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Abstract: - Existing research used visual effort metrics to determine the visual attention patterns of participants 
with varying skill levels while finding source code defects. While most of the findings of these studies agree on 
the results for fixation count metrics, there are differences in the results for fixation duration metrics. Therefore, 
there is a need for further investigations on the use of visual effort metrics to determine the difference in the 
visual effort of experts and novices between multiple programs. Thus, we aimed to identify the factors affecting 
the varying results on fixation duration metrics and validate the results on fixation count metrics. We used 
visual effort metrics to identify the visual attention patterns of high and low-performing students engaged in 
defect-finding tasks on multiple programs.  We performed statistical tests on the total fixation count, fixation 
counts on the error lines, total fixation duration, and fixation duration on the error lines to determine the 
difference in the visual attention patterns between the groups. Among the fixation metrics used, only the total 
fixation duration metric revealed a significant difference between the high and low-performing students across 
all programs. High-performing students spent less time on simple programs with simple error types but spent 
more time on complex programs with logical and semantic error types. In contrast, low-performing students 
focused more attention on easy programs with one or more syntax errors compared to high-performing 
students. The results of this study could shed some light on the contrasting findings of previous studies 
regarding fixation duration. These findings suggest that visual attention patterns of high and low-performing 
students may vary on multiple programs. The amount of visual effort exerted by the group depends upon the 
program’s complexity, location of errors in the source code, type of errors injected, and the number of lines of 
code. This implies that the time spent finding the errors may be associated with the characteristics of the 
programs and the location and type of injected errors. Therefore, researchers must provide detailed information 
on these characteristics when describing differences in visual effort metrics between subjects engaged in bug-
finding tasks. 
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1  Introduction 
Program comprehension is an integral aspect of 
software development since other programming 
activities depend on it, [1]. Programmers spend a 
considerable amount of time comprehending source 
code, [2]. Unlike natural language comprehension, 
source code is a structured document that might be 
difficult to understand, [3].  Source code 
comprehension does not only involve understanding 
text structure and meaning but also understanding 
code execution. Programmers, therefore, need to 
master their ability to trace source code execution 
along with their ability to read its words and 
structures, [4].  

Eye trackers have become a standard tool for 
conducting empirical studies in programming by 

recording eye-movement data of participants while 
performing a task to capture their visual attention, 
[5]. Eye trace data reveals the focus of attention and 
how it travels within the stimuli, providing 
important insight into the underlying cognitive 
processes of a subject, [6]. The increased use of eye-
tracking data in understanding the cognitive 
processes of subjects while performing program 
comprehension tasks is based on theories about 
comprehension and eye movements. 

The first study to employ eye-tracking data was 
conducted in 1990 to analyze students' 
comprehension processes while reading algorithms, 
[7]. Since then, researchers and computer science 
educators have been actively investigating how 
programmers think using eye-tracking data while 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2023.20.40 Christine Lourrine S. Tablatin

E-ISSN: 2224-3402 375 Volume 20, 2023



they complete programming tasks such as program 
comprehension, [8], [9] [10], model comprehension, 
[11], [12], debugging, [13], [14], [15], requirements 
traceability, [16], [17], and collaborative 
programming, [18], [19]. While most of these 
published papers focused on program 
comprehension and debugging, [20], we still have 
limited knowledge about the visual strategies 
employed when finding bugs on static source codes.  

Several studies have attempted to identify the 
differences in the visual attention patterns of experts 
and novices while locating bugs in static source 
codes using visual effort metrics, [21], [22], [23], 
[24]. Among the visual effort metrics, fixation 
counts, and fixation durations are commonly used 
by previous studies to determine the visual attention 
of participants while comprehending source code. 
Although no visual processing occurs during 
saccades, [22], used saccade lengths and fixation 
durations to measure the visual attention of novice 
and advanced programmers while identifying bugs 
or determining the program output.  

Previous studies revealed that experts tend to 
focus more on areas where the error is while novices 
read the codes more broadly, [21], [23]. The 
findings imply that experts had higher fixation 
counts and higher fixation durations on the error 
lines. The study, [24], supports their findings in 
terms of fixation counts on the error lines, but not 
fixation durations on the error lines. Fixation 
durations and saccade lengths showed that advanced 
programmers had shorter fixations and saccades, 
[22], indicating that they can easily understand and 
see more details in the code. This result differs from 
that of, [21], [23], in terms of fixation durations, but 
it is consistent with, [24]. The analysis of gaze 
patterns of individuals in programming pairs 
characterized the more successful participants to 
have higher overall fixation counts, higher fixation 
counts on error lines, and longer fixation duration 
per program, [25]. This result is not in accordance 
with the findings of these studies, [22], [24]. 

While most of the reviewed studies agree on the 
results for fixation count metrics, there are 
differences in the findings for fixation duration 
metrics. Therefore, further investigations on the use 
of fixation metrics to determine the difference in the 
visual effort of experts and novices between 
multiple programs are required to establish a general 
trend. Thus, this study aimed to identify the factors 
affecting the varying results on fixation duration 
metrics and validate the results on fixation count 
metrics. We used visual effort metrics to determine 
the visual attention patterns of high and low-
performing students engaged in defect-finding tasks 

on multiple programs. This study is similar to [21], 
in terms of objective, comprehension task, and 
analysis employed to assess the visual effort exerted 
by the students. Unlike the previous studies that 
utilized programs written in C, C++, and Python, we 
used programs written in Java with different 
numbers of lines of code, numbers of injected bugs, 
and cyclomatic complexity.  

Exploring the visual strategies employed by 
experts or high-performing students when 
performing comprehension tasks will allow us to 
identify effective strategies that can be explicitly 
taught to low-performing students to enhance their 
code comprehension and debugging skills, [26]. 
 

 

2  Methodology 
This paper is an analysis of a larger eye-tracking 
study on programmer tracing and debugging skills 
as well as the development of higher education’s 
capacity to conduct eye-tracking research. The 
methods discussed here are also discussed in the 
study of, [10], [27]. 
 
2.1 Participants 
The participants of this study were Computer 
Science and Management Information Systems 
students who have at least taken a college-level 
introductory programming course using Java as the 
programming language. A total of 64 undergraduate 
students from four universities in the Philippines: 16 
from School A, 17 from School B, 16 from School 
C, and 15 from School D, participated in the eye-
tracking experiment. The study used two participant 
groups: high-performing and low-performing. The 
scores of the participants in the debugging tasks 
were used to assign them to a particular group. 
High-performing group consisted of students who 
scored above and equal to the mean score while the 
low-performing group consisted of students who 
scored lower than the mean score.  
 
2.2 Datasets 
The Ateneo Laboratory for Learning Sciences 
previously collected the data set used in this study, 
which is part of a larger study on programmer eye-
tracking behavior. The eye-tracking data of 64 
students were collected and saved in an individual 
Comma-Separated Values (CSV) file. The file is 
composed of information regarding the fixation 
timestamp, the location of fixation, fixation 
duration, blinking count, pupil dilation, and separate 
values for the left and right eye movements. For the 
analysis of this study, only the fixation location, and 
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fixation duration were extracted from the individual 
CSV file. This study used a total of 238,733 fixation 
data points.  
 

2.3 Experimental Setup and Procedure 
All participants underwent a screening process. 
Students were given an informed consent form to 
fill out and sign. Screening questionnaires were 
distributed to determine their eligibility to take part 
in the study. Students who passed the initial 
screening were required to undergo a nine-point 
eye-tracking calibration test. A written program 
comprehension test (20 minutes) was administered 
after the successful calibration test to determine the 
student’s prior knowledge of programming. The 
actual eye-tracking experiment which was designed 
for 60 minutes followed after the written pre-test.   

The Gazepoint eye tracker was used in the eye-
tracking experiment with a sampling rate of 60Hz 
and 0.5-1 degree of accuracy. The screen resolution 
of the monitor was set to 1366 x 768 and the source 
code was presented in a full-screen window. The 
participants were asked to read 12 program codes 
with known errors and should mark the location of 
the errors using the mouse. There is no need for the 
participants to correct them. Figure 1 shows the 
standard setup of the eye-tracking experiment. 

 

 
Fig. 1: Standard Set-up of the Eye Tracking 
Experiment 
 
2.4  Hardware/Software Setup 
A slide sorter program (Figure 2) with buttons 
Previous, Next, Reset, and Finish were created to 
display the specifications of the program followed 
by the program code with injected bugs. The 
Previous and Next buttons were used to navigate 
through the slides. The Reset button was used to 
clear the marked error locations of a particular slide 
while the Finish button was used to save the marks 
and end the debugging session. 
 
2.5  Task Stimuli and Injected Defects 
The experiment had 12 program codes as stimuli 
which are typically written by novice programmers. 

All program codes are written in Java language, 
contain intermediate syntax and constructs, and 
consist of varied lines of code. All codes presented 
to the participants were guaranteed to fit on the 
computer screen for readability and no scrolling was 
required. 
 

 
Fig. 2: Screenshot of the Slide Sorter Program 
 

Bugs were intentionally added to the program 
codes. Few of these injected bugs take a minimal 
number of scans to detect. But quite a number take a 
considerable amount of time and may involve the 
participant’s analytical skills and prior knowledge in 
programming. Each program was assigned either 1 
or 3 bugs, with different numbers of lines of codes, 
cyclomatic complexity, and nested block depth as 
shown in Table 1. 
 

Table 1. Code Description, Line Numbers of 
Injected Defects, and Metric Value of Codes 

Code Description 

Lines 

of 

Code 

Line 

with 

Error 

Cyclom

atic 

Comple

xity 

Nested 

Block 

Depth 

P01 
What’s the Next 
Number? 17 10 2 1 

P02 Reverse of Strings 15 15 2 2 

P03 Arrow 16 14 1 1 

P04 Q Prime 26 15, 22, 
29 6 4 

P05 
Parenthesis 
Matching 24 13, 17, 

23 6 2 

P06 Palindrome 19 15, 18, 
22 3 3 

P07 
Rock, Paper, and 
Scissor  34 20, 26, 

30 9.5 1.5 

P08 
The Diamond 
Pattern 27 11, 13, 

18 7 2 

P09 Paralleloword 29 15, 24, 
30 7 3 

P10 Consecutive Words 16 11, 14, 
16 3 2 

P11 Earthquake’s Class 25 11, 18, 
24 7 1 

P12 Basic Calculator 28 11, 22, 
27 5 1 
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Errors to locate range from the easiest to spot 
(syntax errors) to the hardest (semantic and logical 
errors). Table 2 presents the characteristics of the 
errors consisting of the description, type, and 
location of the errors injected in each program. Only 
1 error was injected for programs 1-3, while 
programs 4-12 had 3 errors each. The injected errors 
were of different types and were injected in different 
lines and sections of the programs.  
 
2.6  Experiment Procedure and Data 

Segmentation 
The participant was asked to sit comfortably, and 
then the eye-tracker was adjusted to detect the eyes 
of the participant. Calibration of the eye-tracker on 
the participant was done by asking the participant to 
follow the white circle/red dot to check if the 
calibration was proper. Calibration was done since 
the accuracy and precision of the eye tracker data 
depend on successful calibration. When the 
calibration was successful, the participant started the 
experiment. The Gaze Video was closed to avoid 
recording the face of the participant while the 
experiment was ongoing. During the experiment 
process, the participant had to view all 12 short Java 
programs and locate the bugs. Out of the 12 short 
programs, 9 of them had 3 bugs while 3 had 1 bug 
each. The participant was asked to view the 
programs in one setting by showing the program 
description of each program first, followed by the 
program code. The eye tracker records the visual 
behavior of the participant while reading the static 
source code to find the bug/bugs in the program. A 
red oval appears on the screen and the participant 
marks the location of the errors in the program using 
a mouse click.  

The eye tracker system continually records all 
the gaze movements of the participant and stores 
them in a CSV file format. Data such as the time of 
the recording (timestamp) when fixations occur, the 
location of the fixations (values of x and y 
coordinates), the fixation duration of each fixation, 
pupil dilation, blinking counts, and separate values 
for the left and right eye movements were recorded. 
The data from the CSV file were segmented to 
extract the basic values needed for the analysis. 
 
2.7  Data Pre-Processing 
The segmented file by stimulus viewed by each 
participant was used in this study. However, not all 
the data included in the CSV file were used in the 
analysis. In the context of this study, only the x and 
y coordinates and the fixation durations were 
needed for the data analysis.  

The participants viewed 12 short Java programs 
consisting of various constructs and lines of code. 
Areas of Interest (AOIs) of these programs were 
defined based on the lines of code excluding blank 
lines using the OGAMA Areas of Interest module, 
[28], to get the AOI coordinates. In this study, a 
simple rectangle shape was used to mark the AOIs. 
The AOIs were defined per line of code to 
determine the visual attention exerted on each line 
of code, particularly the error lines.  

The AOI coordinates extracted from OGAMA 
return coordinates with respect to the setting of the 
screen resolution specified when the AOIs were 
defined. To map the location of fixations to the 
program codes, the x and y coordinates from the 
eye-tracking data were converted by multiplying the 
x coordinates with 1366 and the y coordinates with 
768. This was done to match the coordinates of the 
program codes during the experiment since the 
screen resolution used was 1366 x 768. In addition, 
the fixation durations were recorded in terms of 
seconds by the eye tracker and were converted into 
milliseconds by multiplying the duration by 1000. 
These processes were done for the eye-tracking data 
of the 64 students consisting of 238,733 data points 
to determine their visual attention patterns. 
 
2.8 Data Analysis 
To determine the difference in the visual attention 
patterns of high-performing and low-performing 
students, fixation counts and fixation durations were 
used. The total fixation counts on the entire stimulus 
(TotalFC), total fixation durations (ms) on the entire 
stimulus (TotalFD), total fixation counts on the error 
lines (FCBugLine), and total fixation durations (ms) 
on the error lines (FDBugLine) were computed to 
measure the visual effort exerted by the high and 
low-performing students.  
 Statistical analysis was conducted to compare 
the visual efforts of the high and low-performing 
students using the visual effort metrics stated above. 
Independent samples t-tests were used to determine 
whether there is statistical evidence that the visual 
attention patterns are significantly different between 
high and low-performing students. Independent 
samples t-tests were used on the total fixation 
counts, total fixation durations, total fixation counts 
on the error lines, and total fixation durations on the 
error lines of the high and low-performing students 
while performing debugging tasks.  
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3  Results and Discussion 
The eye-tracking data of 64 students from four 
private universities in the Philippines were used in 
the analysis. Twenty-five (25) students were 
identified as high-performing while thirty-nine (39) 
students were considered low-performing based on 
their debugging scores. However, after data pre-
processing, one (1) eye tracking data from the high-
performing group was discarded since most of the 
fixations on the stimuli were recorded with negative 
x- and y- gaze coordinates and could not be mapped 
to the identified AOIs. Thus, only the eye gaze data 
of 63 students were analyzed to determine the 
difference in the visual attention patterns of high-
performing and low-performing students. 

 
3.1  Visual Attention Patterns using Total 

Fixation Counts 
The overall fixation counts on the entire stimulus 
(Figure 3) show that low-performing students have 
higher fixation counts on programs 1-4. Programs 1-
3 had 1 injected defect each and had the lowest 
cyclomatic complexity and number of lines of code. 
Further, the errors are generally simple, consisting 
of missing and additional semicolons, and the use of 
print instead of println. Although Program 4 had 3 
injected defects, these were easy to determine since 
they were all syntax errors. High-performing 
students, on the other hand, had more fixation 
counts on most of the programs that are 
characterized by more lines of code, cyclomatic 
complexity, and the number of errors. Furthermore, 
based on the profile plot, we can see that there is a 
big difference between the fixation counts of high 
and low-performing students in programs 6, 9, and 
10. These programs had 3 injected defects 
consisting of syntax, logical, and semantic types of 
errors. Program 9 had 3 logical errors located on the 
repetition structures, had a cyclomatic complexity of 
7, and had 29 lines of code. Programs 6 and 10 had 
a cyclomatic complexity of 3, 19, and 16 lines of 
code respectively, and had combinations of syntax, 
semantic, and logical errors. High-performing 
students also had higher total fixation counts in 
Program 12 than the low-performing students. This 
program had 3 injected defects consisting of 2 
logical errors and 1 semantic error. 

The visual summary of the distribution and 
skewness of the data on the total fixation counts is 
presented in Figure 4 to supplement the information 
on the profile plot. We can see from the boxplots 

that several outliers are present in both groups. The 
boxplots show that 1 or 2 low-performing students 
had higher fixation counts than the maximum value 
of the low-performing group on several programs 
while 3 high-performing students in Program 2 and 
1 in Program 7 had higher fixation counts than the 
maximum value of the high-performing group. 
Further, the median fixation counts of the high-
performing group in Programs 6, 9, 10, and 12 show 
great difference from the median fixation counts of 
the low-performing group. The box plots also show 
that the data of the high-performing group are more 
dispersed in the majority of the programs compared 
to the low-performing group. Furthermore, the 
distribution of data for most of the programs is 
positively skewed for both groups. 

An independent samples t-test was performed to 
determine if there was a significant difference in the 
total fixation counts of the high and low-performing 
students. The result of the analysis revealed that, if 
the type of task is not considered, there is no 
significant difference in the total fixation counts of 
the high-performing students (M = 336.50, SD = 
79.60) and low-performing students (M = 293.83, 
SD = 90.47), t (61) = -1.901, p = 0.062. The result 
suggests that the total fixation counts are similar for 
both high and low-performing students across the 
different programs. This result is not surprising 
given that the tasks have varying levels of 
difficulties and presumably would require varying 
fixation counts as can also be inferred from the 
boxplots in Figure 4. 

To investigate this matter more deeply, 
independent sample t-tests were conducted for each 
program to check if there were programs that would 
reveal statistical significance between the high and 
low-performing groups.  The current partition of the 
high and low-performing groups was revised before 
performing the statistical tests. This was done since 
a student who does well overall but poorly on a 
specific task may incorrectly contribute “high-
performing” techniques on that particular task if the 
current partition was retained for the analysis. Thus, 
the high and low performers were partitioned based 
on their scores in each type of task to determine the 
techniques that may enable a student to do well in 
each of the different problems. High-performing 
students comprise those whose scores are greater 
than or equal to the mean score for the given task 
while low-performing students comprise those 
whose scores are less than the mean score. 
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Fig. 3: Profile Plot of the Total Fixation Counts 

 

 
Fig. 4: Boxplots of the Total Fixation Counts 

 
 

 
Fig. 5: Profile Plot of the Total Fixation Counts on the Error Lines 
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Table 3. Result of Statistical Tests on Total Fixation 
Counts 

Prog

ram 

No. 

Group Mean Standard 

Deviation 
t-value p-

value 

1 
Low 271.54 159.04 

1.965 0.054 
High 204.03 113.37 

2 
Low 215.80 88.68 

1.475 0.145 
High 173.29 124.69 

3 
Low 195.53 151.75 

1.496 0.141 
High 149.00 87.66 

4 
Low 374.40 236.78 

1.263 0.211 
High 311.75 151.39 

5 
Low 393.52 235.78 

-0.541 0.591 
High 424.68 215.63 

6 
Low 320.35 165.40 

-1.803 0.076 
High 405.86 189.68 

7 
Low 355.87 207.60 

-1.354 0.181 
High 431.00 231.82 

8 
Low 375.89 349.03 

-0.312 0.756 
High 398.32 169.97 

9 
Low 375.20 265.72 

-0.081 0.936 
High 380.22 227.16 

10 
Low 307.30 182.08 

-1.405 0.165 
High 379.35 224.18 

11 
Low 254.47 127.67 

-0.217 0.829 
High 252.44 123.61 

12 
Low 237.70 101.69 

-1.017 0.313 
High 265.14 109.01 

 
No significant difference was observed in the 

total fixation counts of the high and low-performing 
groups in each problem, as seen in Table 3. 
However, high-performing students were associated 
with lower fixation counts for Programs 1-4 
compared to the low-performing students. These 
programs were injected with simple error types and 
have low cyclomatic complexity. Higher fixation 
counts were observed in high-performing students 
for Programs 5-12. These programs are more 
complex given the cyclomatic complexity, number 
of lines of code, number of errors, error locations, 
and type of injected errors.  Thus, the fixation 
counts of the high-performing groups can be 
associated with the characteristics of the program 
codes. High-performing students exert more visual 
efforts on complex programs with errors that are 

difficult to identify such as logical and semantic 
errors. 

Advanced programmers perform at the level of 
novices when the program violates the plans, and 
the programming discourse rules, [29]. A high 
number of fixations were observed from the high-
performing students in Programs 5-12 since the 
logical and semantic errors injected in these 
programs violate the plan or mental schema, making 
it hard to comprehend the program. Repeated 
fixations to relevant elements in the program code 
are necessary to correctly identify the logical and 
semantic errors in the program though, a high 
number of eye fixations on program codes reflects 
an inefficient approach to finding information, [30].  
The results indicate that high-performing students 
had more fixation counts on complex programs with 
logical and semantic errors, even if there was no 
significant difference across all programs between 
the high and low-performing students. Further, 
based on the number of fixations on all lines of code 
in each program, both groups had more visual 
attention on lines consisting of control structures, 
variable declarations, and compound inputs and 
assignment statements. This finding also suggests 
that these program elements can be considered as 
beacons that facilitate program comprehension and 
identification of bugs. 

 
3.2 Visual Attention Patterns Using Fixation 

Counts on the Error Lines 
The profile plot of the overall fixation counts on the 
error lines (Figure 5) shows that high-performing 
students have more fixation counts on errors 
injected in Programs 2 and 6 while errors injected in 
the majority of the programs have almost the same 
number of fixations from both groups. Program 2 
had only one error and is located in the repetition 
structure. Program 6 on the other hand, had 3 errors, 
and two of the errors are also located in the 
repetition structure. These errors could be 
repeatedly fixed if the students follow the control 
flow of the program. The error in Program 2 is 
located on line 15 which has an additional 
semicolon in the for-loop structure. The buggy line 
of code received the highest number of fixations 
among all the lines in this program from both 
groups. However, the high-performing group had a 
higher percentage of fixations (27%) compared to 
the low-performing group (20%). The same result 
was observed for the number of fixations on the 
error lines in Program 6 where the high-performing 
group had a higher percentage of fixations (37%) 
compared to the low-performing group (32%). 
Figure 7 provides additional information on the 
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distribution and skewness of the fixation counts on 
the buggy lines of code. 

We can see from the boxplots (Figure 6) that 
several outliers are present in both groups. The box 
plots show that a greater number of extreme values 
from both sides of the box plots can be observed in 
the low-performing group than in the high-
performing group. Among all the boxplots between 
the groups, a big difference in the median fixation 
counts on the buggy lines of code of the high-
performing group can be observed in Program 6. 
The box plots also show that the data of the high-
performing group are more dispersed in the majority 
of the programs compared to the low-performing 
group. Furthermore, the distribution of data is either 
positively or negatively skewed for both groups. 

An independent samples t-test was also 
performed to determine if there was a significant 
difference in the total fixation counts on the error 
lines of the high and low-performing students. The 
result of the analysis revealed that, if the type of 
task is not considered, there is no significant 
difference in the total fixation counts on the error 
lines of the high-performing students (M = 0.19, SD 
= 0.03) and low-performing students (M = 0.18, SD 
= 0.03), t (42.24) = -1.644, p = 0.108. The result 
suggests that the total fixation counts on the error 
lines are similar for both high and low-performing 
students across different programs. Additional 
statistical tests were performed since there was no 
statistically significant difference between the 
groups across the different programs.  Independent 
samples t-tests were conducted for each program to 
distinguish between a high-performing student 
working on a difficult task versus a low-performing 
student working on an easy task or vice versa. The 
partition of high and low-performing students used 
in the statistical tests of fixation counts per problem 
was also used in this analysis. 
 Only Programs 1 and 6 revealed a significant 
difference between the groups, as shown in Table 4. 
The high-performing students were associated with 
statistically significantly higher total fixation counts 
on the error lines of these programs than the low-
performing students. The number of fixations on an 
AOI can be linked to its importance, [31]. Although 
there is no significant difference in the visual 
attention of high and low-performing students in 
terms of the fixation counts on the error lines across 
all programs, the result suggests that high-
performing students focused more on the control 

structure elements of the program code. Thus, more 
visual attention can be observed from the high-
performing students on errors located in the 
repetition structures, particularly in Program 6. 
Further, we can also observe that high-performing 
students had more fixation counts on errors in 9 out 
of 12 programs. Low-performing students had 
slightly higher fixation counts on errors in Programs 
3, 10, and 12. This result is in line with the findings 
of, [21], [23], [24], that experts or advanced 
programmers have more fixation counts on the 
buggy lines of code. 
 
Table 4. Result of Statistical Tests on Total Fixation 

Counts on the Error Lines 
Progr

am 

No. 

Group Mean Standard 

Deviation 
t-value p-

value 

1 Low 0.04 0.03 
-3.425 0.001

* High 0.09 0.06 

2 Low 0.22 0.10 
-0.472 0.638 High 0.23 0.16 

3 Low 0.13 0.06 
0.402 0.689 High 0.12 0.06 

4 Low 0.17 0.07 
-1.147 0.256 High 0.20 0.08 

5 Low 0.21 0.05 
-2.252 0.802 High 0.21 0.06 

6 Low 0.29 0.09 
-3.076 0.003

* High 0.37 0.09 
7 Low 0.07 0.04 

-0.433 0.667 High 0.08 0.03 

8 Low 0.20 0.06 
-0.69 0.493 High 0.21 0.08 

9 Low 0.13 0.05 
-1.611 0.112 High 0.15 0.04 

10 Low 0.41 0.14 
0.362 0.719 High 0.40 0.12 

11 Low 0.16 0.04 
-0.315 0.754 High 0.17 0.04 

12 Low 0.09 0.03 
0.51 0.612 High 0.09 0.03 
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Fig. 6: Boxplots of the Total Fixation Counts on the Error Lines 

 

 
Fig. 7: Profile Plot of the Total Fixation Durations 

 

 
Fig. 8: Boxplots of the Total Fixation Durations 
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Fig. 9: Profile Plot of the Total Fixation Durations on the Error Lines 

 

 
Fig. 10: Boxplots of the Total Fixation Durations on the Error Lines 

3.3  Visual Attention Patterns using Total 

Fixation Durations 
Figure 7 shows the profile plot of the total fixation 
durations of the high and low-performing students 
while Figure 8 shows the visual summary of the 
distribution and skewness of the data on total 
fixation durations. Based on the profile plot, high-
performing students spent more time on programs 
with more lines of code, code complexity, number 
of errors, and programs with logical and semantic 
error types. Low-performing students, on the other 
hand, spent more time reading Programs 1-4. We 
note that Programs 1-3 had only one error each and 
Program 4 had 3 syntax errors, which can be 
considered as simple programs with simple error 
types. 

 The boxplots in Figure 8 show that several 
outliers are present in both groups. The boxplots 
show that there are extreme values on all programs 
in the low-performing group while 3 out of 12 
programs had extreme values in the high-performing 
group. Further, the median fixation durations of the 
high-performing group in Programs 6, 9, 10, and 12 
show great difference from the median fixation 
durations of the low-performing group. The box 
plots also show that the data of the high-performing 
group are more dispersed in the majority of the 
programs compared to the low-performing group. 
Furthermore, the distribution of data for many of the 
programs is positively skewed for both groups. 
 An independent samples t-test was performed to 
determine if there was a significant difference in the 
total fixation durations between the high and low-
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performing students. The result of the analysis 
revealed that there is a significant difference in the 
total fixation durations of the high-performing 
students (M = 151063.59, SD = 36731.93) and low-
performing students (M = 125107.42, SD = 
41689.59), t (61) = -2.508, p = 0.015. The result 
suggests that the total fixation durations of the high-
performing students are significantly higher than the 
low-performing students across the different 
programs. This result has been published in, [10], as 
a preliminary analysis to check for the difference in 
the fixation duration of high and low-performing 
students and to analyze if the difference has a 
relationship with the pattern similarity. However, 
the result presented in this paper discussed how the 
complexity and difficulty of the programs and the 
debugging task affect the visual attention patterns of 
the students. 
 Fixation durations are influenced by the 
complexity and difficulty of the visual content and 
task being performed, [22], [31]. More visual effort 
may be exerted for complex programs and programs 
with errors that are difficult to identify such as 
logical and semantic errors. This finding is 
consistent with, [22], since high-performing 
students have shorter fixation durations on Programs 
1-4. This could mean that high-performing students 
can understand the code easily and be able to see 
more details in it compared to low-performing 
students. However, high-performing students spent 
more time on Programs 5-12 which consisted of a 
greater number of errors, lines of code, and complex 
programming constructs, and had combinations of 
logical, semantic, and syntax errors. The complexity 
of the program and the difficulty in identifying the 
errors injected in the programs may have caused 
low-performing students to stop trying to answer the 
problems and move to other programs, resulting in 
lower fixation durations. High-performing students, 
on the other hand, employ more careful viewing of 
the program codes to effectively identify the errors 
resulting in higher fixation durations. As shown in 
Figure 7, there is a big difference in the fixation 
durations of the groups on Programs 6, 9, and 10. 
These programs had complex programming 
constructs and were injected with logical and 
semantic errors that were difficult to identify. 
Therefore, the difference in the overall fixation 
durations between the groups is influenced by the 
program constructs and the errors injected into the 
programs. High-performing students spent less time 
on simple programs with simple error types but 
spent more time on complex programs with logical 
and semantic error types. 
 

3.4  Visual Attention Patterns using Fixation 

Durations on the Error Lines 
An independent samples t-test was also performed 
to determine if there was a significant difference in 
the total fixation durations on the error lines 
between the high and low-performing students. The 
result of the analysis revealed that there is no 
significant difference in the total fixation durations 
on the error lines of the high-performing students 
(M = 0.20, SD = 0.04) and low-performing students 
(M = 0.19, SD = 0.03), t (42.24) = -1.614, p = 0.112. 
The result suggests that the total fixation durations 
on the error lines are similar for both high and low-
performing students across the different programs. 
Additional statistical tests were performed since no 
statistically significant difference was observed 
across the different programs.  Independent samples 
t-tests were conducted for each program to check if 
there were programs that would reveal statistical 
significance between the high and low-performing 
groups. The partition of high and low-performing 
students used in the previous sections was also used 
in the statistics tests. Similar to the findings on 
fixation counts on the error lines, only Programs 1 
and 6 revealed significant differences between the 
groups (Table 5). The high-performing students 
were associated with statistically significantly 
higher total fixation durations on the buggy lines of 
code of Programs 1 and 6 than the low-performing 
students.  
 The increased fixation duration in AOIs of the 
visual stimulus could be used to detect more 
difficult-to-process components or AOIs that are 
engaging the cognitive resources of the observer, 
[31]. Experts tend to focus more on areas where the 
errors are located while novices read the codes more 
broadly, [21], [23].  In contrast with the findings of 
the latter, novices spent more time on the buggy 
lines of code, [22], [24]. However, based on the 
profile plot in Figure 9, fixation durations on the 
buggy lines of code are almost similar for both high 
and low-performing students except for Programs 2 
and 6. Refer also to the boxplots in Figure 10 to see 
the visual summary of the distribution and skewness 
of the total fixation durations on the error lines of 
the high and low-performing students. The boxplots 
are similar to the boxplots presented in Figure 6 
show the visual summary of the distribution and 
skewness of the total fixation counts on the error 
lines of the high and low-performing students. 
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Table 5. Result of Statistical Tests on Total Fixation 
Durations on the Error Lines 

Program 

No. 
Grou

p 

Mean Standar

d 

Deviatio

n 

t-

value 

p-value 

1 Low 0.04 0.03 
-3.578 0.001* High 0.10 0.09 

2 Low 0.24 0.11 
-0.532 0.597 High 0.26 0.18 

3 Low 0.14 0.08 
-0.006 0.995 High 0.14 0.08 

4 Low 0.18 0.10 
-1.229 0.224 High 0.22 0.11 

5 Low 0.21 0.06 
-0.401 0.69 High 0.22 0.07 

6 Low 0.30 0.11 
-3.096 0.003* High 0.39 0.11 

7 Low 0.08 0.05 
0.094 0.926 High 0.08 0.03 

8 Low 0.20 0.08 
-0.712 0.479 High 0.21 0.08 

9 Low 0.14 0.05 
-1.316 0.193 High 0.15 0.04 

10 Low 0.43 0.16 
0.199 0.843 High 0.43 0.13 

11 Low 0.17 0.05 
0.26 0.795 High 0.17 0.05 

12 Low 0.09 0.04 
-0.157 0.876 High 0.09 0.03 

  
 High-performing students spent more time 
looking at the buggy lines of 9 out of 12 programs. 
Errors in the programs located in the repetition 
structure (for loop) which is a complex 
programming construct since it consists of 
initialization, condition, and increment/decrement 
operation may be difficult to process. Thus, 
increased fixation duration was observed. The result 
of this study supports previous study findings, [21], 
[23], that high-performing students or experts spent 
more time on the error lines but only for Programs 1 
and 6. Overall, the result shows that there is no 
significant difference in the fixation durations on the 
error lines between the high and low-performing 
students. The contrasting results regarding the 
findings in the fixation durations on the buggy lines 
of code may be associated with the characteristics of 

the programs used in their studies and the type and 
location of errors injected in the programs. 
Therefore, when describing the difference in 
fixation durations on the buggy lines of code 
between groups, it might be necessary to provide 
information on the characteristics of the program 
and the injected errors. 
 The difference in the visual attention of high and 
low-performing students while performing a 
debugging task can be measured using fixation 
count and fixation duration metrics. The findings in 
the analysis of visual attention suggest that longer 
fixation durations and more fixation counts indicate 
difficulty in identifying the buggy lines of code. 
High-performing students exert more visual 
attention on complex programs with logical and 
semantic errors resulting in more fixation counts 
and longer fixation durations compared to low-
performing students. This visual behavior of high-
performing students may be related to the field-
independent (FI) cognitive style theory of human 
cognition. The FI individuals tend to choose a more 
analytical processing approach and they pay 
attention to details, [32]. Conversely, the visual 
behavior of low-performing students may be related 
to field-dependent (FD) cognitive style wherein they 
choose a more holistic way of processing visual 
information and experience difficulties in 
identifying details in the complex visual stimulus. FI 
individuals have significantly more and longer 
fixations than FD individuals and these differences 
may be associated with the analytical nature of FI 
individuals. 
 

 

4  Conclusion 
This study contributes to the evidence of the 
effectiveness of eye tracking as a method to enrich 
computing education research. The analysis of the 
visual effort metrics provided considerable insights 
into the visual attention patterns of high and low-
performing students in finding source code defects. 
Results revealed that high and low-performing 
students could be distinguished based on their visual 
attention patterns. High-performing students spend 
more time on complex programs with logical and 
semantic errors to effectively find source code 
defects. On the other hand, low-performing students 
spend more time on simple programs with simple 
error types. The result of the difference in the time 
spent in finding source code defects suggests that 
high-performing students prefer a more analytical 
approach while low-performing students choose a 
more holistic approach. Our findings also revealed 
that both high and low-performing students had 
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more visual attention on lines consisting of control 
structures, variable declarations, and compound 
inputs and assignment statements. These program 
elements can be considered as beacons that facilitate 
program comprehension and identification of source 
code defects. These findings suggest that visual 
attention patterns of high and low-performing 
students may vary on multiple programs. The 
amount of visual effort exerted by the group 
depends upon the program’s complexity, location of 
errors in the source code, type of errors injected, and 
the number of lines of code. This implies that the 
time spent finding the errors may be associated with 
the characteristics of the programs and the location 
and type of injected errors. Therefore, researchers 
must provide detailed information on these 
characteristics when describing differences in visual 
effort metrics between subjects engaged in bug-
finding tasks. 

By exploring the visual strategies employed by 
the high-performing students using eye-tracking 
data, we could develop learning materials and 
activities that could help low-performing students 
improve their code reading and debugging skills. 
Debugging should be taught as a program 
comprehension or program understanding task 
rather than a search task. Students should learn how 
to identify the relevant code elements of the 
program to identify source code defects. 
Programming educators should teach more problem-
solving activities to develop the student’s analytical 
skills. Further, teaching students to consciously 
employ debugging strategies according to code size, 
program structure, and type of errors would enhance 
their ability to plan for the debugging task. 
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