
Architecture Driven Modernization: A Review on Reverse Engineering

Techniques based on Models’ Approach

MOHAMED KARIM KHACHOUCH1, AYOUB KORCHI1, YOUNES LAKHRISSI2

1SIGER Laboratory FST of Fez,
Sidi Mohamed Ben Abdellah University,

MOROCCO

2SIGER Laboratory ENSA of Fez,
Sidi Mohamed Ben Abdellah University,

MOROCCO

Abstract: - Software specifications represent one of the risks that can cause a project to fail if they tend to be
modified during development. it is a problem that all companies with an information system or developing
software can face regardless of the latter's size. Specification techniques have indeed evolved over the last few
years to avoid this type of situation as much as possible. Nevertheless, one can never predict a client's
evolutionary needs. To remedy this problem, there is a solution that we consider effective, which is reverse
engineering. Reverse engineering is not a new term. Originally, reverse engineering meant analyzing hardware
to improve it in the case of a proprietary product or to detect its strengths in the case of a competing product.
By projecting these concepts onto the software, we conclude that the goal is to fully understand the system and
its structure. And if the goal of reverse engineering on hardware is to duplicate the system, the goal on software
is to understand its design for maintenance and support purposes.

Key-Words: - MDRE, model-driven reverse engineering, model-driven engineering, models, transformations,

legacy system

Received: July 23, 2022. Revised: August 24, 2023. Accepted: September 25, 2023. Published: October 11, 2023.

1 Introduction
Recently, a shift from low abstraction development
paradigms such as oriented object paradigm to high
abstraction development paradigms such as MDE
(model-driven development) is noticeable, [1].
MDE aims to organize all levels of abstraction and
methodologies. It encourages developers to use
models to describe both the problem and its solution
at different levels of abstraction and provides a
framework for methodologists to define what model
to use at a given moment (i.e., at a given level of
abstraction), and how to lower the level of
abstraction by defining the relationship between the
participating models, [2]. In the literature, many
authors proposed some forward engineering
approaches where specific models can be turned
into source code. This adds more ease to the
development process. But the problem to solve is
that applications are often not developed from
scratch and reverse engineering becomes a necessity
to understand the software process by the mean of
models with a high level of abstraction, easy to
document, evolve and maintain. The use of MDE in
reverse engineering is called MDRE (Model-Driven

Reverse Engineering). Even if the approaches are
numerous and differ between them, we distinguish
two general stages in model-driven reverse
engineering. The first one is the analysis of the
legacy system and describes it as a model. The
second one is the exploitation of that model to
modernize the system or generate documentation.
Nearly all approaches are based on source code as
initial data or initial source of knowledge as it is
called in the MDRE jargon. Model-to-model and
text-to-model transformations can be automatic or
semi-automatic in case a refinement is required.

This interest in model-driven reverse
engineering encourages the OMG to set
standardized metamodels that can help to modernize
projects by creating the ADMTF (Architecture
Driven Modernization Task Force).

In this paper, we analyze some approaches
mentioned in the literature to put light on the current
state of art of the model-driven reverse engineering,
to collect ideas for developing our approach or
choosing the best one and upgrading it.

The paper is organized as follows. In section II
we present the model-driven reverse engineering

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 293 Volume 20, 2023

approaches that we could describe completely and
analyze them by certain criteria to conclude the
analysis with the best approach between them
before a general conclusion in Section III where we
summarize our work and talk about our future
works.

2 Model Driven Reverse Engineering

2.1 Introduction
In this section, we analyze the approaches we found
in the literature relative to model-driven reverse
engineering.

2.1 MDRE Approaches
In this section, we identified most of the model-
driven reverse engineering approaches and analyze
them.

These approaches can be characterized by some
main concepts which are discovery, metamodeling,
and transformation. Discovering mechanisms on
hand help to find models automatically from the
legacy system. Those models are called PSM in
MDA jargon, [3]. Model transformation on the other
hand helps to build other models with higher
abstraction levels. Those models are called PIM in
MDA jargon, [4]. By analyzing the literature, we
may summarize the main steps of model-driven
reverse engineering as follows:

 Discovery of legacy system and extraction
of PSM basic models

 Knowledge of the necessary information
using those basic models

 Calculation of views using the extracted
information

 Result recuperation is described in derived
models.

Therefore, we present in this section the MDRE
approaches constituted by at least one PSM model,
one PIM, and one
text-to-model and one model-to-model
transformation.
For comparison purposes, we discuss each approach
with the following elements:

 The models used: Each MDRE approach
should follow platform-independent
technologies (in this instance, metamodels
and model-based components)

 The scope (generic/specific)
 Application fields of the approach
 Automation level (auto/semi)
 Type of analysis (static/dynamic)

In the following, we present the main
metamodels used in MDRE then we present our
selection of approaches. For each approach, we
present a brief introduction to it, the models used in
it, the transformation phases considering the
automation level, and the tools used for it.

2.1.1 MDRE Normalized Models

To support MDRE, OMG defines a set of
standardized models. The first one we’re going to
present is KDM.

Knowledge Discovery Metamodel aka KDM is
by nature a Meta-Object Facility (MOF) model, [5].
It allows the definition of a set of concepts that will
represent the foundations of a pattern language. Its
main objective is to understand the legacy system in
preparation for software modernization and provides
the infrastructure to support domain-specific,
application-specific, or implementation-specific
knowledge definitions. The structure of KDM is as
shown below in the figure:

Fig. 1: KDM architecture

Figure 1 shows how KDM is arranged into a
stack of packages where each one depends on one or
more packages, and every other package relies
firstly on the core package because that’s where all
the metamodel elements are defined, secondly on
the kdm package because kdm model definition
resides there.

Abstract Syntax Tree Metamodeling allows the
ease of communication of system metadata between
software development modernization tools,
platforms, and metadata repositories in
heterogeneous environments by describing the
elements used to compose AST models, [6], [7]. An
AST model is a model describing the structure of
software statements to reflect the programming
language grammar. We distinguish three domains of
metamodels software artifacts:
Generic Abstract Syntax Tree Metamodel
(GASTM): represents a generic set of language
modeling elements common across numerous
languages, [8].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 294 Volume 20, 2023

Language Specific Abstract Syntax Tree
Metamodels (SASTM): represents particular
languages such as Ada, C, FORTRAN, and Java. [8]
Proprietary Abstract Syntax Tree Metamodel
(PASTM): expresses ASTs for languages such as
Ada, C, COBOL, etc., modeled in formats
inconsistent with MOF, the GSATM, or SASTM,
[8]. The Abstract Syntax Tree Metamodel is
presented in Figure 2.

Fig. 2: Abstract Syntax Tree Metamodel

2.1.2 MDRE Literature Approaches Review

In the model-driven reverse engineering universe,
we may classify an approach as whether it aims to
reverse engineer the legacy system from a
predetermined technology with a predefined
scenario which is called in literature specific
purpose solution, or the basis for any manipulation
which is called a general-purpose solution.
In Table 1, we try to classify some literature
approaches by those two classes:

Table 1. Classification of some MDRE approaches
Approach Specific Reverse

Engineering
Solution

General Reverse
Engineering
Solution

Columbus, [9]
[10].

JaMoPP, [11].
Spoon, [12].
ConQAT, [13].
GUPRO
SWAG Kit,
[14].

CodeCity, [15].
CORUM, [16].
Moose, [17].
Rational
Software
Architect, [18].

MagicDraw,
[19].

 In, [20]
MoDisco is an open-source Eclipse project where its
authors tried to fulfill their vision of a good model-
driven reverse engineering approach, [21]. A full
MDRE approach must provide some characteristics
such as being independent of any technology, but
specific technology can be supported, can be
extensible at the model or workflow level, can cover
the whole system for the next steps of
modernization, offer the possibility of reusing all
resulted, internal and external components and
automate the majority or even the whole process.
To reach those characteristics, MoDisco switches
from step 1 from a heterogenous environment due to
legacy systems to a homogenous environment of
models without any information loss. Those
resulting models are precise enough to start a
MDRE scenario, but still at a very low level of
abstraction. Then, the other steps of reverse
engineering will only require those kinds of models.
As a result, heterogeneity is reduced considerably
and turned into a modeling problem.

For MoDisco, a simple equation represents the
MDRE as follows: Model Driven Reverse
Engineering = Model Discovery + Model
Understanding, [22].

Model Discovery handles the representation of
required information from the legacy system in the
model without losing any required data. The
advantage of MoDisco is that that phase is model-
based 100%.

The model Understanding phase is in charge of
exploiting the “discovered models” in the previous
step to obtain by some model transformations the
final result of the reversed system.
To resume this approach, we have established in
Table 2:

Table 2. Summary of, [20] publication

MDRE models MDRE steps Tool Support

Extensible
Metamodel
provided based
on OMG KDM

Model discovery

Model
Understanding

Offer pre-
established
specific
metamodels for
Java, JSP, XML

However, MoDisco has a limitation which is not

supporting behavioral aspects from the legacy
system, only structural aspects.

 In, [23]
The authors based their research on limitations of
other existing tools such as MoDisco presented

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 295 Volume 20, 2023

previously which are the absence of a framework
that can handle both structural and behavioral
models from legacy systems, [24], the absence of
support to handle the extraction of behavioral
aspects of legacy system, and the limitation for the
extraction of structural aspects of legacy systems.
Therefore, they came up with a tool called
SRC2MOF (source-to-model framework), [23]. The
latter is in charge of extracting structural aspects and
representing them in the form of a class diagram,
then the behavior aspects and representing them in
the form of an activity diagram.

The architecture of SRC2MOF is composed of
three main elements: A user interface allowing the
user to input his source code. The IMD
(Intermediate Model Discoverer) allows parsing
Java classes into AST (abstract syntax tree) as a first
generated model then generates an intermediate
model in the form of an XML-like depiction of code
source combining all stored MetaClasses. The
model generator allows transforming the
intermediate model into UML models, [23].

To resume this approach, we have established in
Table 3:

Table 3. Summary of, [23] publication
MDRE models MDRE steps Tool Support
Java
metamodel
Domain
Variable Model
Business Rule
Model

Model discovery
Business rule
identification
Structural
identification
Business rules
representation

ATL
MoDisco

Even if SRC2MOF is fully automated, the user

can refine the result after each processing of the
framework if needed.

 In, [25]
This approach consists essentially of modernizing
COBOL systems. The process of this approach can
be resumed in identifying objects from legacy data
by the following steps. First, the PSM metamodel is
described which specifies the legacy system’s data.
Then, data are consumed from record files to create
PSM models. After that, all those PSM models are
merged into one Merge Model File Descriptor
(MMFD) which is a model compliant with the
previous PSM metamodel. That MMFD is then
transformed into a PIM model, a domain class
diagram to be precise. As a reminder, the domain
class diagram is useful to show the different classes
of a piece of software, their attributes, and methods.
It provides an oriented object static view of the

system. We note that the domain class diagram
metamodel is predefined in this approach and
respects the MOF specifications. The model-to-
model transformations are performed using ATL
which is a part of the OMG QVT requirements and
based on OCL formalism. The final step of this
approach is the domain class diagram refinement
where the approach uses the legacy system data
once again, [25].

To resume this approach, we have established in
Table 4:

Table 4. Summary of, [25] publication

MDRE models MDRE steps Tool Support
Cobol
Metamodel
MMFD
UML Domain
class diagram

PSM metamodel
Merge of PSM
models
Domain class
diagram
extraction and
refinement

ATL

This approach unfortunately can only be used

for COBOL systems for the moment.

 In, [26]
In the context of object-oriented programming, this
approach proposes the extraction of use case
diagrams, class diagrams, state diagrams, activity
diagrams, and sequence diagrams from Java source
code. The vision of the authors is to generate PSM
and PIM models through static and dynamic
analysis. PSM and PIM are expressed using UML
diagrams and OCL, [27]. The process of this
approach is as follows:

It first starts with the ISM (Implementation
Specific Model) which is a result of the migration of
the initial code into the oriented-object paradigm
described in AST (Abstract Syntax Tree) according
to a preestablished metamodel by performing a
static analysis. Then a dynamic analysis is executed
to complement the AST. Enriching the AST is
essential in this approach to extract the PSM and
then lift the abstraction of a latter to get the PIM in
the form of UML diagrams, [28].

To resume this approach, we have established in
Table 5:

Table 5. Summary of, [28] publication

MDRE models MDRE steps Tool Support
NEUREUS (for
metamodels)
UML
OCL

Generation of
AST
Generation of
PSM
Generation of
PIM

ATL

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 296 Volume 20, 2023

We note that this approach is generic even if the
authors presented a solution for Java systems that
isn’t fully automated.

 In, [29]
This approach tried to focus on the quality of its
results. Therefore, it’s a semi-automatic approach,
[29]. First, the legacy code must be parsed to
generate the AST. The latter is the base of multiple
model-to-model transformations that conform to an
ANT metamodel to obtain the PIM. Those
transformations are done by the mean of an engine
called MIA (Model In Action). MIA is developed in
three layers. The core engine is responsible for
model transformations and code generation. The
development environment is where the user interacts
with the engine to design and implements model-to-
model transformations and code generators. The
user environment is represented in modules that can
integrate IDEs easily. The resulting PIM which is in
the form of an ANT model is transformed again into
a PSM for the targeted platform. Finally, the code is
generated based on the PSM model.
To resume this approach, we have established in
Table 6:

Table 6. Summary of, [29] publication
MDRE models MDRE steps Tool Support
AST
ANT
UML

Generation of
AST
Transforming the
AST into PSM
Transforming the
PSM into PIM

ATL

 In, [30]

This approach treats 3D X3D and JavaScript
applications based on an MDD approach using
SSIML (Scene Structure and Integration Modelling
Language), a visual and UML-based language that
provides support for the description of 3D user
interface structures on an abstract design level.
SSIML can also be based on DSL, [31]. SSIML is
based on two different models that help to model a
3D scene on an abstract level. The first one is a
scene model. It makes the modeling of 3D scene
graphs possible. The second one is an
interrelationship model. The latter, as its name
suggests, helps to create associations between the
elements of the scene model, [32]. This approach
works as follows. First, by the mean of Xtext, ASTs
are generated from JavaScript and X3D source code
in the form of SSIML. Then, Those ASTs are
transformed into an IM (intermediate model) by the
mean of ETL (Epsilon Transformation Language).

IM is a solution the authors come up with to solve
the problem of non-simultaneous round-trip
engineering for 3D development. As a reminder,
round-trip engineering is an operating mode where
reverse engineering and code generation are
combined. After that, the IM is refined if
modifications have been performed in the legacy
code. Finally, the IM is converted to an SSIML
abstract model by the mean of reflective API based
on EMF.

To resume this approach, we have established in
Table 7:

Table 7. Summary of, [31] publication

MDRE models MDRE steps Tool Support
SIMPLE
IM
X3D and
JavaScript
ASTs

Generation of
ASTs from
source code
Generation of IM
from ASTs
Refinement of
IM in the case of
source code
modifications
Generation of
SSIML abstract
model from the
IM

SSIML

We note that this approach has the advantage of

being a general reverse engineering solution.

 In, [33]
This approach focuses on extracting business rules
in legacy systems by using intermediate
representation by the mean of KDM and raising the
abstraction level of business rules, [34]. To proceed,
this approach starts first with a preliminary study
that consists of gathering needed data by reviewing
the architecture of the legacy system and identifying
the components of this architecture. The main
objective of this preliminary study is to determine
the strategy where the KDM is defined, [35]. After
that comes the second step which is knowledge
extraction. In this step, KDM models are generated
representing the legacy system at multiple
abstraction levels. Those levels are the
infrastructure, runtime resources, program elements,
and conceptual layers. The infrastructure layer is the
model that represents the set of physical
components of the legacy system such as containers,
repositories, configuration files, etc. The program
elements layer is the model that describes the legacy
system’s structure and behavior. Both the structure
and behavior may be represented by AST models
validated by an ASTM (Abstract Syntax Tree

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 297 Volume 20, 2023

Metamodel). The runtime resource layer is the set of
models that represent data, UI, events, and
platforms. Finally, there is the business logic
abstraction step where the main objective is to
separate the infrastructure model parts from the
business logic implementation model parts within
the KDM.

To resume this approach, we have established in
Table 8:

Table 8. Summary of, [33] publication
MDRE models MDRE steps Tool Support
KDM Models Extraction of the

needed
knowledge
Generation of the
KDM models
Separation of the
KDM models into
infrastructure
representation
and business
logic
representation.

ATL
KDM tools in
Eclipse

We note that this approach is a generic semi-

automatic one. In their future works, the authors are
willing to represent the KDM model using UML to
ease of use of their solution.

 In, [36]
This approach is an application of the MARBLE
framework. MARBLE (Modernization Approach
for Recovering Business Processes from LEgacy
systems) is a framework that aims to generate
business processes by the mean of model-driven
reverse engineering from legacy systems. MARBLE
is essentially based on KDM. MARBLE has four
levels of abstraction, [37]. Level zero is what
represents the legacy system. Level one is a set of
PSM models, one for each artifact such as database,
UI, source code, etc. Level two is one PIM model
(KDM model) where all the PSM models of level
one are merged according to the KDM metamodel
to have an integrated view of all the level one PSM
models. Level three describes, in the form of the
KDM model, which is a CIM model at this level, the
business processes of the legacy system, [38]. The
transition from one level to another is resumed in
Table 9:

Table 9. Transitions from one level to another
Transformation Description
Level zero to
level one

Static and dynamic analysis is used
to generate the first PSM models
according to pre-established
metamodels depending on the
system technologies such as Java
metamodel, SQL metamodel, and
so on.

Level one to
level two

Model-to-model transformations
are performed to generate the PIM
model (KDM model) according to
the KDM metamodel based on the
level one PSM models. QVT is the
mean to implement those
transformations.

Level two to
level three

The resulting BPMN model is
generated by the mean of QVT
which helps to implement the
pattern-matching technique that
aims to identify which element
from the level two KDM should be
built and its role in the business
process. External actors such as
business experts may help in this
transformation to complete the
lacking business knowledge.

To resume this approach, we have established in

Table 10:

Table 10. Summary of, [36] publication
MDRE models MDRE steps Tool Support
KDM Models
BPMN

Generation of
PSM models
after static and
dynamic analysis
Generation of
PIM model using
QVT
Generation of
BPMN using
QVT in
MARBLE and
the experts’
intervention if
needed

MARBLE
(available as a
plugin in
Eclipse)
QVT

We note that this approach is a generic semi-
automatic one.

 In, [39]
This approach aims to reengineer web applications
based on RAD (Rapid Application Development)
technology, [40]. To perform reverse engineering,
the approach starts with the extraction of models
from the legacy code by the mean of Gra2MoL, a
DSL (Domain Specific Language) adapted for the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 298 Volume 20, 2023

extraction of the model from a legacy code
according to grammar. After a Text-to-model
transformation implemented in Gra2MoL, an AST
is generated thus representing the source code with
all the event handlers. After that, the AST is
transformed to an intermediate model called
RADBehaviour by the mean of a model-to-model
transformation according to a RADBehaviour
metamodel. Then, another model is generated based
on RADBehaviour which is called EventConcerns.
It aims to describe the legacy code in the form of a
control flow graph, [41].

To resume this approach, we have established in
Table 11:

Table 11. Summary of, [39] publication

MDRE models MDRE steps Tool Support
AST
RADBehaviour
EventConcerns

Generation of
AST
Transforming the
AST into
RADBehaviour
Transforming
RADBehiaviour
into
EventConcerns

RubyTL (All
the model-to-
model
transformations
are
implemented
using it)

 In, [42]

The objective of this approach is to migrate
automatically the web application into CMS
(Content Management System). For the moment,
this approach only focuses on open-source CMS
like WordPress, Drupal, and Joomla, [43]. To do
that, the authors propose three steps for the
approach: reverse engineering, restructuring, and
forward engineering. Concerning the reverse
engineering phase starts with the generation of AST
models from the legacy code to have a description
of the source code, according to the AST_PHP
metamodel. Then, two KDM models are generated
based on the previous AST models which are the
code model and the inventory model. Finally, by the
mean of model-to-model transformations, a CMS
model is generated based on KDM model data
according to the CMS Common Metamodel.
To resume this approach, we have established in
Table 12:

Table 12. Summary of, [42] publication

MDRE models MDRE steps Tool Support
AST_PHP
metamodel
AST
KDM
CMS Common
metamodel

Generation of
AST
Transforming the
AST into PSM
Transforming the
PSM into PIM

Xtext
EBNF (Extended
Backus-Naur
Form)

2.3 Analysis
As mentioned previously in the last section, we
analyze each approach according to five elements.
Those elements are the models used, the scope of
the approach, the application fields of the approach,
the automation level, and the analysis type of the
approach whether it is static or dynamic. We have
established in Table 13 to resume the whole. By
going through the latter, we notice that four out of
the ten approaches mentioned use KDM
metamodels for different purposes. For instance,
Normantas and Vasilecas use KDM for legacy code
modeling, GUI modeling, and business processes.
Two out of ten approaches, [28], [25], use UML,
specifically either its default or personalized
profiles. Three out of the ten approaches, [23], [29],
[39], define new ad-hoc metamodels. One out of the
ten approaches, [31], reuse, in the context of 3D
Web systems, domain-specific models. Concerning
tools, we distinguish two kinds of approaches, those
who use new tools and those who use existing tools.
Six out of ten approaches use new tools, [21], [29],
[31], [36], [39], [42]. The most common new tool
used by these approaches is MoDisco. The latter
plays a major role in using KDM under the
condition of tool support. For the rest of the
mentioned approaches, they use available tools,
such as ATL-based ones. Concerning the
automation level, six of the ten approaches are
automated. The goal behind this is to avoid as much
as possible the human intervention to reduce errors.
In our literature review, 60% of the approaches are
fully automated which means that the model-driven
reverse engineering tools are mature enough to
support such an automation. Automation has other
advantages like improving productivity and
reducing costs. After that review, we can determine
leads to choose the best approach. Therefore, which
one is the best after analyzing a legacy code? It
seems to us that there are four elements to take into
consideration while choosing an approach. The first
one is the application domain. From our analysis,
we already distinguished between generic and
specific approaches, and we can tell that the specific
ones are more efficient in their respective domain.
The second one is standards. We have already seen
some approaches that use standardized models and
others use newly defined models. Therefore, finding
experts in standardized models is easier to recruit
because of the availability of documentation. From
what we have seen, specific approaches often rely
on KDM models. The third one is model validation.
Most of the approaches don’t integrate such a phase
in their process. But we think that this is an issue
that has to be a threat because model-to-model

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 299 Volume 20, 2023

transformations cannot be fully trusted and need a
sort of validation. The fourth one is the tools. The
best example in the mentioned approaches is
MoDisco where its authors provide tool support so it
can be reliable. Therefore, between all approaches
that we mentioned, only one fulfills all the criteria
which is the MoDisco approach.

Table 13. MDRE approaches analysis

3 Conclusion
Due to the non-stop evolution of technology and
software development, the number of applications to
maintain has evolved too. To deal with this need for
maintenance while respecting the cost and using
new technologies, MDRE solutions whether they
are fully or partially automated must be adopted.
We note that adopting MDE techniques in reverse
engineering is showing promising results.

This paper is a presentation of a sample of some
model-driven reverse engineering approaches
adopted by their authors which some of them
applied in real-world projects. We analyzed them
and helped the audience to choose between them by
the mean of our proposed criteria. Even if this field

is still young, where the first related work has been
published in 2003-2005, numerous works followed
which helps MDRE gain in maturity. Therefore, we
may witness a huge development in the future.
For our future works, we intend to exploit what we
have learned through our literature review to
propose our approach. We will try to use as possible
as we can standardized models so our final tool can
be extended easily.

MDRE

approach

Models used Scope Application fields

of the approach

Automation

level

Analysis

type

Bruneliere et al,
[22]

Extensible Metamodel provided
based on OMG KDM

Generic Very various Totally Static and
dynamic

Cosentino et al,
[44]

Java metamodel
Domain Variable Model
Business Rule Model

Specific Extraction of
business processes
of Java
applications

Totally Static

El Beggar et al,
[25]

Cobol Metamodel
MMFD
UML Domain class diagram

Specific COBOL
applications

Totally Static

Favre et al, [26] NEUREUS (for metamodels)
UML
OCL

Generic Object-oriented
legacy systems

Partially Static and
dynamic

Fleurey et al, [29] AST
ANT
UML

Generic Large banking
software

Totally Static

Lenk et al, [31] SSIML
IM
X3D and JavaScript ASTs

Specific 3D Web legacy
systems

Partially Static

Normantas et
Vasilecas, [34]

KDM Models Generic Corporate software Partially Static

Perez Castillo et
al, [36]

KDM Models
BPMN

Generic Extraction of
business processes

Partially Static and
dynamic

Sanchez Ramon
et al, [39]

AST
RADBehaviour
EventConcerns

Specific Graphical user
interfaces in RAD
legacy systems

Totally Static

Trias et al, [43] AST_PHP metamodel
AST
KDM
CMS Common metamodel

Specific Web applications Totally Static

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 300 Volume 20, 2023

References:

[1] D. C. Schmidt, "Model-Driven Engineering," Computer-

IEEE Computer Society, vol. 39, no. 2, p. 25, 2006.
[2] A. R. d. Silva, "Model-driven engineering: A survey

supported by the unified," Computer Languages, Systems
& Structures, vol. 43, pp. 139-155, 2015.

[3] A. W. Brown, "Model driven architecture: Principles and
practice," Software and Systems Modeling, vol. 3, no. 4,
pp. 314-327, 2004.

[4] J. V. Igor Sacevski, "Introduction to Model Driven
Architecture (MDA)," Salzburg, 2007.

[5] OMG, "Knowledge Discovery Metamodel," 2016.
[6] OMG, "Abstract Syntax Tree Metamodel," 2011.
[7] C. Pereira, "Eclipse Community Forum," Eclipse,

Décembre 2012. [Online]. Available:
https://www.eclipse.org/forums/index.php/t/1070982/.
[Accessed 21 08 2021].

[8] D. Owens and D. M. Anderson, "A Generic Framework for
Automated Quality Assurance of Software Models -
Implementation of an Abstract Syntax Tree," (IJACSA)
International Journal of Advanced Computer Science and
Applications, vol. 5, no. 1, pp. 32-38, 2014.

[9] Á. Beszédes, R. Ferenc and T. Gyimóthy, "Columbus: A
Reverse Engineering Approach," In STEP, pp. 93-96,
2005.

[10] R. Ferenc, A. Beszedes, M. Tarkiainen and T. Gyimothy,
"Columbus -- Reverse Engineering Tool and Schema for
C++," International Conference on Software Maintenance,
2002. Proceedings, pp. 172-181, 2002.

[11] F. Heidenreich, J. Johannes, M. Seifert and C. Wende,
"Closing the Gap between Modelling and Java," Software
Language Engineering, pp. 374-383, 2009.

[12] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera and L.
Seinturier, "Spoon: A Library for Implementing Analyses
and Transformations of Java Source Code," Software
Practice and Experience, vol. 46, pp. 1155-1179, 2016.

[13] F. Deissenboeck, L. Heinemann, B. Hummel and E.
Juergens, "Flexible Architecture Conformance Assessment
with ConQAT," ICSE '10: 32nd International Conference
on Software Engineering, vol. 2, p. 247–250, 2010.

[14] B. Roy and T. C. N. Graham, "An Iterative Framework for
Software Architecture Recovery: An Experience Report,"
Software Architecture, vol. 5292, pp. 210-224, 2008.

[15] R. Wettel, M. Lanza and R. Robbes, "Software systems as
cities: a controlled experiment," 2011 33rd International
Conference on Software Engineering (ICSE), pp. 551-560,
2011.

[16] S. Das and S. Shiva, "CoRuM: Collaborative Runtime
Monitor Framework for Application Security," 2018
IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), pp. 201-206,
2011.

[17] C. J. Permann, D. R. Gaston, D. Andrš, R. W. Carlsen, F.
Kong, A. D. Lindsay, J. M. Miller, J. M. Peterson, A. E.
Slaughter, R. H. Stogner and R. C. Martineau, "MOOSE:
Enabling massively parallel multiphysics simulation,"
SoftwareX, vol. 11, no. 100430, p. 101202, 2020.

[18] P. Swithinbank, M. Chessell, D. T. Gardner, C. Griffin, J.
Man, H. Wylie and L. Yusuf, Patterns: Model-Driven
Development Using IBM Rational Software Architect,
IBM Redbooks, 2005.

[19] 3DS, "MAGICDRAW," Dassault Systèmes, [Online].
Available: https://www.3ds.com/products-
services/catia/products/no-magic/magicdraw/. [Accessed
16 08 2023].

[20] H. Brunelière, J. Cabot, G. Dupé and F. Madiot,
"MoDisco: A model driven reverse engineering
framework," Information and Software Technology, vol.
56, no. 8, pp. 1012-1032, 2014.

[21] H. BRUNELIERE, "Generic Model-based Approaches for
Software Reverse Engineering and Comprehension,"
Université de Nantes, Nantes, 2018.

[22] H. Bruneliere, J. Cabot, F. Jouault and F. Madiot,
"MoDisco: A Generic And Extensible Framework For
Model Driven Reverse Engineering," 25th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2010), 2010.

[23] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt
and A. Amjad, "A Model Driven Reverse Engineering
Framework for Generating High Level UML Models from
Java Source Code," IEEE Access, vol. 7, pp. 158931-
158950, 2019.

[24] L. Crowley, "Managing complexity of Digital Twin
models _ Development of NewMODE as a network theory
approach to model decomposition," Delft University of
Technology, Delft, 2020.

[25] O. E. Beggar, B. Boussetta and T. Gadi, "Comparative
Study between Clustering and Model Driven Reverse
Engineering Approaches," Lecture Notes on Software
Engineering, vol. 1, no. 2, pp. 135-140, 2013.

[26] L. Favre, "A Rigorous Framework for Model-Driven
Development," Advanced Topics In Database Research,
vol. 5, pp. 1-27, 2006.

[27] J.-M. Favre, "Foundations of model (driven)(reverse)
engineering: Models," Proceedings of the International
Seminar on Language Engineering for Model-Driven
Software Development, Dagstuhl Seminar, 2004.

[28] L. Favre, L. Martinez and C. Pereira, "MDA-Based
Reverse Engineering of Object Oriented Code," Enterprise,
Business-Process and Information Systems Modeling, vol.
29, pp. 251-263, 2009.

[29] F. Fleurey, E. Breton, B. Baudry, A. Nicolas and J.-M.
Jézéquel, "Model-Driven Engineering for Software
Migration in a Large Industrial Context," Model Driven
Engineering Languages and Systems, vol. 4735, pp. 482-
497, 2007.

[30] B. JUNG, M. LENK and A. et VITZTHUM, "Model-
driven multi-platform development of 3D applications with
round-trip engineering," Software Engineering, 2013.

[31] M. Lenk, A. Vitzthum and B. Jung, "Model-driven
iterative development of 3D web-applications using
SSIML, X3D and JavaScript," In Proceedings of the 17th
International Conference on 3D Web Technology (Web3D
'12), p. 161–169, 2012.

[32] B. Jung, M. Lenk and A. Vitzthum, "Structured
development of 3D applications: round-trip engineering in
interdisciplinary teams," Comput Sci Res Dev, vol. 30, pp.
285-301, 2015.

[33] K. Normantas and O. Vasilecas, "Extracting term units and
fact units from existing databases using the Knowledge
Discovery Metamodel," Journal Of Information Science,
vol. 40, no. 4, pp. 413-425, 2014.

[34] K. Normantas and O. Vasilecas, "Extracting Business
Rules from Existing Enterprise Software System,"

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 301 Volume 20, 2023

Information and Software Technologies, vol. 319, pp. 482-
496, 2012.

[35] K. Normantas, S. Sosunovas and O. Vasilecas, "An
overview of the knowledge discovery meta-model," In
Proceedings of the 13th International Conference on
Computer Systems and Technologies (CompSysTech '12),
pp. 52-57, 2012.

[36] R. Perez-Castillo, "MARBLE: Modernization approach for
recovering business processes from legacy information
systems," IEEE International Conference on Software
Maintenance, pp. 671-676, 2012.

[37] R. Pérez-Castillo, M. Fernández-Ropero, I. G.-R. d.
Guzmán and M. Piattini, "MARBLE. A business process
archeology tool," 2011 27th IEEE International Conference
on Software Maintenance (ICSM), pp. 578-581, 2011.

[38] R. Pérez-Castillo, I. G.-R. d. Guzmán and M. Piattini,
"Business process archeology using MARBLE,"
Information and Software Technology, vol. 53, no. 10, pp.
1023-1044, 2011.

[39] Ó. S. Ramón, J. Sánchez Cuadrado and J. García Molina,
"Model-driven reverse engineering of legacy graphical
user interfaces," Automated Software Engineering, vol. 21,
pp. 147-186, 2014.

[40] Ó. S. Ramón, J. S. Cuadrado and J. G. Molina, "Model-
driven reverse engineering of legacy graphical user
interfaces," Automated Software Engineering, vol. 21, pp.
147-186, 2014.

[41] Ó. S. Ramón, J. S. Cuadrado and J. G. Molina, "Reverse
Engineering of Event Handlers of RAD-Based
Applications," 18th Working Conference on Reverse
Engineering, pp. 293-302, 2011.

[42] F. Trias, V. de Castro, M. L. Sanz and E. Marcos, "An
ADM-based Method for migrating CMS-based Web
applications," International Conference on Software
Engineering and Knowledge Engineering, 2016.

[43] F. Trias, V. Castro, M. Lopez-Sanz and E. Marcos,
"Migrating Traditional Web Applications to CMS-based
Web Applications," Electronic Notes in Theoretical
Computer Science, vol. 314, pp. 23-44, 2015.

[44] V. Cosentino, J. Cabot, P. Albert, P. Bauquel and J.
Perronnet, "A model driven reverse engineering framework
for extracting business rules out of a java application,"
International Workshop on Rules and Rule Markup
Languages for the Semantic Web, pp. 17-31, 2012.

[45] J. H. C. Elliot J.Chikofsky, "Reverse Engineering and
Design Recovery: A Taxonomy," IEEE Software, vol. 7,
no. 1, pp. 13-17, 1990.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflict of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.32

Mohamed Karim Khachouch,
 Ayoub Korchi, Younes Lakhrissi

E-ISSN: 2224-3402 302 Volume 20, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

