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Abstract: - Regression analysis is a statistical approach used to investigate the correlations between variables, 

especially linear regression, that is a simple but effective approach for analyzing the relationship between a 

dependent variable and one independent variable. Since it has limitations based on the assumption that the 

mean of the noise should be zero, there are still some areas where it may be improved. In this article, we 

introduce a novel data fitting algorithm called the pulling linear regression, which is separated into two types: 

the line-pulling linear regression and the band-pulling linear regression. The method is developed from linear 

regression, which can create the regression line from the function that uses noise with various distributions. The 

result demonstrates that the sequence of sum square errors of the pulling linear regression is convergent. 

Moreover, we have a numerical example to show that the performance of the proposed algorithm is better than 

that of linear regression when the mean of the noise is not zero. And the last, we have an application to smooth 

the boundary of the pectoral muscle in digital mammograms. We found that the regression line of the proposed 

algorithm can do better than the linear regression when we would like to remove only the muscle part. 
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1 Introduction 
Least squares linear regression was performed by 

Legendre and Gauss for the prediction of planetary 

movement, [1]. Regression analysis is a statistical 

technique for examining correlations between 

variables used in numerous domains, including 

economics, engineering, physical science, biological 

science, social science, and medicine, among many 

others, [2]. 

Linear regression (LR) is a powerful and 

adaptable method for dealing with regression 

difficulties. The model definition, model estimation, 

statistical inference, model diagnosis, variable 

selection, and prediction are described 

comprehensively, [3]-[6]. Therefore, researchers are 

quite interested in the trend in LR models. For 

example, Pérez-Domínguez et al., [7], offered a 

contribution using linear regression and applied 

Dimensional Analysis (DA) to solve instability and 

error problems of the data transformation. Jokubaitis 

and Leipus, [8], studied the asymptotic normality in 

a high-dimensional linear regression where the 

covariance matrix of the regression variables has a 

KMS structure. Al-Kandari et al., [9], introduced a 

strategy for accounting for uncertainty in the 

residuals of the linear regression model using fuzzy 

statistics. Liu and Chen, [10], improved the ℎ value 

for fuzzy linear regression analysis using symmetric 

triangular fuzzy numbers and the least fuzziness 

criterion. Kabán, [11], provide a new analysis of 

compressive least squares regression that eliminates 

a false log𝑁 component, where 𝑁 is the total 

number of training points. Additionally, several 

researchers have developed methods related to 

linear regression. For example, linear mixed models 

are used by Yi and Tang, [12], Ahn, Zhang and Lu, 

[13], and multiple linear regression is used by 

Uyanık and Güler, [14], Liu et al., [15], Li, He and 

Liu, [16]. 

A linear regression model is defined by 𝑦 =
𝑎𝑥 + 𝑏 + 𝜂 where 𝑎 is a scaling parameter, 𝑏 is a 

location parameter, 𝑦 is the dependent or response 

variable, 𝑥 is the independent or predictor variable, 

and the random variable 𝜂 is the error term in the 

model, [17]-[19]. The linear regression is carried out 

under the assumption that 𝜂 has a normal 

distribution with a mean and variance of zero and 

𝜎2, respectively, i.e., 𝐸[𝜂] = 0 and 𝑉𝑎𝑟(𝜂) = 𝜎2. 

In this article, we will consider the scenario 

where 𝜂 has an alternative distribution or when 
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𝐸[𝜂] ≠ 0, which reduces the influence of partial 

observations by deviating from the regression line, 

𝑦 = 𝑎𝑥 + 𝑏. The two novel algorithms are line-

pulling linear regression (LPR) and band-pulling 

linear regression (BPR), which are presented in the 

next section. 

The remainder of the article is structured as 

follows: the LPR and BPR algorithms are 

introduced in Section 2. Section 3 describes a 

mathematical proof of some property. Next, the 

numerical results of our algorithms are illustrated 

and discussed in Section 4. Section 5 shows how the 

application is used to remove the pectoral muscle. 

Finally, conclusions and some suggestions are 

drawn and presented in Section 6. 

 

 

2 Description of LPR and BPR 
We introduce two novel data-fitting algorithms: 

line-pulling linear regression (LPR) and band-

pulling linear regression (BPR). These algorithms 

are defined as follows:  

Let 𝐷(0) = {(𝑥1, 𝑦1
(0)
) , (𝑥2, 𝑦2

(0)
) , … , (𝑥𝑛, 𝑦𝑛

(0)
)} 

be an initial data such that 𝑥𝑖 are distinct and 

0 ≤ 𝑝1, 𝑝2 ≤ 1. The procedure for the LPR 

algorithm is the following. Set 𝐷𝐿𝑃𝑅
(0)

= 𝐷(0). 

(i) Consider the 𝑘𝑡ℎ iteration, 𝑘 = 1,2,…. We get 

the linear regression 𝑓(𝑘)(𝑥) = 𝛼(𝑘)𝑥 + 𝛽(𝑘) of 

the data 𝐷𝐿𝑃𝑅
(𝑘−1)

, where 

(𝛼(𝑘), 𝛽(𝑘)) = argmin
(𝛼,𝛽)

∑(𝑦𝑖
(𝑘−1) − (𝛼𝑥𝑖 + 𝛽))

2
𝑛

𝑖=1

. 

Denote 𝑢𝑖
(𝑘)

= 𝛼(𝑘)𝑥𝑖 + 𝛽
(𝑘), 𝑖 = 1,2, … , 𝑛. 

(ii) Define a band  

𝑀(𝑘) = {(𝑥, 𝑦)|−𝑑2
(𝑘) ≤ 𝑦 − 𝑓(𝑘)(𝑥) ≤ 𝑑1

(𝑘)
}, 

where 𝑑1
(𝑘) = 𝑝1max

𝑖
{𝑦𝑖

(𝑘−1) − 𝑢𝑖
(𝑘)
}, and  

𝑑2
(𝑘) = 𝑝2max

𝑖
{𝑢𝑖

(𝑘) − 𝑦𝑖
(𝑘−1)

}. 

(iii) Update the data 𝐷𝐿𝑃𝑅
(𝑘)

 given by  

𝐷𝐿𝑃𝑅
(𝑘) = {(𝑥1, 𝑦1

(𝑘)) , (𝑥2, 𝑦2
(𝑘)) , … , (𝑥𝑛, 𝑦𝑛

(𝑘))}, 

such that for each 𝑖 = 1, 2, … , 𝑛, 

(𝑥𝑖 , 𝑦𝑖
(𝑘)) = {

(𝑥𝑖 , 𝑦𝑖
(𝑘−1)); (𝑥𝑖 , 𝑦𝑖

(𝑘−1)) ∈ 𝑀(𝑘),

(𝑥𝑖 , 𝑢𝑖
(𝑘)); (𝑥𝑖 , 𝑦𝑖

(𝑘−1)) ∉ 𝑀(𝑘).
   

(1) 

(iv) Return to step 1 to repeat until the error values 

∑(𝑦𝑖
(𝑘−1) − (𝛼(𝑘)𝑥𝑖 + 𝛽

(𝑘)))
2

𝑛

𝑖=1

< 𝜀, 

where 𝜀 > 0 is a fixed value. 

Following that, we shall introduce the BPR 

algorithm. Set 𝐷𝐵𝑃𝑅
(0)

= 𝐷(0). The steps of the 

algorithm are defined the same as the LPR 

algorithm, except for step (iii), replaced by step 

(iii*) as follows. 

(iii*) Update the data 𝐷𝐵𝑃𝑅
(𝑘)

 given by  

𝐷𝐵𝑃𝑅
(𝑘)

= {(𝑥1, 𝑦1
(𝑘)
) , (𝑥2, 𝑦2

(𝑘)
) , … , (𝑥𝑛, 𝑦𝑛

(𝑘)
)}, 

such that for each 𝑖 = 1, 2,… , 𝑛, 

(𝑥𝑖 , 𝑦𝑖
(𝑘)) =

{
  
 

  
 (𝑥𝑖 , 𝑢𝑖

(𝑘) + 𝑑1
(𝑘)); (𝑥𝑖 , 𝑦𝑖

(𝑘−1)) ∉ 𝑀(𝑘),

𝑦𝑖
(𝑘−1) > 𝑢𝑖

(𝑘) + 𝑑1
(𝑘),

(𝑥𝑖 , 𝑦𝑖
(𝑘−1)); (𝑥𝑖 , 𝑦𝑖

(𝑘−1)) ∈ 𝑀(𝑘),

(𝑥𝑖 , 𝑢𝑖
(𝑘) − 𝑑2

(𝑘)); (𝑥𝑖 , 𝑦𝑖
(𝑘−1)) ∉ 𝑀(𝑘),

𝑦𝑖
(𝑘−1) < 𝑢𝑖

(𝑘) − 𝑑2
(𝑘).

  

(2) 

The two above algorithms are different for 

updating data. The LPR algorithm is used to pull the 

points outside the band toward the regression line, 

but the BPR algorithm is used to pull those points 

toward the boundary of the band as illustrated in 

Fig. 1. 

 
(a) LPR 

 
(b) BPR 

Fig. 1: The proposed algorithm. 

The following is an example of how to 

understand our algorithm. 

Example 1. Let 𝑝1 = 𝑝2 = 0.5. We take 𝑦𝑖 = 𝑥𝑖 +
1 + 𝜂𝑖 where 𝑥𝑖 = 𝑖 and 𝜂𝑖 ∈ (−1,1) is a uniform 

noise.  
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We obtain the initial data for our example,  

𝐷(0) = {(1,1.88), (2,2.76), (3,4.53), (4,5.59), (5,5.37)}, 
(see, Fig. 2). 

In the first iteration, we obtain the linear least 

square regression: 

𝑓(1)(𝑥) = 0.98𝑥 + 1.08. 
The points (1,2.06), (2,3.05), (3,4.03), (4,5.01),

(5,5.99) that lie on the regression 𝑦 = 𝑓(1)(𝑥) and 

𝑑1
(1)
= 0.5max{(1.88 − 2.06), (2.76 − 3.05),

(4.53 − 4.03), (5.59 − 5.01),
(5.37 − 5.99)}  =  0.29 

𝑑2
(1)
= 0.5max{(2.06 − 1.88), (3.05 − 2.76),

(4.03 − 4.53), (5.01 − 5.59),
(5.99 − 5.37)}  =  0.31 

Then, 𝑀(1) =

{(𝑥, 𝑦)|−0.31 ≤ 𝑦 − 𝑓(1)(𝑥) ≤ 0.29} is shown in 

Fig. 3. 

 
Fig. 2: Initial data. 

 
Fig. 3: The band 𝑀(1) for the example. 

In Fig. 3, we found that points (𝑥3, 𝑦3), (𝑥4, 𝑦4) 

and (𝑥5, 𝑦5) are outside of the band 𝑀(1). From 

equations (1) and (2), we will update the data as 

follows: 

LPR: We get the range of 𝐷𝐿𝑃𝑅
(1)

 as {𝑦1
(0), 𝑦2

(0),

𝑢3
(1), 𝑢4

(1), 𝑢5
(1)
} and obtain the updated data,  

𝐷𝐿𝑃𝑅
(1) = {(1,1.88), (2,2.76), (3,4.03), (4,5.01), (5,5.99)}, 

(see, Fig. 4(a)).  

BPR: We get the range of 𝐷𝐵𝑃𝑅
(1)

 as {𝑦1
(0), 𝑦2

(0),

𝑢3
(1)
+ 𝑑1

(1)
, 𝑢4

(1)
+ 𝑑1

(1)
, 𝑢5
(1)
− 𝑑2

(1)
} and obtain 

the updated data, 

𝐷𝐵𝑃𝑅
(1) = {(1,1.88), (2,2.76), (3,4.32), (4,5.30), (5,5.68)}, 

(see, Fig. 5(a)).  

The results of the LPR and BPR algorithms are 

shown in Tables 1 and 2, respectively. In the 6𝑡ℎ 

iteration for LPR and the 11𝑡ℎ iteration for BPR, we 

obtain the regressions 𝑓(𝑥) = 1.03𝑥 + 0.84 and 

𝑓(𝑥) = 1.04𝑥 + 0.84, respectively, for 𝜀 = 0.5 ×
10−5, shown in Fig. 4(b) and Fig. 5(b). 

 
(a) the updated data for the 1𝑠𝑡 iteration 

 
(b) the data fitting for 6𝑡ℎ iteration 

Fig. 4: The result for the LPR algorithm. 

 
(a) the updated data for the 1𝑠𝑡 iteration 
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(b) the data fitting for 11𝑡ℎ iteration 

Fig. 5: The result for the BPR algorithm.  
 

Table 1. The results of the LPR algorithm for 𝐷(0) = {(1,1.88), (2,2.76), (3,4.53), (4,5.59), (5,5.37)}. 

𝑘 
𝑢𝑖
(𝑘)
= 𝑎(𝑘)𝑥𝑖 + 𝑏

(𝑘) Data 
Error 

𝑎(𝑘) 𝑏(𝑘) 𝑦1
(𝑘)

 𝑦2
(𝑘)

 𝑦3
(𝑘)

 𝑦4
(𝑘)

 𝑦5
(𝑘)

 

0   1.880 2.760 4.530 5.590 5.370  

1 0.981 1.083 1.880 2.760 4.026 5.007 5.988 0.109 × 10     
2 1.046 0.793 1.880 2.886 3.932 5.007 5.988 0.284 × 10−1 
3 1.034 0.838 1.880 2.905 3.932 4.972 6.006 0.200 × 10−2 
4 1.032 0.843 1.875 2.905 3.939 4.972 6.003 0.865 × 10−4 
5 1.032 0.842 1.874 2.907 3.939 4.971 6.003 0.523 × 10−5 
6 1.032 0.842      0.174 × 10−6 

Table 2. The results of the BPR algorithm for 𝐷(0) = {(1,1.88), (2,2.76), (3,4.53), (4,5.59), (5,5.37)}. 

𝑘 
𝑢𝑖
(𝑘) = 𝑎(𝑘)𝑥𝑖 + 𝑏

(𝑘) Data 
Error 

𝑎(𝑘) 𝑏(𝑘) 𝑦1
(𝑘)

 𝑦2
(𝑘)

 𝑦3
(𝑘)

 𝑦4
(𝑘)

 𝑦5
(𝑘)

 

0   1.880 2.760 4.530 5.590 5.370  

1 0.981 1.083 1.880 2.760 4.318 5.299 5.679 0.109 × 10     
2 1.014 0.946 1.880 2.806 4.152 5.166 5.847 0.362 × 100   
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
10 1.398 0.840 1.880 2.919 3.961 5.000 6.038 0.128 × 10−4 
11 1.398 0.840      0.328 × 10−5 
 

 

 

3 Main Results 
Definition 1. Let 𝑝1,  𝑝2 ∈ [0,1], 𝐷(0) =

{(𝑥1, 𝑦1
(0)) , (𝑥2, 𝑦2

(0)) , … , (𝑥𝑛, 𝑦𝑛
(0))} be an initial 

data such that 𝑥𝑖 are distinct. The sum square error 

(SSE) of 𝑘𝑡ℎ iteration for LPR with respect to 

(𝐷(0); 𝑝1, 𝑝2) is given by 

𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘) (𝐷(0); 𝑝1, 𝑝2) =∑(𝑦𝑖

(𝑘−1) − (𝛼(𝑘)𝑥𝑖 + 𝛽
(𝑘)))

2
𝑛

𝑖=1

, 

(3) 

where 

(𝛼(𝑘), 𝛽(𝑘)) = argmin
(𝛼,𝛽)

∑ (𝑦𝑖
(𝑘−1) − (𝛼𝑥𝑖 + 𝛽))

2
𝑛
𝑖=1 , 

and 𝑦𝑖
(𝑘)

 is an updated value as mentioned in LPR. 

Similarly, the SSE of 𝑘𝑡ℎ iteration for BPR with 

respect to (𝐷(0); 𝑝1, 𝑝2) is given by 

𝑆𝑆𝐸𝐵𝑃𝑅
(𝑘) (𝐷(0); 𝑝1, 𝑝2) = ∑(𝑦𝑖

(𝑘−1) − (𝛼(𝑘)𝑥𝑖 + 𝛽
(𝑘)))

2
𝑛

𝑖=1

, 

(4) 

where 

(𝛼(𝑘), 𝛽(𝑘)) = argmin
(𝛼,𝛽)

∑ (𝑦𝑖
(𝑘−1) − (𝛼𝑥𝑖 + 𝛽))

2
𝑛
𝑖=1 , 

and 𝑦𝑖
(𝑘)

 is an updated value as mentioned in BPR. 

In specific case, 𝑝1 = 𝑝2 = 0. We observe that 

𝑑1
(1)
= 𝑑2

(1)
= 0, i.e., 𝑀(1) = {(𝑥, 𝑦)|𝑦 = 𝑓(1)(𝑥)}. 

That is, each point in 𝐷(0) is pulled into the line  

𝑦 = 𝑓(1)(𝑥). Therefore, 𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2) = 0 

and 𝑆𝑆𝐸𝐵𝑃𝑅
(𝑘)

(𝐷(0); 𝑝1, 𝑝2) = 0, 𝑘 ≥ 2.  
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In the opposite case, 𝑝1 = 𝑝2 = 1. We then get 

𝑑1
(𝑘)
= max

𝑖
{𝑦𝑖

(𝑘−1)
− 𝑢𝑖

(𝑘)
} and 𝑑2

(𝑘)
= max

𝑖
{𝑢𝑖

(𝑘)
−

𝑦𝑖
(𝑘−1)

}. It means that all points are in 𝑀(𝑘), i.e., 

𝐷(𝑘) = 𝐷(0). Therefore, 𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2) =

𝑆𝑆𝐸𝐿𝑃𝑅
(1)
(𝐷(0); 𝑝1, 𝑝2) and 𝑆𝑆𝐸𝐵𝑃𝑅

(𝑘)
(𝐷(0); 𝑝1, 𝑝2) =

𝑆𝑆𝐸𝐵𝑃𝑅
(1)

(𝐷(0); 𝑝1, 𝑝2), 𝑘 ≥ 2. 

From Tables 1 and 2, we observe that the sum 

square errors are decreasing for both algorithms. 

This leads to the following property. 

Lemma 1. Let 𝐷(0) = {(𝑥1, 𝑦1
(0)
) , (𝑥2, 𝑦2

(0)
) , … ,

(𝑥𝑛, 𝑦𝑛
(0)
)} be an initial data such that 𝑥𝑖 are 

distinct. If 𝑝1, 𝑝2 ∈ [0,1], the sequences 

𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2) and 𝑆𝑆𝐸𝐵𝑃𝑅

(𝑘)
(𝐷(0); 𝑝1, 𝑝2) are 

decreasing on 𝑘. 

Proof. For the 𝑘𝑡ℎ iteration where 𝑘 = 1, 2, 3, … 

Let 𝑢𝑖
(𝑘)

= 𝛼(𝑘)𝑥𝑖 + 𝛽
(𝑘), 𝑖 = 1,2, … , 𝑛, such that,  

(𝛼(𝑘), 𝛽(𝑘)) = argmin
(𝛼,𝛽)

∑ (𝑦𝑖
(𝑘−1)

− (𝛼𝑥𝑖 + 𝛽))
2

𝑛
𝑖=1   

Case LPR: From equation (1), we get 

𝑦𝑖
(𝑘)

= {
𝑦𝑖
(𝑘−1)

, (𝑥𝑖 , 𝑦𝑖
(𝑘−1)

) ∈ 𝑀(𝑘),

𝑢𝑖
(𝑘)
, (𝑥𝑖 , 𝑦𝑖

(𝑘−1)
) ∉ 𝑀(𝑘).

  

Thus, 

(𝑦𝑖
(𝑘)
− 𝑢𝑖

(𝑘)
)
2
  

 = {
(𝑦𝑖

(𝑘−1)
− 𝑢𝑖

(𝑘)
)
2
, (𝑥𝑖, 𝑦𝑖

(𝑘−1)
) ∈ 𝑀(𝑘),

  0, (𝑥𝑖, 𝑦𝑖
(𝑘−1)) ∉ 𝑀(𝑘).

  

  ≤ (𝑦𝑖
(𝑘−1) − 𝑢𝑖

(𝑘))
2
. 

Next, consider equation (3), 

𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘+1)

(𝐷(0); 𝑝1, 𝑝2)   

 = ∑ (𝑦𝑖
(𝑘) − (𝛼(𝑘+1)𝑥𝑖 + 𝛽

(𝑘+1)))
2

𝑛
𝑖=1   

 = min
(𝛼,𝛽)

∑ (𝑦𝑖
(𝑘) − (𝛼𝑥𝑖 + 𝛽))

2
𝑛
𝑖=1   

 ≤ ∑ (𝑦𝑖
(𝑘) − (𝛼(𝑘)𝑥𝑖 + 𝛽

(𝑘)))
2

𝑛
𝑖=1   

 = ∑ (𝑦𝑖
(𝑘) − 𝑢𝑖

(𝑘))
2

𝑛
𝑖=1   

 ≤ ∑ (𝑦𝑖
(𝑘−1) − 𝑢𝑖

(𝑘))
2

𝑛
𝑖=1   

 = 𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2). 

Case BPR: From equation (2), we get 

𝑦𝑖
(𝑘)
=

{
 
 
 

 
 
 𝑢𝑖

(𝑘)
+ 𝑑1

(𝑘)
, (𝑥𝑖, 𝑦𝑖

(𝑘−1)
) ∉ 𝑀(𝑘),

    𝑦𝑖
(𝑘−1)

> 𝑢𝑖
(𝑘)
+ 𝑑1

(𝑘)
,

𝑦𝑖
(𝑘−1)

, (𝑥𝑖, 𝑦𝑖
(𝑘−1)

) ∈ 𝑀(𝑘),

𝑢𝑖
(𝑘)
− 𝑑2

(𝑘)
, (𝑥𝑖, 𝑦𝑖

(𝑘−1)
) ∉ 𝑀(𝑘),

   𝑦𝑖
(𝑘−1)

< 𝑢𝑖
(𝑘)
− 𝑑2

(𝑘)
.

 

Thus, 

(𝑦𝑖
(𝑘)
− 𝑢𝑖

(𝑘)
)
2
  

=

{
 
 

 
 (𝑑1

(𝑘))
2
, 0 ≤ 𝑑1

(𝑘) < 𝑦𝑖
(𝑘−1) − 𝑢𝑖

(𝑘),

(𝑦𝑖
(𝑘−1) − 𝑢𝑖

(𝑘))
2
, (𝑥𝑖 , 𝑦𝑖

(𝑘−1)) ∈ 𝑀(𝑘),          

(−𝑑2
(𝑘))

2
, 0 ≤ 𝑑2

(𝑘) < 𝑢𝑖
(𝑘) − 𝑦𝑖

(𝑘−1),

 

≤ (𝑦𝑖
(𝑘−1)

− 𝑢𝑖
(𝑘)
)
2
.  

Next, consider equation (4), 

𝑆𝑆𝐸𝐵𝑃𝑅
(𝑘+1)

(𝐷(0); 𝑝1, 𝑝2)   

= ∑ (𝑦𝑖
(𝑘)
− (𝛼(𝑘+1)𝑥𝑖 + 𝛽

(𝑘+1)))
2

𝑛
𝑖=1   

= min
(𝛼,𝛽)

∑ (𝑦𝑖
(𝑘)
− (𝛼𝑥𝑖 + 𝛽))

2
𝑛
𝑖=1   

≤ ∑ (𝑦𝑖
(𝑘)
− (𝛼(𝑘)𝑥𝑖 + 𝛽

(𝑘)))
2

𝑛
𝑖=1   

 = ∑ (𝑦𝑖
(𝑘)
− 𝑢𝑖

(𝑘)
)
2

𝑛
𝑖=1   

 ≤ ∑ (𝑦𝑖
(𝑘−1)

− 𝑢𝑖
(𝑘)
)
2

𝑛
𝑖=1   

 = 𝐸𝐵𝑃𝑅
(𝑘)

(𝐷(0); 𝑝1, 𝑝2). 

This completes the proof. ∎ 

From equations (3) and (4), it is obvious that the 

sequences 𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2) and 

𝑆𝑆𝐸𝐵𝑃𝑅
(𝑘)

(𝐷(0); 𝑝1, 𝑝2) are nonnegative sequences, 

that is, they have the lower bound to be zero, and, 

by Lemma 1, they are monotone decreasing, this 

leads to the following theorem. 

Theorem 2. Let 𝐷(0) be an initial data. If 𝑝1, 𝑝2 ∈

[0,1], the sequences 𝑆𝑆𝐸𝐿𝑃𝑅
(𝑘)
(𝐷(0); 𝑝1, 𝑝2) and 

𝑆𝑆𝐸𝐵𝑃𝑅
(𝑘)

(𝐷(0); 𝑝1, 𝑝2) are convergent on 𝑘. 

 

 

4 Numerical Examples 

This section shows the numerical example using the 

initial data generated from the linear function 𝑦 =
𝑥 + 1 and noises (uniform distribution 𝑈(𝑎, 𝑏), 
normal distribution 𝑁(𝑎, 𝑏), and gamma distribution 

𝐺(𝑎, 𝑏) *). We also use various values of 𝑝1 and 𝑝2 

to compare the root mean square error and the 

number of iterations of the proposed algorithm. 
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In Table 3, we generate 𝑦𝑖 by the equation 

𝑦𝑖 = (𝑖 − 11) + 1 + 𝜂𝑖, 
where 𝜂𝑖 is a generated noise, and 𝑖 = 1,2,… ,21. 

Thus, the root mean square error (RMSE) is given 

by 

RMSE(𝑘) = √
1

21
∑(𝑢𝑖

(𝑘)
− 𝑦𝑖)

2
21

𝑖=1

, 

where 𝑢𝑖
(𝑘)

 is obtained from the linear least square 

of 𝑘𝑡ℎ iteration of the proposed algorithms. We 

summarise the result in Table 3 as follows. 

 𝜂𝑖 ∼ 𝑈(−10,0), the LPR algorithm with 𝑝1 =
1 and 𝑝2 = 0.25 has the minimum value of 

RMSE with 59𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑈(−7.5,2.5), the BPR algorithm with 

𝑝1 = 0.75 and 𝑝2 = 0.25 has the minimum 

value of RMSE with 15𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑈(−5,5), the LPR algorithm with 𝑝1 =
0.75 and 𝑝2 = 0.75 has the minimum value 

of RMSE with 11𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑈(−2.5,7.5), the BPR algorithm with 

𝑝1 = 0.25 and 𝑝2 = 0.75 has the minimum 

value of RMSE with 17𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑈(0,10), the LPR algorithm with 𝑝1 =
0.25 and 𝑝2 = 1 has the minimum value of 

RMSE with 71𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑁(−4,1), the LPR and BPR algorithms 

with 𝑝1 = 1 and 𝑝2 = 0 have the minimum 

value of RMSE with 52𝑡ℎ iteration. 

 

 

Table 3. The root mean square error and the number of iterations of the LPR and BPR. 

Noises Algorithms 

Proportions 

𝑝1 = 0 

𝑝2 = 0 
𝑝1 = 0.25 

𝑝2 = 0.25 

𝑝1 = 0.50 

𝑝2 = 0.50 
𝑝1 = 0.75 

𝑝2 = 0.75 
𝑝1 = 0 

𝑝2 = 1 
𝑝1 = 0.25 

𝑝2 = 1 
𝑝1 = 0.25 

𝑝2 = 0.75 
𝑝1 = 0.50 

𝑝2 = 0.75 
𝑝1 = 1 

𝑝2 = 0 
𝑝1 = 1 

𝑝2 = 0.25 
𝑝1 = 0.75 

𝑝2 = 0.25 
𝑝1 = 0.75 

𝑝2 = 0.50 

𝑈(−10,0) 
LPR 

3.555 

(2) 

3.623 

(5) 

3.627 

(10) 

3.663 

(17) 

8.414 

(64) 

8.414 

(64) 

4.259 

(7) 

3.966 

(11) 

0.144 

(58) 

0.143 

(59) 

2.860 

(9) 

3.198 

(11) 

BPR 
3.555 

(2) 

3.649 

(8) 

3.651 

(14) 

3.644 

(31) 

8.414 

(64) 

8.410 

(88) 

5.022 

(20) 

4.409 

(25) 

0.144 

(58) 

0.146 

(77) 

2.133 

(19) 

2.758 

(23) 

𝑈(−7.5,2.5) 
LPR 

1.563 

(2) 

1.562 

(5) 

1.509 

(9) 

1.269 

(14) 

5.819 

(74) 

5.819 

(74) 

2.202 

(7) 

1.676 

(10) 

2.357 

(88) 

2.357 

(88) 

0.401 

(9) 

0.889 

(9) 

BPR 
1.563 

(2) 

1.511 

(8) 

1.464 

(14) 

1.425 

(34) 

5.819 

(74) 

5.815 

(93) 

3.266 

(16) 

2.606 

(22) 

2.357 

(88) 

2.330 

(122) 

0.174 

(15) 

0.337 

(19) 

𝑈(−5,5) 
LPR 

0.372 

(2) 

0.352 

(5) 

0.370 

(7) 

0.323 

(11) 

3.268 

(65) 

3.264 

(67) 

0.906 

(8) 

0.592 

(12) 

4.367 

(88) 

4.367 

(88) 

0.880 

(10) 

0.482 

(11) 

BPR 
0.372 

(2) 

0.374 

(8) 

0.378 

(14) 

0.362 

(29) 

3.268 

(65) 

3.271 

(96) 

1.545 

(17) 

0.886 

(20) 

4.367 

(88) 

4.351 

(117) 

2.170 

(19) 

1.419 

(21) 

𝑈(−2.5,7.5) 
LPR 

1.698 

(2) 

1.698 

(5) 

1.769 

(8) 

1.656 

(15) 

1.694 

(55) 

1.694 

(55) 

1.270 

(9) 

1.584 

(11) 

6.304 

(63) 

6.304 

(64) 

2.007 

(9) 

1.829 

(11) 

BPR 
1.698 

(2) 

1.721 

(8) 

1.701 

(13) 

1.673 

(29) 

1.694 

(55) 

1.692 

(72) 

0.203 

(17) 

0.718 

(23) 

6.304 

(63) 

6.299 

(87) 

3.346 

(18) 

2.729 

(21) 

𝑈(0,10) 
LPR 

4.813 

(2) 

4.804 

(5) 

4.825 

(9) 

4.940 

(15) 

0.027 

(71) 

0.026 

(71) 

4.293 

(9) 

4.383 

(9) 

9.082 

(98) 

9.082 

(98) 

5.738 

(9) 

5.290 

(13) 

BPR 
4.813 

(2) 

4.803 

(8) 

4.839 

(14) 

4.914 

(32) 

0.027 

(71) 

0.075 

(103) 

3.110 

(19) 

3.765 

(21) 

9.082 

(98) 

9.067 

(132) 

6.477 

(18) 

5.890 

(21) 

𝑁(−4,1) 
LPR 

4.073 
(2) 

4.074 
(5) 

4.107 
(8) 

4.053 
(14) 

5.670 
(52) 

5.670 
(52) 

4.356 
(5) 

4.183 
(10) 

2.360 
(52) 

2.360 
(52) 

3.724 
(8) 

3.954 
(10) 

BPR 
4.073 

(2) 

4.074 

(7) 

4.069 

(12) 

4.077 

(26) 

5.670 

(52) 

5.668 

(70) 

4.708 

(15) 

4.471 

(19) 

2.360 

(52) 

2.362 

(69) 

3.340 

(16) 

3.652 

(19) 

𝑁(−1,1) 
LPR 

1.235 
(2) 

1.186 
(5) 

1.058 
(6) 

1.040 
(12) 

2.459 
(44) 

2.460 
(45) 

1.295 
(9) 

1.207 
(9) 

0.877 
(88) 

0.874 
(88) 

0.863 
(7) 

0.903 
(10) 

BPR 
1.235 

(2) 

1.279 

(7) 

1.172 

(13) 

1.176 

(27) 

2.459 

(44) 

2.456 

(58) 

1.741 

(17) 

1.469 

(19) 

0.877 

(88) 

0.937 

(123) 

0.621 

(16) 

0.839 

(20) 

𝑁(1,1) 
LPR 

1.082 
(2) 

1.078 
(5) 

1.108 
(8) 

1.079 
(13) 

1.200 
(57) 

1.201 
(58) 

0.702 
(9) 

0.915 
(10) 

3.013 
(53) 

3.014 
(54) 

1.396 
(7) 

1.317 
(9) 

BPR 
1.082 

(2) 

1.061 

(7) 

1.065 

(12) 

1.067 

(26) 

1.200 

(57) 

1.198 

(76) 

0.362 

(18) 

0.598 

(21) 

3.013 

(53) 

3.011 

(69) 

1.767 

(17) 

1.492 

(19) 

𝑁(4,1) 
LPR 

3.899 
(2) 

3.906 
(6) 

3.927 
(8) 

4.095 
(14) 

2.007 
(65) 

2.009 
(66) 

3.640 
(9) 

3.793 
(10) 

6.256 
(57) 

6.255 
(57) 

4.422 
(7) 

4.274 
(12) 

BPR 
3.899 

(2) 

3.946 

(7) 

3.972 

(13) 

3.990 

(27) 

2.007 

(65) 

2.014 

(87) 

3.185 

(17) 

3.520 

(22) 

6.256 

(57) 

6.253 

(79) 

4.704 

(19) 

4.476 

(21) 

𝐺(1,1) 
LPR 

0.788 
(2) 

0.788 
(4) 

0.788 
(6) 

0.739 
(10) 

0.023 
(33) 

0.022 
(34) 

0.637 
(7) 

0.693 
(9) 

1.662 
(41) 

1.663 
(42) 

0.873 
(6) 

0.828 
(10) 

BPR 
0.788 

(2) 

0.782 

(7) 

0.776 

(13) 

0.777 

(26) 

0.023 

(33) 

0.025 

(44) 

0.389 

(13) 

0.528 

(19) 

1.662 

(41) 

1.659 

(54) 

1.175 

(13) 

1.022 

(19) 

𝐺(2,2) 
LPR 

2.827 
(2) 

2.824 
(5) 

2.877 
(10) 

2.965 
(13) 

0.299 
(72) 

0.306 
(72) 

2.346 
(7) 

2.568 
(9) 

5.697 
(59) 

5.697 
(59) 

3.465 
(8) 

3.186 
(12) 

BPR 
2.827 

(2) 

2.863 

(8) 

2.875 

(14) 

2.865 

(32) 

0.299 

(72) 

0.332 

(97) 

1.809 

(17) 

2.172 

(20) 

5.697 

(59) 

5.693 

(80) 

4.176 

(20) 

3.683 

(23) 
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* We random noises by using MATLAB program version R2017a, the codes for 𝑈(𝑎, 𝑏), 𝑁(𝑎, 𝑏), and 𝐺(𝑎, 𝑏) are 

random('unif',a,b,m,n), random('norm',a,b,m,n), and random('gam',a,b,m,n), respectively, where 𝑚 × 𝑛 is a size of random noises. 
 

 

 𝜂𝑖 ∼ 𝑁(−1,1), the BPR algorithm with 𝑝1 =
0.75 and 𝑝2 = 0.25 has the minimum value 

of RMSE with 16𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑁(1,1), the BPR algorithm with 𝑝1 =
0.25 and 𝑝2 = 0.75 has the minimum value 

of RMSE with 18𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝑁(4,1), the LPR and BPR algorithms 

with 𝑝1 = 0 and 𝑝2 = 1 have the minimum 

value of RMSE with 65𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝐺(1,1), the LPR algorithm with 𝑝1 =
0.25 and 𝑝2 = 1 has the minimum value of 

RMSE with 34𝑡ℎ iteration. 

 𝜂𝑖 ∼ 𝐺(2,2), the LPR and BPR algorithms 

with 𝑝1 = 0 and 𝑝2 = 1 have the minimum 

value of RMSE with 72𝑡ℎ iteration. 

We observe that the number of iterations of the 

BPR algorithm is always greater than or equal to 

that of the LPR algorithm. Next, we discuss the 

values of 𝑝1 and 𝑝2. In the case 𝑝1 = 𝑝2, the 

regression line located in the centre of the point. 

This designation is suitable for noise having a mean 

of zero. When 𝑝1 < 𝑝2, the bandwidth above the 

regression line is narrower than that below. The 

points that are pulled down are more than those that 

are pulled up. As a result, the regression line will 

gradually drop in the next iteration. This designation 

is suitable for noise with a mean of more than zero. 

When 𝑝1 > 𝑝2, the result is the opposite of the 

previous case. As a result, the regression line will 

gradually rise in the next iteration. This designation 

is appropriate for noise having a mean less than 

zero. 

Furthermore, when every noise is positive, such 

as when 𝜂𝑖 is derived from 𝑈(0,10), 𝐺(1,1), or 

𝐺(2,2), the appropriate 𝑝 is 𝑝2 = 1. On the other 

hand, if every noise is negative, the appropriate 𝑝 is 

𝑝1 = 1. 

The following figures are some examples from 

Table 3. Fig. 6 shows the regression of the original 

function with 𝜂𝑖 ∼ 𝑈(−5,5), 𝜂𝑖 ∼ 𝑈(−2.5,7.5) and 

𝜂𝑖 ∼ 𝑈(−7.5,2.5), respectively. The black asterisks 

on the black line are the points (𝑥, 𝑦) of the original 

function, the pink points are in 𝐷(0), and the red, 

green, and blue lines are the regression lines of 

linear regression, LPR, and BPR, respectively. 

 
(a) 𝜂𝑖 ∼ 𝑈(−5,5) and 𝑝1 = 0.75, 𝑝2 = 0.75 

 
(b) 𝜂𝑖 ∼ 𝑈(−2.5,7.5) and 𝑝1 = 0.25, 𝑝2 = 0.75 

 

(c) 𝜂𝑖 ∼ 𝑈(−7.5,2.5) and 𝑝1 = 0.75, 𝑝2 = 0.25 

Fig. 6: The regression line with noise. 

 

 

5 Applications 

In general, the data points used to create the 

regression line have noise from the beginning. As a 

result, we cannot know whether those noises are 

positive or negative, making it impossible to choose 

a suitable 𝑝-value. Therefore, the selection of 𝑝 

must be determined depending on the desired 

outcome. For example, if the mean is to be used to 

represent the data, 𝑝1 and 𝑝2 should be equal. If the 

regression line is lower than the total data, 𝑝1 <
1 and 𝑝2 = 1 should be set. Similarly, set 𝑝1 = 1 

and 𝑝2 < 1 when we need a regression line over all 

data points. 

This section will demonstrate how the proposed 

algorithm can be used to analyse mammograms. In 

the mediolateral-oblique (MLO) view, the existence 
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of the pectoral muscle may mislead the diagnosis of 

cancer due to its high-level similarity to the breast 

body. Therefore, we cut the pectoral muscle part and 

then employ LPR or BPR to smooth the boundary. 

We separate the area of the pectoral muscle and 

breast using the difference in intensity of a 

mammogram. We have its border and transform to 

the Cartesian coordinate, which are referred to as 

the connection points and defined as 𝐷(0). Fig. 7 

depicts an example of a mammogram and shows the 

connection points 𝐷(0) of the mammogram, with the 

area above the points representing the pectoral part 

and the area below representing the muscle part. 

Since we want to remove only the muscle part, the 

regression shall be below all points. We then define 

𝑝2 = 1. 

The value of 𝑝1 should be in the range [0,1); we 

specify 𝑝1 = 0.75 for this example. Fig. 8 shows the 

regression lines derived from linear regression, 

LPR, and BPR using red, green, and blue, 

respectively. We get the regression 𝑦 =
−0.3383𝑥 + 464.8160 from linear regression, 𝑦 =
−0.4670 + 480.6891 from LPR in 2107𝑡ℎ 

iteration, and 𝑦 = −0.4752 + 484.2343 from BPR 

in 2705𝑡ℎ iteration. Moreover, the mammograms 

after removing the pectoral muscle using linear 

regression, LPR, and BPR, respectively, are shown 

in Fig. 9. 

The images obtained by finding the regression 

line by the LPR and BPR algorithms are comparable 

to and better than those obtained by the linear 

regression. 

 

 

 

 

 

 

 

 

 

  
(a) the original 

mammogram 

(b) the connection 

points plot on the 

mammogram 

 
(c) the connection points plot on a graph 

Fig. 7: An example of a mammogram. 

 
Fig. 8: The regression lines. 

 
(a) linear regression 

  
(b) LPR (c) BPR 

Fig. 9: The mammograms after removing the muscle 

part by different algorithms. 
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6 Conclusions and Discussions 
In this paper, we proposed the algorithm to create a 

regression line from an original function with noise 

𝜂, where 𝜂 is not necessarily a normal distribution 

with a mean of zero, called the line-pulling linear 

regression (LPR) and the band-pulling linear 

regression (BPR). These algorithms can set the 

regression line to the centre, top, or bottom of data 

points by assigning values 𝑝1 and 𝑝2. If 𝑝1 = 𝑝2 =
0, the LPR and BPR algorithms provide the same 

regression lines as linear regression. When 𝑝1 < 𝑝2, 

the resulting line is below the linear regression. And 

when 𝑝1 > 𝑝2, the resulting line is above the linear 

regression. However, since we do not know the 

noise distribution in the data, we determine the 

value of 𝑝1 and 𝑝2 based on user requirements. 

The numerical examples show that the results of 

the LPR and BPR algorithms are similar. The 

noticeable difference is the number of iterations for 

which the LPR algorithm converges faster than the 

BPR algorithm. 

The application of these algorithms is the 

smoothing of the pectoral muscle’s boundary. We 

use 𝑝1 = 0.75 and 𝑝2 = 1 to create the regression 

line at the bottom of all data points, ensuring we 

remove only the muscle part.  

In addition, the LPR and BPR algorithms can be 

extended to more complicated models, such as using 

quadratic or cubic polynomial equations rather than 

a linear equation, which is expected to bring greater 

application benefits. 
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