented in the form of 
a graph, because of their innate nonlinear structure. 
SPIDER and its supporting visual IDE - SpiderCNP 
were developed in response to the desire to eliminate 
the “representational gap” and allow the program to 
be a graph, moreover, the program could be a 
recursive network. Unlike another declarative 
programming language – PROLOG, where the 
program also has the form of a graph, but it is 
implicit, in SpiderCNP the program is represented 
graphically which is more comprehensive and easily 
verifiable. It is unnecessary for programmers to cope 
with the nondeterminism, instead, the built-in 
interpreter does it for themselves. Furthermore, the 
programmers are enabled with a powerful visual 
toolkit for interpreter control which allows for 
automatic, i.e. declarative implementation, not only 
of nondeterministic but also heuristic and 
randomized strategies [11][40][13]. 

GA are examples of such kinds of algorithms. The 
fundamental operators of GA – selection, crossover, 
and mutation have choice points where a choice 
(often random or heuristic) of the way to proceed is 
to be done. These choice points have an inherent 
graph-like representation, which helps for a better 
understanding of the idea. Keeping this graphical 
description in the SPIDER implementation and 
automating the stochastic and heuristic choice 
through built-in tools, makes this implementation 
easily programmed and intuitive. 

In our teaching experience, the notion of “genetic 
algorithms'' causes significant difficulties for 
students due to the complexity of this type of 
metaheuristics. SpiderCNP IDE not only allows for 
easy programming of the basic GA but also enables 
students to experiment with the different methods for 
selection, crossover, and mutation (even ones 
developed by themselves) using the rich palette of 
heuristic and stochastic SPIDER tools. The resulting 
SPIDER programs are visually identical to their 
“natural” graphical descriptions, i.e. to the manner 
the developer thinks and specifies nondeterministic 
and randomized algorithms. This makes the concept 
of GA more comprehensive. Due to the fact that the 
resulting CNP programs are intuitive, SPIDER 
implementations and SpiderCNP IDE respectively 
can be successfully used in teaching GA. Our current 
experience in delivering a course on Advanced 
Algorithm Design strongly supports this statement. 

We are currently investigating two main 
enhancements to SPIDER. We are adding system 
tools to provide other variants of GA operators, e.g. 
Boltzman Selection and Stochastic Universal 

Sampling. Thus the language will cover a wider class 
of GA and will increase the flexibility of the 
SpiderCNP IDE as a teaching software. Secondly, 
CNP can be extended to other programming 
languages. Currently, the host languages of SPIDER 
are Delphi Object Pascal and Lazarus Free Pascal.  
C++-based SPIDER is under development and the 
other candidates could be C#, Java, and Python.  

Another direction for future efforts could also be 
the improvement of SpiderCNP IDE. 
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