
 Proposition of the Probe-Event Approach for View-Based Modeling

CHAIMAE OUALI-ALAMI, ABDELALI EL BDOURI, YOUNES LAKHRISSI

SIGER Laboratory,

Sidi Mohamed Ben Abdellah University,

Fez,

MOROCCO

Abstract: - Viewpoint modeling is the general theme of our work in the field of Model Driven Engineering. It is

an object-oriented modeling strategy that focuses on the actors interacting with the system in order to analyze

and create complex systems.

Building complex computer systems remains a particularly challenging process for the modeling, design,

and analysis team despite the progress of design approaches in the field of software engineering due to the

complexity and richness of information. Complex software system modeling is an extremely sophisticated and

enormous area of study. The best method for reducing complexity and dimension while simultaneously making

it easier for people to design complicated systems is to break them down into smaller parts or components.

Thus, the concept of multi-modeling methods, So the composition of the models of the findings then poses a

challenge.

To achieve this goal, we introduced the notion of event probe, which allows specifying implicit

communications between views by observing events. This makes it possible to decouple specifications that are

a priori strongly interconnected, to design them separately by viewpoint, according to the recommendations of

the view modeling approach, and then to integrate them without having to modify them. We first defined the

concept of event probes, identified the different types of probes with their associated parameters, and then

defined a set of concepts allowing enriching and manipulating the probes.

Key-Words: - MDE, Viewpoint modeling, View-UML, event probe, UML, Behavior specification,

Composition.

Received: June 23, 2022. Revised: April 25, 2023. Accepted: May 24, 2023. Published: June 26, 2023.

1 Introduction
In spite of the advancement of plan methods within

the zone of program designing, the development of

complex computer frameworks remains a

complicated errand, [1]. In this setting, it is

regularly inconceivable to develop a worldwide

demonstration that considers all needs at the same

time. The application is actually divided up into a

number of models, which reduces the estimated

complexity of the system. In each scenario, a

compositional phase is necessary to produce the

application's final adaption.

Figure 1 depicts the structure of a multi-view

class. The stereotypical data classes "base" and

"view" exhibit the static nature of the system. On

the other hand, the state machines ("machine-base"

and "machine-view") connected to these classes

represent the behavior, [2].

Fig. 1: Abstract representation of a multi-view class

A multi-view state is defined as the state that

represents a multi-view object. It's a state with

multiple meanings depending on the actors engaging

with the system, and it's characterized by the

following sub-states:

 The "machine-base" base-state: an abstract state

that represents a point in a multi-view object's

life cycle.

 The "machine-view" is made up of a series of

view-states: states emerged from the refinement

of the base state, taking into account the

perspectives of system actors.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 206 Volume 20, 2023

The objective of this paper is to answer the

problem of behavioral specifications in the context

of VUML profile, [3]. It consists in proposing new

mechanisms that extend those of UML.

Our approach is based on an implicit

communication between the views, through the

observation of events. We point out that at the level

of terminology, the notion of ‘machine base' does

not exist anymore in this approach. However, the

term ‘machine view’ keeps its meaning and

represents the state machine of a class of the system

according to the considered view.

We propose a behavior specification technique,

which we call an event probe, [4], based on the

observation of the events of the system during

execution. It addresses the problems related to the

specification and composition of the behaviors of

the different view models. Indeed, the behaviors of

the view models evolve independently from each

other and each of them uses and generates a set of

events. Our proposal consists, in the view

integration phase, in using the observation of events

(and information related to these events) as a means

of communication between the views.

This paper is composed of three principal parts.

The first part explains the view modeling approach

(Design by viewpoint) one of a system's

decomposition procedures. The second part of our

study defines the principal concept of observation

based on the notion of event probe. The third part

defines the basic concepts we have developed to

handle probes, then we will explain how to declare

and instantiate a probe, and we will explain the

principle of projection as well as the derivation of

the probes.

2 View Modeling Approach

2.1 Modeling Decomposition Principle
It takes a lot of analysis, modeling, and design work

to implement technology widely throughout many

fields, including computer science, mechanics,

industry, economics, and commerce.

Conceptual models serve two purposes: (1) to

understand a topic and its setting, and (2) to provide

a framework for research and advancement. It is

simpler to choose the right course of action for this

task. As the number of users and the breadth of their

requirements increase, so does the complexity of the

subject under study. Solving such difficult systems

has become essential. In order to manage and

analyze a complex system, the system

decomposition approach divides it into manageable

problems and then chooses an acceptable solution,

[1].

Quite apart from the progress of analysis and

design methodologies in the field of software

engineering, [31], whose construction of the global

model remains a challenging work. It is required to

determine the needs of the actors, despite the

technological requirements, [5]. Multi-modeling

approaches are model-oriented methodologies that

employ independent model development. It is

crucial to return to object-oriented approaches, [6],

[7], [8], to analyze these so-called model-oriented

approaches.

We are increasingly employing so-called multi-

model modeling methodologies to deal with this

complexity. This approach provides good

decomposition practices.

Separation of concerns is critical when dealing

with the complexity of large software systems since

it keeps the event process, the resulting models, and

hence the code manageable. The separation of

concerns is often accomplished in a variety of

methods, but the goal remains the same: the ability

to recognize relatively distinct "pieces", [9], [10],

[25].

We have focused in this article on the concept

of point modeling, which is one of several ways and

methodologies for the decomposition of complex

systems, [1].

2.2 View-based Modeling
Viewpoint is defined in Robert's Dictionary as:

"One must position oneself in a place in order to see

an object as best as possible or as a particular way

of looking at a problem". The terms closest to

defining a viewpoint are appearance, optics,

perspective, and view. In computer science, the

concept of this point of view has several meanings

that vary by job and field. Numerous disciplines of

information processing, including databases,

knowledge representation, analysis and design,

programming languages, software engineering tools,

etc., have examined viewpoints and views.

In the database world, the concept of a view is

used by languages as a data selection function.

When representing knowledge, views are used to

describe categorical reasoning. A viewpoint

specifies a set of characteristics related to a concept

or family of objects. A concept can be viewed from

different perspectives, [1].

To integrate the concept of perspective into the

analysis/design of software systems. Nassar's work

has led to the establishment of a UML profile called

View Based UML (VUML), [28] that can analyze

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 207 Volume 20, 2023

and design software systems through an object-

perspective approach, [11]. In the area of the

database, view terms are used by the query language

as a data selection function. In knowledge

representation, views are used to justify taxonomic

classifications and to represent knowledge

representation. A view specifies a set of

characteristics associated with a family of concepts

or objects, [12].

The level of deconstruction in the view

approach is different from the level anticipated in

the aspect method. This is a breakdown from the

perspective of the system's actors. Views are

developed without making a distinction between

fundamental functions and one another. This kind of

deconstruction yields a collection of entities that are

each subjectively described by one of the system's

participants, [13], [14].

In order to solve the limitations of object-

oriented programming, the VUML language (View-

based Unified Modeling Language) is a UML

profile based on the point-of-view modeling

technique. Specifically, the implementation of

views, [15], [16], [17], through the use of many

instances. This approach focuses on the construction

of various partial models while employing the idea

of point of view to analyze and create a software

system. It is most frequently used to define an

information system that exhibits high user

engagement and whose actor is either a person or

another entity that interacts with the system, [18].

2.3 Methodology
Interactions embody the dependencies between

services. In this context, you can identify two types

of dependencies. Structural and behavioral

dependencies, [19], [21], [29].

Structural dependency: From a structural point

of view, if the s1 service requires the functionality

provided for the operation of the s2 service when

designing the s1 service, the s1 service depends on

the s2 service. The s1 service is said to be

structurally dependent on the service. Service s1

explicitly defines a dependency on service s2.

Service s1 explicitly defines a dependency on

service s2. Structural dependencies arise from

structural interaction types. x as an example of a

structural dependency, suppose the manager consists

of an operator's service production report and a

graphics service. Managers use Reporting Services

to report on operator production stored on durable

media. Operator service production reports use the

display features provided by the graph service to

provide manager user reports in a variety of graph

formats. The operator's service production report

depends on the graphics service.

Behavioral dependency: A s1 service is

dependent on a s2 service when the implementation

of the s1 service can influence the operation of the

s2. The s1 service is structurally independent of the

s2 service. Although s1 does not require the

functionality offered by s2. A form of behavioral

interaction manifests behavioral reliance. The

Reporting Manager, for example, is linked to the

Security Manager for the execution of service

production reporting of operators, and graphic

design is employed in the implementation of

authentication: the data used for authentication

corresponds to the data loaded. The Reporting

Manager does not require the security manager's

functionality, and the security manager does not

require the Reporting Manager's functionality, but

their performance is interdependent.

The work carried out on the VUML profile has

so far focused on the structural aspect of modeling,

but without taking into account the behavioral

aspect of Multi-view modeling. In fact, the work

carried out dealt with the static structuring of

VUML applications, such as data sharing and static

composition of views, without dealing with how

these views will react, nor how to synchronize them

to represent the behavior of Multi-view objects

(Multi-view class instances).
Behavioral modeling is an important step in the

design of a complex system [29], [30], especially in

the context of model-driven engineering, where the

objective is to automate the post-conception phases

(coding, integration, validation, etc.), automation

which must be based on the most complete design

model possible.

UML behavioral modeling can be done at

several levels of abstraction, starting from overall

models such as interaction and activity models that

represent the interactions and sequence of activities

between different objects or components of the

system, up to a fine description of the behavior of

objects or components by state machines. Overall

models, such as the sequence diagram, allow by

definition the description of a behavior from one

point of view or a combination of several points of

view.

3 Principles
In this section, our team introduced the concept of

event probe, which allows us to specify implicit

communications between views by observing

events. This makes it possible to decouple

specifications that are a priori highly interconnected,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 208 Volume 20, 2023

to conceive them separately by points of view,

according to the recommendations of the VUML

method, then to integrate them without having to

modify them.

3.1 Event Probe Concept
A system run is considered an event trace. An event

represents the smallest change in the state of that

system. It represents the execution of an atomic

action indicating the occurrence of a particular

event. Events are of several types: calling an object

method (synchronous communication), receiving a

signal (asynchronous communication), changing the

state of a Boolean condition, triggering a transition

in a state machine, entering a state, etc.

We define the event probe term as a modeling

element that identifies an event or sequence of

events and uses it in the behavior specification

during the design phase. This use can take several

forms such as searching and detecting a given

behavior in the system, controlling the same critical

states, triggering behaviors following the realization

of other behaviors, etc. As examples of probes, (i)

probe to refer to all events of type "creation of an

object of a given class "C", (ii) probe to detect and

refer to any event of type "sending a signal of type

"S" in the system", (iii) probe detecting the event

"reception of the signal of type "S1" by an instance

of class "C", etc. Generally speaking, a probe is

defined in relation to a particular type of event

(creation of an object, sending of signal, call of

operation, etc.).

Each execution event occurs in a particular

context. Probes provide access to information

related to this context, which depends on the type of

event. For example, for an event of type "object

creation", the context information is the class of the

created object, the identifier of the created object,

the identifier of the "parent" object (who created it),

etc. This data is stored as attributes of the probe.

At the modeling level, defining a probe amount

to defining an instance of a predefined probe type (a

library class). In addition to the type, the definition

may specify a condition (or several) that an event

must meet to activate the probe. This condition

relates to the contextual information about the event

(the probe attributes) and is implemented based on

the probe projection technique presented in the rest

of the article. Probe semantics specify that when the

occurrence of an event activates a probe, the probe

attributes are updated with the event contextual data.

In summary, the purpose of the probes is to allow

access to events during a run, that is to say, to

access the data corresponding to these events (the

identifier of the element triggering the event, the

identifier of the target element of the event, the

parameters transmitted, etc.) as well as their

metadata (such as the class of objects concerned by

the event, etc.). Once the probe of a given event is

triggered in the system running, the probe attributes

store the data and metadata related to that event.

3.2 Probe Operation
The ability to recognize events and utilize them to

specify the behavior of objects is the purpose of the

definition of a probe. This is accomplished with a

design that enables an object to wait for the

occurrence of an event that will be captured by a

"obs" probe. We refer to this construct as wait(obs),

and it is defined as a new kind of behavior trigger

(Trigger) that may be applied to state machine

transitions, [17]. Figure 2 below explains the

principle of inter-object communication based on

event probes.

Fig. 2: Principle of communication-based on the

probe concept

When a c1 object performs an action, it produces an

«e» event that can be observed by one or more

probes («obs», «obs'», «obs''» in Figure 2). Another

c2 object can observe the event using a transition

triggered by wait(obs). The communication between

c1 and c2 is implicit insofar as in the developed

model no explicit communication mechanism is

specified by the user to inform c2 of the realization

of the «e» event of the c1 object. The transition kept

by “wait(obs)” can only be crossed if c2 is already

in the q2 state when «e» occurred. c2 becomes

executable immediately.

By making an analogy with the exceptions in

object languages, we can make the parallel between

the probe objects described here and the objects

used to transmit predefined exceptions lifted for

example by a Java virtual machine (for example:

ArithmeticException, NullPointerException…). The

activation of a probe and the updating of its

attributes are done implicitly, as for the lifting of the

predefined exceptions. However, the probe can then

be used or not to trigger a behavior.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 209 Volume 20, 2023

4 Definition of Concepts for Probe

Handling
In our previous work, [1], we tried to specify the

Multi-view behavior using only UML concepts, but

the results of the approach show limitations (1) in

relation to the behavior specification when we

encountered difficulties to ensure independence in

the development of the views because they can be

strongly inter-coupled and (2) in relation to the

behavior composition; The integration of the

separately developed view-machines can require

many modifications and adaptations at the level of

the view-machines and the base-machine.

Consequently, we opted for another solution

proposing new mechanisms specific to the modeling

and the composition of the behaviors of Multi-view

objects, hence the notion of event probe

The ability to recognize events and utilize them

to specify the behavior of objects is the purpose of

the definition of a probe. This is accomplished with

a design that enables an object to wait for the

occurrence of an event that will be captured by a

"obs" probe. We refer to this construct as wait(obs),

and it is defined as a new kind of behavior trigger

(Trigger) that may be applied to state machine

transitions, [17]. The probe derivation principle was

then defined. It is a method that enables the creation

of new probe classes that constantly observe the

same kind of event as the parent class but with

additional properties. We provide composition as a

different method for altering a class of probes. In

fact, the designer is able to develop new composite

classes, or classes that can simultaneously observe

many sorts of events.

4.1 Basic Probe Types: Probe Library
We have discovered three families of basic probes

by examining the events that can be generated while

a system is being used. (cf. Figure 3): (i) probes of

communication events, such as sending/receiving

signals and calling/returning operations; (ii) event

probes related to changes in system structure, such

as creating/destroying objects and

creating/destroying links between objects; and (iii)

data modification probes.

Fig. 3: Probe main types

According to MDA terminology, [8], these

types of elemental probes are at the M1 modeling

level. We've defined them in a ProbeLibrary library

so that designers can utilize them as preset classes in

design templates. To create actual probes, any type

in this library can be created. These kinds, as

previously indicated, are subject to content

customization through projection, derivation, and

composition.

Probes can handle data at the model level (level

M1) or meta-model level (level M2) depending on

their unique characteristics. A probe of type

ObjectProbe, for instance, manipulates the type

observedObject, which is an object at level M1, and

the type class, which indicates the element's class of

membership at level M2. As a result, in order to

manipulate the probes, a language that enables

reflexivity—that is, a language that can modify data

at levels M1 and M2—is required. UML does not

recommend this, but in principle, it is possible to

use meta-model elements in a UML model. For

implementation, we can cite Java as a language of

level M1, which presents support, although limited,

for level M2.

The following three sections provide definitions

for the three basic types of probes proposed. It

should be noted that at this stage it is difficult to

give concrete examples of the use of the various

probes. Detailed examples of these types of probes

will be provided following the presentation of the

projection operation.

4.2 Communication Probe
Communication probes (CommunicationProbe)

allow the observation of events related to explicit

interactions between objects. These probes can

observe and reference signal exchanges between

system entities. They can also observe and reference

method calls and their returns between system

objects (Figure 4).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 210 Volume 20, 2023

Fig. 4: Communication Probe

Signal Probes (SignalProbe)

 SignalSendProbe: This type of probe is

used to reference signal emissions between

running system objects.

 SignalReceiveProbe: This type of probe is

used to reference signal reception by a

running system object.

Operation Probes (OperationProbe)

 OperationCallProbe: This type of probe

references operating calls between running

system objects.

 OperationReturnProbe: This type of probe

references returned from operations.

4.2 System Structural Change Probes
Structural change probes (StructureChangeProbe)

allow the observation of events related to structural

changes in the system. Thus, these probes may refer

to the life of objects (creation/destruction of an

object), but also to the structural relationships

between entities, such as the creation and

destruction of links (Figure 5).

Fig. 5: Structure Change Probe

Object Life Probes (ObjectLifeProbe)

 ObjectCreationProbe: This type of probe

is used to detect and reference creations of

new objects in the running system.

 ObjectDestructionProb: This type of

probe detects object destruction in the

running system.

Once the probe is activated, it stores the

variables of the context of the object concerned (in

the first case the created object, and in the second

case the destroyed object) for use by the object

using this probe.

Example: to control the total number of objects in

the system, we can declare two probes of type

ObjectLifeProbe: the first (obs1) to reference all

object creations, the second (obs2) to reference the

destruction of objects in the system. The Figure 6

below shows the declaration of the two probes

(Figure 6-a), as well as their use by the controller

object (Figure 6-b). The nbObjects variable is used

to store the number of objects in the system.

Fig. 6: Probes examples ObjectLifeProbe

Linkage Probes (LinkProbe)

 LinkCreationProbe: This type of probe

detects the creation of new links between

system objects.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 211 Volume 20, 2023

 LinkDestructionProbe: This type of probe

is used to reference link destruction between

system objects.

4.3 Data Change Probes
Data Change Probes (DataChangeProbe) concern

two types of events: events related to changes in the

value of a system attribute, and events related to

state changes in a state machine of an object

(Figure 7).

Fig. 7: Data Change Probe

Attribute Value Change Probes

(AttributeChangeProbe)

This type of probe allows the observation of

changes in attribute values of running system

objects. The probe becomes active with each value

change of an attribute of one of the system objects.

This type of probe is dangerous to use directly in the

system. If the probe activates for any change of

attribute, this may cause the probe to be in an

infinite loop, as the activation of the probe itself is

done by attribute changing. The concept of

projection, which we present in the next section,

allows the probe to focus on an attribute or set of

well-identified attributes.

Object State Change Probes

(ObjectStateChangeProbe)

This type of probe is used to reference changes in

the status of running system objects. A distinction is

made between the entry detection probes in a new

state and those for the state exit detection.

 StateEntryProbe: This type of probe is

used to reference entries in new states of

running system objects.

 StateExitProbe: This type of probe is used

to reference state outputs of running system

objects

4.4 Structure of The Predefined Class: Probe
A type of probe is a particular modeling element

capable of storing and manipulating data and

metadata. We define this element as a classifier

likely to have attributes, operations, and state

machines (to describe the behavior of the probe).

We differentiate between two categories of probes:

elementary probes and composite probes through

the isComposite attribute. A predefined probe has a

set of predefined attributes and operations that we

present below:

4.4.1 Predefined Attributes

The attributes of a probe store data and metadata to

be stored in relation to the event observed by the

probe. The predefined attribute common to all probe

types is:

 filter: an attribute that describes the

Boolean conditions on the event metadata

observed by the probe. The language used

to express these constraints is the OCL

language.

4.4.2 Custom Attributes

The designer can declare new attributes to store

additional information about the state of the system

at the time of the onset of the observed event. This

is achieved by the probe derivation mechanism.

4.4.3 Predefined Operations

The two categories (elemental, composite) of the

probe have the following predefined operations:

 projection(): this is an operation that allows

to definition the conditions of activation of

a probe. Depending on the probe category,

the projection() operation changes behavior:

 In the case of an elementary probe,

the projection() operation takes as a

condition of activation the Boolean

constraint specified by the filter

attribute;

 In the case of a composite probe,

we associate the projection()

operation of a state machine to

express the assembly rules of the

probes that form part of the

composite probe.

 activate(): this is an operation that runs

automatically once the probe is activated,

i.e., when:

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 212 Volume 20, 2023

 The filter selects the observed event

for the elementary probes;

 The state machine associated with

the projection() operation reaches

the final state for the composite

probes.

The main purpose of activate() operation is to

call the update() method to update the probe

attributes, and also unblock the transition blocked

by the wait trigger.

 update(): as mentioned above, the update()

method is launched once the constraints of

the projection are met. This is a method for

updating probe attributes. If a probe is

derived, the update() method must be

redefined.

4.4.4 Custom Operations
The designer, by means of derivation, can customize

the operations of the probes class used, to:

(1) Adapt to personal attributes added by

derivation. In this case, the designer must

bring up-to-date the update() operation so

that it can take into account the update of

the added attributes, as shown in the section

dealing with probe derivation.

(2) Add new operations that will be performed

when the probe is activated. In this case, the

designer must add their declarations within

the derived probe, then call them in the

activate () operation.

5 Declaration and Instantiation of a

Probe
The reporting of a probe is done independently of

the system entities. That means a class of probes

cannot be modeled as the usual classes and

participate in associations with system entities.

Once the structure of the probe class is defined (a

predefined probe or a new class created by

derivation or composition), the designer can

instantiate this class for use in their design models.

5.1 Case Study
To deal with this question, we have chosen to

specify the behavior of a multivalent object by the

notion of a state machine. To illustrate how to

approach this question, we take the example of a car

being repaired in a specialized agency. Because it is

understood differently depending on the type of

actor, the state of this car while it is being fixed can

be thought of as multivalent (Figure 8). The

breakdowns and repairs he must perform, the tools

required to complete the repair, and the spare parts

are all things a mechanic is interested in. A

workshopManager, on the other hand, sees the

repair from the logistical side, in the sense that he is

interested in the assignments of repair lanes to carry

out maintenance operations, in the scheduling of

machinery, the distribution of spare parts, etc. For a

client, the technical aspects of a repair are less

significant than the specifics of the repair contract,

the expenses involved, and the anticipated

completion date. The agencyManager's interests are

centered on the profitability of the repair, taking into

account the real cost, the projected completion date,

and the client contract that has to be formed.s

Fig. 8: Illustration of the CarInRepair Multi-View

State

Figure 9 depicts an instance of the

SignalSendProbe probe class in use. To track down

signal transmissions, the SignalSendProbe-type

ReparationOkObs probe is created in the model. The

probe will activate whenever a signal is sent into the

system if there are no limitations stated in the filter

attribute; otherwise, the probe will choose events

that satisfy the filter constraint (see the projection

section below for more information). The pending

items in a wait on the probe are unlocked and the

probe characteristics are updated with the event

parameters upon activation. Running the activate()

function does this implicitly.

Fig. 9: Example of SignalSendProbe Class

Instantiation

5.2 Probe Projection
Each form of probe is linked to a certain kind of

event, thus if this kind of event occurs in the system,

the probe becomes activated. Because we

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 213 Volume 20, 2023

occasionally need to filter events based on context

information, this characteristic is not always desired.

This amounts to applying additional constraints that

must be satisfied when activating the probes. For

example, if you take the two types of

SignalSendProbe/SignalReceiveProbe probes, they

allow you to reference the signal

emissions/reception between running system

objects. If no condition is specified in the probe

definition, the probe will be triggered for any signal

emissions/reception in the system. By applying the

projection operation, it is possible to restrict the

probe’s field of activation to a particular context.

Assuming that emissions/reception are

triggering events of the

SignalSendProbe/SignalReceiveProbe probes; each

time emissions/reception will appear in the system;

the probes will be enabled after verification of the

probe definition conditions

5.2.1 Principle of a Projection

We have equipped the probes with an operation-

noted projection(). This operation allows additional

constraints to be applied to the conditions under

which a probe is activated. By defining

requirements that must be met by the events targeted

by the probe type, it specifies the context of the

observation. The projection operation takes the

constraints from the filter attribute of the probe.

This attribute allows expressing in a string Boolean

conditions on the data and metadata of observed

events. To represent these restrictions, we employ

OCL. An overview of the SignalSendProbe probe's

projection is shown in Figure 10. Three OCL

restrictions are combined to form the probe's filter,

which will be verified by signal-sending events. The

first restriction stipulates that the kind of observed

signal must be of the ReparedCar type, the second

that the transmitting object must be of the Mechanic

type, and the third that the receiving object must be

of the ResponsableAtelier type.

Fig. 10: Examples filter: projection of the

SignalSendProbe probe

Only when the filter condition is fulfilled by the

event parameters does the probe become active. The

pending items in a wait on the probe are unlocked

and the probe characteristics are updated with the

event parameters upon activation. Running the

activate() function does this implicitly.

5.2.2 Examples of Application of Projection

In this section, we present concrete examples of the

application of projection on elementary probe types.

Figure 11, Figure 12, and Figure 13 show the design

model from which examples are drawn to illustrate

the projection of probes. This is a class diagram

taken from our case research "Management of a car

repair agency". In order not to make the example of

the probes complex, this class diagram is not

developed according to the point-of-view approach.

This is a simple diagram that represents part of the

application structure but is sufficient to feed the

examples presented in the rest of this session. This

diagram is accompanied by two packages: the first

contains the signal declarations and the second

contains the probe declarations that will be used in

the examples.

Examples of Filters Associated with SignalProbe

probes

-Probe which detects any startReparation type signal

emitted by the Agency Manager (Figure 14-a).

-Probe which controls any carRepared type signal

emitted by a mechanic to a workshop Manager

(Figure 14-b).

-Probe that controls any carRepared type signal

emitted by a mechanic bearing the name of Patrick

to the workshop Manager (Figure 14-c).

-Probe which detects all signal receptions (whatever

their types) by Car type objects (Figure 14-d).

Fig. 11: Application structure diagram

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 214 Volume 20, 2023

Fig. 12: Signal declarations

Fig. 13: Probe declarations

Fig. 14: Examples of filters on SignalProbe probes

Examples of filters associated with

OperationProbe probes

- Probe detecting all calls of the operation saveCar()

of the class "RepairAgency" (Figure 15-a),

- Probe detects any return of the "evalutePrice"

operation of the Car class (Figure 15-b).

Fig. 15: Examples of filters on OperationProbe-type

probes

Examples of filters associated with

ObjectLifeProbe probes

- Probe to detect any instance creation of the

Contract class (Figure 16-a).

- Probe detects the destruction of any Car-type

object by the repairAgency (Figure 16-b)

Fig. 16: Examples of filters on ObjectLifeProbe

probes

Examples of filters associated with LinkProbe

probes

- Probe for detecting car assignments to mechanics,

by creating connections between Mechanic and Car

objects (Figure 17-a),

- Probe that detects the destruction of the proprietary

link between Customer and Car objects type

(Figure 17-b).

Fig. 17: Examples of filters on LinkProbe probes

Examples of filters associated with

AttributeChangeProbe probes

- Probe that detects the passing of testOK attribute

to true of Car type objects (Figure 18).

Fig. 18: Examples of filters on

AttributeChangeProbe probes

startRepObs.filter = "Context startRepObs: SignalSendProbe inv:

self.observedSignal.oclIsTypeOf(startReparation) and self.sender.ocllsTypeOf(Agency

Manager)"

reparationOkObs.filter = "Context reparationOkObs: SignalSendProbe inv:

self.observedSignal.ocllsTypeOf(reparedCar) and self.sender.oclIsTypeOf(Mechanic)

and self.receiver.ocllsTypeOf(WorkshopResponsable)"

reparationOkobs.filter = "Context reparationOkObs: SignalSendProbe inv:

self.observedSignal.ocllsTypeOf(reparedCar) and if self.sender.ocllsTypeOf(Mechanic)

then let m:Mechanic = self.sender.oclAsType(Mechanic)

in m.name = "Patrick"

endif and self.receiver.ocllsTypeOf(WorkshopResponsable)"

carReceptSig.filter ="Context carReceptSig: SignalReceiveProbe inv:

self.recriver.ocllsTypeOf(Car)"

(a)

(b)

(c)

(d)

creationContractObs.filter = "Context creationContractObs: ObjectCreationProbe inv :

self.class.name="Contract""

destrCarobs.filter = "Context destrCarObs: ObjectDestructionProbe inv:

self.observedObject.oclIsTypeOf(Car) self.Killer.ocllsTypeOf(RepairAgency)"

(a)

(b)

carAssignment.filter = "Context carAssignment: LinkCreationProbe inv:

self.observedAssociation.name='carAssignment' and

self.associationEnd1.oclIsTypeOf(Machnic) and

self.associationEnd2.oclIsTypeOf(Car)"

CarPropertyDestrobs.filter = "Context CarPropertyDestrObs: LinkDestructionProbe

inv: self.observedAssociation.name='carProperty' and

self.associationEnd1.oclIsTypeOf(Client) and self.associationEnd2.oclIsTypeOf(Car)"

(a)

(b)

testOkObs.filter = "Context testOkObs: AttributeChangeProbe inv:

self.object.ocllsTypeOf(Car) and self.attribute.name='testOk'

and (let m:Car = self.object.oclAsType(Car) in m.testOk=true) " saveCObs.filter ="Context saveCobs: OperationCallProbe inv:

self.ownedObject.oclIsTypeOf(repairAgency) and

self.observedOperation.name='saveCar'"

evaluePriceObs.filter ="Context evaluePriceObs: OperationReturnProbe inv:

self.ownedObject.oclIsTypeOf(Car)

(a)

(b)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 215 Volume 20, 2023

Examples of filters associated with

StateChangeProbe probes

- Probe that detects the entry into the OutOfOrder

state of the Car objects (Figure 19-a).

- Probe detects any output from the Waiting state of

Car objects (Figure 19-b).

Fig. 19: Examples of filters on StateProbe type

probes

Fig. 20: SignalSendProbe Probe derivation Example

The metadata about the event that the probe

witnessed is contained in the probes in the

ProbeLibrary collection. When the probe is

activated, the designer can specify new

characteristics to hold more system status data. This

is accomplished by determining the kind of probe

being used.

Think about a SignalSendProbe probe type,

which is going to be utilized to find the testOK

signal that the Car objects are sending. To make this

observation, use either a SignalSendProbe probe

instance with the appropriate filter. The probe must

be extended by an extra characteristic, such as date,

if we wish to delay the delivery of the testOK signal

at the moment the probe is activated. The

SignalSendProbe_testFunction derivative probe's

class (Figure 20-a) and an instance of it with its

filter (Figure 20-b) are shown in Figure 20 below.

We remind you that the update() operation of a

probe is the responsible operation for updating the

attributes of the probe when it is activated.

Therefore, to update the newly added properties

(date in our case), this action has to be rewritten in

the derived class.

The update() method of the

SignalSendProbe_testFonction class is described in

the Java code that follows.

6 Conclusion
In this paper, we have addressed the problem of

behavioral specifications in the context of the

VUML profile. We focused on the description of the

event probe.

The VUML design approach is a globally

decentralized point-of-view oriented modeling

approach, which proceeds by partial developments

of the application according to the subjective visions

of the system actors. Modeling by part of the system

offers advantages, especially in the case of complex

systems, but this approach does not ensure

independence in the development of the views. In

fact, the coupling between the views can be

important if the modeling of the current view

requires information external to it. This situation

makes the viewpoint-based design approach

difficult to implement, if not impossible without

altering the development of the other views in order

to collect the missing information.

The definition of the view-object behaviors and

the combination of these behaviors to create the

overall behavior of the multi-view object are the two

key issues that must be addressed in order to solve

this challenge. The challenge of the issue is striking

a balance between suggesting a strategy that

provides the maximum freedom in the formation of

perspectives while also supplying tools to support

the fusion.

To address this issue, we provide brand-new

methods that build on UML-based ones and are

tailored to the unique characteristics of VUML.

This approach based on event probes solves the

two problems mentioned above in the following

way. Firstly, it allows to define the behavior of the

outOfOrderObs.filter = "Context outOfOrderObs: StateEntryProbe inv:

self.object.ocllsTypeOf(Car)

and self.state.name='OutOfOrder"

exit WaitObs.filter = "Context exitWaitObs: StateExitProbe inv:

self.object.ocllsTypeOf(Car)

and self.state.name="Waiting"

(a)

(b)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 216 Volume 20, 2023

views independently of each other in the

decentralized design phase. The designer does not

have to worry, when declaring probes, about how

the desired behavior will be expressed because this

task is delegated to the declared probes. Secondly,

the use of probes offers a simple principle for the

composition of behaviors in the merging phase and

avoids having to modify the view-models. Indeed,

instead of modifying the view models to perform the

composition, we proceed to a synchronization of the

latter by acting on the declared probes. This

consistency is achieved by finalizing the definition

of the probes used in the different view models.

7 Future work
So far, we have talked about two techniques for

personalizing basic probes. The first is the filter-

based probe projection, which allows you to tailor a

probe to a certain context by leveraging the data and

metadata from the targeted events Second, when the

probe is engaged, the probe derivation allows you to

add new characteristics to record extra information

about the system status. Nonetheless, these two

processes allow only one sort of elemental probe to

be customized at a time [28], allowing probes to act

on just one type of event to be created, [22], [20],

[23]. More complicated probes based on many types

of events are not possible with either approach. So,

the composition of elementary probes will be our

next task, using some model transformation, [24],

[26], [27], followed by the integration of the notion

of probes in UML.

References:

[1] Ouali-Alami, Chaimae, Abdelali El Bdouri,

Nisrine Elmarzouki, and Younes Lakhrissi.

"View-based Modelling: Behaviour

Specification based on UML Concept."

(2022).

[2] Nassar, Mahmoud. "VUML: a Viewpoint

oriented UML Extension." In 18th IEEE

International Conference on Automated

Software Engineering, 2003. Proceedings., p.

373-376. IEEE, 2003.

[3] Nassar, Mahmoud, Adil Anwar, Sophie

Ebersold, Bouchra Elasri, Bernard Coulette,

and Abdelaziz Kriouile. "Code generation in

VUML profile: A model driven approach." In

2009 IEEE/ACS International Conference on

Computer Systems and Applications, pp. 412-

419. IEEE, 2009.

[4] Rodríguez, Alejandro, Fernando Macías,

Francisco Durán, Adrian Rutle, and Uwe

Wolter. "Composition of multilevel domain-

specific modelling languages." Journal of

Logical and Algebraic Methods in

Programming 130 (2023): 100831.

[5] Lakhrissi, Younes. "Integrating behavioral

modeling into point-of-view design -

Intégration de la modélisation

comportementale dans la conception par

points de vue." PhD diss., Universite

Toulouse le Mirail-Toulouse II, 2010.

[6] Acher, Mathieu, Philippe Collet, Philippe

Lahire, and Robert France. "Comparing

approaches to implement feature model

composition." In Modelling Foundations and

Applications: 6th European Conference,

ECMFA 2010, Paris, France, June 15-18,

2010. Proceedings 6, pp. 3-19. Springer Berlin

Heidelberg, 2010.

[7] Chiriac, Noemi, Katja Hölttä-Otto, Dusan

Lysy, and Eun Suk Suh. "Three approaches to

complex system decomposition." In DSM

2011: proceedings of the 13th international

DSM conference. 2011.

[8] Cavallaro, Luca, Elisabetta Di Nitto, Carlo A.

Furia, and Matteo Pradella. "A tile-based

approach for self-assembling service

compositions." In 2010 15th IEEE

International Conference on Engineering of

Complex Computer Systems, pp. 43-52.

IEEE, 2010.

[9] Guenov, Marin D., and Stephen Barker.

"Requirements-driven design decomposition:

A method for exploring complex system

architecture." In International Design

Engineering Technical Conferences and

Computers and Information in Engineering

Conference, vol. 46962, pp. 145-151. 2004.

[10] Topper, J. Stephen, and Nathaniel C. Horner.

"Model-based systems engineering in support

of complex systems development." Johns

Hopkins APL technical digest 32, no. 1

(2013): 419-432.

[11] Nassar, Mahmoud. "Viewpoint

analysis/design: the VUML profile -

Analyse/conception par points de vue: le

profil VUML." PhD diss., 2005.

[12] Bennani, Saloua, Iliass Ait El Kouch,

Mahmoud El Hamlaoui, Sophie Ebersold,

Bernard Coulette, and Mahmoud Nassar. "A

Formalization of Group Decision Making in

Multi-Viewpoints Design." arXiv preprint

arXiv:2004.14098 (2020).

[13] (text in French) Anwar, Adil. " IDM-based

formalization of model composition in the

VUML profile - Formalisation par une

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 217 Volume 20, 2023

approche IDM de la composition de modèles

dans le profil VUML." PhD diss., Thèse de

doctorat, Université de Toulouse, 2009.

[14] Anwar, Adil, Sophie Ebersold, Bernard

Coulette, Mahmoud Nassar, and Abdelaziz

Kriouile. "A Rule-Driven Approach for

composing Viewpoint-oriented Models." J.

Object Technol. 9, no. 2 (2010): 89-114.

[15] El Asri, Bouchra, Mahmoud Nassar, Bernard

Coulette, and Abdelaziz Kriouile.

"Multiviews components for information

system development." In International

Conference on Enterprise Information

Systems, vol. 4, pp. 217-225. SCITEPRESS,

2005.

[16] Anwar, Adil, Sophie Ebersold, Bernard

Coulette, Mahmoud Nassar, and Abdelaziz

Kriouile. "Vers une approche à base de règles

pour la composition de modèles. Application

au profil VUML." Obj. Logiciel Base données

Réseaux 13, no. 4 (2007): 73-103.

[17] El Asri, Bouchra, Mahmoud Nassar, Bernard

Coulette, and Abdelaziz Kriouile.

"Architecture d'assemblage dynamique de

composants multivues dans VUML."

In INFORSID, pp. 943-958. 2006.

[18] Bruneliere, Hugo, Florent Marchand de

Kerchove, Gwendal Daniel, and Jordi Cabot.

"Towards scalable model views on

heterogeneous model resources." In

Proceedings of the 21th ACM/IEEE

International Conference on Model Driven

Engineering Languages and Systems, pp. 334-

344. 2018.

[19] El Marzouki, Nisrine, Younes Lakhrissi,

Oksana Nikiforova, and Mohammed El

Mohajir. "The application of an automatic

model composition prototype on the-Two

hemisphere model driven approach." In 2017

International Conference on Wireless

Technologies, Embedded and Intelligent

Systems (WITS), pp. 1-6. IEEE, 2017.

[20] El Marzouki, Nisrine, Oksana Nikiforova,

Younes Lakhrissi, and Mohammed El

Mohajir. "Enhancing Conflict Resolution

Mechanism for Automatic Model

Composition." Appl. Comput. Syst. 19, no. 1

(2016): 44.

[21] Nikiforova, Oksana, Nisrine El Marzouki,

Konstantins Gusarovs, Hans Vangheluwe,

Tomas Bures, Rima Al Ali, Mauro Iacono,

Priscill Orue-Esquivel, and Florin Leon. "The

Two-Hemisphere Modelling Approach to the

Composition of Cyber-Physical Systems." In

ICSOFT, pp. 286-293. 2017.

[22] Chabibi, Bassim, Adil Anwar, and Mahmoud

Nassar. "Towards a Model Integration from

SysML to MATLAB/Simulink." J. Softw. 13,

no. 12 (2018): 630-645.

[23] El Marzouki, Nisrine, Younes Lakhrissi,

Oksana Nikiforova, and Mohamed El

Mohajir, and Konstantins Gusarovs.

"Behavioral and Structural Model

Composition Techniques: State of Art and

Research Directions." Transactions on

Computers, WSEAS 16 (2017): 39-50.

[24] El Marzouki, Nisrine, Oksana Nikiforova,

Younes Lakhrissi, and Mohamed El Mohajir.

"Toward a generic metamodel for model

composition using transformation." Procedia

Computer Science 104 (2017): 564-571.

[25] Bennani, Saloua, Mahmoud El Hamlaoui,

Mahmoud Nassar, Sophie Ebersold, and

Bernard Coulette. "Collaborative model-based

matching of heterogeneous models." In 2018

IEEE 22nd International Conference on

Computer Supported Cooperative Work in

Design ((CSCWD)), pp. 443-448. IEEE,

2018.

[26] Chabibi, Bassim, Abdelilah Douche, Adil

Anwar, and Mahmoud Nassar. "Integrating

SysML with simulation environments

(Simulink) by model transformation

approach." In 2016 IEEE 25th International

Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE), pp. 148-150. IEEE, 2016.

[27] Chabibi, Bassim, Adil Anwar, and Mahmoud

Nassar. "Towards an alignment of SysML and

simulation tools." In 2015 IEEE/ACS 12th

International Conference of Computer

Systems and Applications (AICCSA), pp. 1-6.

IEEE, 2015.

[28] Anwar, Adil, Taoufiq Dkaki, Sophie

Ebersold, Bernard Coulette, and Mahmoud

Nassar. "A formal approach to model

composition applied to VUML." In 2011 16th

IEEE International Conference on

Engineering of Complex Computer Systems,

pp. 188-197. IEEE, 2011.

[29] Schützenmeier, Nicolai, Carl Corea, Patrick

Delfmann, and Stefan Jablonski. "Efficient

Computation of Behavioral Changes in

Declarative Process Models." In International

Conference on Business Process Modeling,

Development and Support, pp. 136-151.

Cham: Springer Nature Switzerland, 2023.

[30] Denysov, Viktor. "Software and information

complex for district heat supply systems

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 218 Volume 20, 2023

modeling." System Research in Energy 1, no.

70 (2022): 38-45.

[31] Rehioui, Fadoua, and Abdellatif Hair.

"Towards a Modeling approach based on

Software Components." International Journal

of Computer Applications 975 (2014): 8887.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present

research, at all stages from the formulation of the

problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflict of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.24

Chaimae Ouali-Alami,
Abdelali El Bdouri, Younes Lakhrissi

E-ISSN: 2224-3402 219 Volume 20, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

