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Abstract: - Minimizing production and distribution costs by using resources in the most efficient way in supply 
chain management is among the most fundamental objectives. In increasingly competitive conditions, 
companies can act more strongly in market share with improvements in cost and efficiency factors. With the 
proposed Permutation Based Genetic Algorithm (PBGA) approach, the problem of optimizing the production 
and distribution line in the supply chain is addressed. The algorithm uses the processes of selection, crossover, 
and mutation to evolve the population in a permuted manner, taking into account multiple iterations, i.e. 
generation states. The results from the case studies also showed that resource utilization was realized efficiently 
with cost reductions and improvements in lead times. In this study, cost savings were achieved by applying the 
PBGA method, especially in information flow and process optimization between distribution and production. 
This can provide an advantage in a competitive environment. 
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1  Introduction 
In supply chain management, the effective 
coordination of production and distribution 
processes is crucial for the best adaptation to critical 
competitive conditions. In this context, optimization 
of production and distribution parameters is 
inevitable when factors such as variable customer 
demands and the need for efficient use of resources 
are taken into account. Since the traditional methods 
of supply chain optimization have disadvantages in 
terms of both cost and time, the PBGA method has 
been developed and applied in larger models, which 
gives result values very close to the optimum result 
in a shorter time. In the permutation-based genetic 
algorithm approach of the supply chain management 
model, all possible cases are analyzed by examining 
the crossover and population cases. The PBGA 
method can be easily applied to sequencing and 
scheduling problems that are frequently encountered 
in production and distribution problems.  

Fast and accurate analysis of the dynamic 
variable structures in the model will facilitate 
dynamic information sharing with the proposed 
algorithm. In this context, it was aimed to analyze 
the obtained values and determine the appropriate 
solution and decision rules. In a continuous, 
changing, and uncertain environment, unpredictable 

demand and tight delivery times, short production 
cycles, and a wide range of products make decision-
making in the production and distribution process 
difficult. In this study, an algorithm method is 
proposed and used to improve the dynamic 
decision-making process.  

In this study, the PBGA method is used to 
determine the optimal task allocation of production 
and distribution tasks. This optimal sequencing also 
aims to minimize operational costs by considering 
parameters such as production capacity, available 
resource availability, and deadlines. With the PBGA 
method, genetic operators such as selection, 
crossover, and mutation are used over multiple 
iterations over multiple generations. 

The remainder of this paper is structured as 
follows: Section 2 provides an overview of the 
pertinent literature. Section 3 delineates the model 
definition and formulation, encompassing the 
mathematical model of the production and 
distribution line model, while permutation-based 
genetic algorithms are detailed in subsequent 
subsections. Section 4 features a case study, 
summarizing the key results of our proposed 
approach in comparison to the current state of 
affairs. It also delivers a comprehensive analysis of 
the optimized schedules' robustness in the face of 
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delivery delays. Finally, in Section 5, we present our 
concluding remarks. 

 
 

2  Literature Survey 
Supply chain management is an approach in which 
different processes, including procurement, 
production, inventory management, and distribution, 
are handled in an integrated manner. Reducing costs 
and improving customer service are among the main 
objectives. Therefore, there are extensive studies on 
supply chain management in the literature. The 
literature review in this paper focuses on SCM and 
genetic algorithms with a focus on PBGA 
implementation.  

Some studies have grouped customers according 
to customer similarities and analyzed the 
profitability of the customer group with a genetic 
algorithm by taking into account the market 
dimension along with the quality function, [1], 
while a planning and scheduling model that takes 
into account order deadlines and outsourced 
operations in supply chain management has been 
discussed, [2]. At the same time, a mathematical 
model that takes into account supply chain 
dynamics was also studied, [3]. A genetic algorithm 
was used in this study where production processes 
and alternatives were considered. Reverse supply 
chain management and the adjustment of production 
parameters according to customer demands were 
also considered in this study. Supply chain 
management and genetic algorithm studies were 
also included in various studies, [4], [5], [6], [7]. 

The application of genetic algorithms to supply 
chain management has been explored from various 
angles. It has been used to develop integrated 
process planning, scheduling, and outsourcing 
supply chain models, distribution network design, 
multi-stage production, and hybrid genetic 
algorithms for production and distribution, [8], [9], 
[10], [11]. Researchers have also investigated lot 
and delivery scheduling, ready-mixed concrete 
delivery, and third-party logistic provider models 
using dynamic supply chain and distributed network 
approaches, [12], [13], [14], [15]. 

This section also reviews studies that employ 
genetic algorithms to optimize product lot sizes 
within supply chain management. Some of these 
studies have focused on assembly line optimization, 
multi-staged distribution network production, 
demand allocation, transportation, and production 
scheduling. Others have examined the effects of 
components on flexible production system design. 
In this paper, we develop an integrated inventory-
production-distribution mathematical model. 

Extensive benchmark data, drawn from the literature 
and experimental results, have consistently shown 
that permutation-based genetic algorithms, as an 
optimization method, yield superior performance. 
As a result, we prefer the use of permutation-based 
genetic algorithms in this study, given their ability 
to provide optimal results quickly when analyzing 
large datasets 
 
 
3  Model Definition and Formulation 
This section is divided into two subsections: the first 
presents the mathematical model of the three-stage 
supply chain, while the second delves into the 
permutation-based genetic algorithm. 
 
3.1  Production and Distribution Line Model 
In the context of a three-stage production and 
distribution line, a linear program model has been 
formulated. This model is designed to identify and 
meet the demands of customers and warehouses 
efficiently. It comprises three interconnected stages 
where decisions made at each level hierarchically 
influence the subsequent stages (Figure 1). To 
clarify, the program, which shapes the distribution, 
production, and inventory plan, takes on the 
structure of a linear program, [16], [17], [18]. It 
starts by defining the set of variables, followed by 
the formulation of constraints and the objective 
function. 
 

 
Fig. 1: Demonstration of problem structure 
 
Index sets 
n set of customers 
m set of warehouse sites 
l  set of plant sites 
s  set of supplier sites 
 
Decision Variables: 
The decision variables involved in the minimization 
of the costs of the three-stage supply chain are as 
follows: 
Z[i,m,t] the inventory level of i product in m 

warehouse in t period 
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P[i,l,t] the inventory level of i product in plant 1 
in t period 

W[i,s,t] the inventory level of raw material to be 
supplied from s supplier to produce i 
product at the end of t period 

 
c[i,l,t] unit production cost of i product in plant 

1 in t period 
v[i,s,t] production cost of raw material to be 

supplied from s supplier to produce i 
product in t period 

Ca[i,m,t] i product capacity of m warehouse in t 
period 

Cb[i,l,t] i product capacity of plant 1 in t period 
Cc[i,s,t]  capacity of s supplier to hold raw 

material required by for i product in t 
period  

Ta[i,m,t] transportation of i product in m 
warehouse to n customer in t period 

Tb[i,l,t] transportation of i product in plant 1 to m 
warehouse in t period 

Tc[i,s,t] transportation of s raw material from s 
supplier for production of i product in 
plant 1 in t period  

Fa[i,m,t] transportation cost of i product in m 
warehouse to n customer in t period 

Fb[i,l,t] transportation cost of i product in plant 1 
to m warehouse in t period 

Fc[i,s,t] transportation cost of necessary  raw 
material from s supplier for production 
of i product in plant 1 in t period 

Sa[i,m,t]   safety stock of i product in m warehouse        
.                  in t period 
Sb[i.l.t] safety stock of i product in plant 1 in t 

period 
Sc[i,s,t] safety stock of necessary raw material by 

s supplier for production of i product in 
plant 1 in t period 

Ha[i,m,t]   holding cost of i product in m warehouse 
.                  in t period 
Hb[i.l.t] holding cost of i product in plant 1 in t 

period 
Hc[i,s,t] holding cost of necessary raw material 

by s supplier for production of i 
product in plant 1 in t period 

Da[i,m,t]
 





otherwise0

periodtduringwarehouseminisproductiif1

Db[i,l,t] 
 





otherwise0

periodtduringplantlinisproductiif1

 
Dc[i,s,t] 
 





otherwise0

periodtduringpliersupsinisproductifornecessarylmateriarawtheif1

The primary goal of this function is to minimize the 
costs associated with distribution, production, and 
inventory management within the supply chain. 
Specifically, distribution costs are contingent on the 
mode of transportation, including factors like the 
cost per unit of time, lead time (comprising loading, 
travel, and unloading times), and the total number of 
shipments conducted. Production costs fluctuate 
based on the production levels at the various 
facilities. Additionally, holding costs are directly 
proportional to the quantities of products and raw 
materials held at all nodes throughout the supply 
chain. The objective function is expressed as 
follows: 
Min (Production Cost+ Inventory Cost +Delivery Cost) 
Production Cost: 

               t,s,iDt,s,ivt,s,iWt,l,iDt,l,ict,l,iPMin c

T

1t

İ

1i
b 

 

Inventory Cost: 
                       t,s,iDt,s,ihct,s,iWt,l,iDt,l,ihbt,l,iPt,m,iDt,m,ihat,m,iZMin c

T

1t

İ

1i
ba 

 

Delivery Cost: 
                       t,s,iDt,s,iFct,s,iTct,l,iDt,l,iFbt,l,iTbt,m,iDt,m,iFat,m,iTaMin c

T

1t

İ

1i
ba 

 

Subject to 
      t,s,iWt,l,iPt,m,iZn

N

1n

T

1t
it 

   (1)  
   
   
    














t,s,iCct,s,iW

t,l,iCbt,l,iP

t,m,iCat,m,iZ

   (2)   
   
   
    














t,s,iSct,s,iW

t,l,iSbt,l,iP

t,m,iSat,m,iZ

    (3) 

     t,m,iZt,l,iTb1t,m,iZ
L

1l
 

    (4)  

     t,l,iPt,s,iTc1t,l,iP
L

1l
 

    (5) 
 t,m,iTan

N

1n
it 

     (6) 
       1,0t,s,iDc,t,l,iDb,t,m,iDa    (7) 
      0t,s,iTc,t,l,iTb,t,m,iTa    (8) 

 
This production planning model revolves 

around the dynamics of material flow, 
encompassing the movement of materials from 
suppliers to plants, then from plants to warehouses, 
and ultimately from warehouses to customers. To 
construct a model that accurately assesses this 
system, we considered the aforementioned 
characteristics while establishing connections with 
existing models in the literature, particularly in the 
domains of production and transportation. However, 
it's important to note that not all lot size models and 
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material flow values were taken into account in this 
study. It aimed to scrutinize inventory flow by 
defining material flow variables within the system. 
There are several constraints in place: 
Constraint 1 ensures a balance between customer 
demand and total inventory. 
Constraint 2 deals with production capacity and 
inventory limitations. 
Constraint 3 focuses on safety stock levels. 
Constraint 4 pertains to the ability to meet 
warehouse requirements from the plant for the 
upcoming period. 
Constraint 5 relates to the plant's ability to fulfill its 
requirements from the supplier for the forthcoming 
period. 
Constraint 6 involves the transport of customer 
demand from the warehouse to the customer. 
Constraints 7 and 8 are associated with situational 
variables. 
 

It's worth noting that conventional lot size 
models in the literature typically do not incorporate 
material flows between different points in the 
supply chain (e.g., from plants to warehouses and 
from warehouses to customers). Additionally, these 
models often consider a single plant supplying a 
single warehouse. However, the problem defined in 
this context considers variables such as the number 
of plants, warehouses, and the material flow, 
resulting in a more comprehensive analysis. 

 
3.2  Permutation and Distribution Line 

Model 
The Genetic Algorithm (GA) is a contemporary 
heuristic optimization method, drawing inspiration 
from the biological process of genetic operations. It 
employs chromosomes to represent potential 
solutions, with the initial solution pool typically 
consisting of a set number of chromosomes, [19], 
[20], [21], [22], [23]. The process of crossing and 
mutating ensures the generation of new 
chromosomes, each stronger than its predecessor. 
Permutation-based GA, such as in cases like the 
Traveling Salesman Problem and Vehicle Routing 
Problems, focuses on achieving optimal results by 
grouping similar features from repeated operational 
scenarios. Genetic control parameters, namely 
crossover and mutation rates, have a significant 
impact on population diversity. 

In Figure 2, the operational steps of the 
permutation-based genetic algorithm are outlined. 
Step 1 involves defining objective functions and 
variables, while Step 2 covers the definition of GA 
parameters like pop size, mutation rate, and 
selection criteria. Step 3 entails the creation of the 

initial population, and Step 4 involves iterating 
through generations to identify the best permutation. 
Step 5 encompasses pairing individuals and 
initiating the mating process, while Step 6 is 
dedicated to carrying out the mating. Step 7 includes 
mutation and population operations, and Step 8 
deals with sorting costs. Finally, the results are 
displayed on the screen. 

 

               
 
 
Fig. 2: Permutation based Genetic Algorithm Steps 
 
 
4   Implementation 
In this study, we examined a supply chain model in 
multiple stages and optimized the system using both 
a simple Genetic Algorithm (GA) and a 
permutation-based GA. In GA, we represent 
solutions, individuals, and chromosomes with 
indexes, typically composed of 0s and 1s, drawing 
inspiration from biology. Genetic algorithms assume 
that certain parts of the algorithm represent specific 
features or characteristics on a biological 
chromosome, ultimately aiming to find the optimal 
solution iteratively during recombination, [24], [25], 
[26], [27], [28], [29]. 

This section delves into a three-stage 
distribution network supply chain model, which 
comprises six warehouse distribution points, three 
plants, and four suppliers denoted as x, y, z, and t, 
each associated with a specific plant. Products are 
evaluated as Ui (i=1,2,3,4), warehouses as Dj 
(j=1,2,3,4,5,6), plants as Fk (k=1,2,3), and the 
number of customers varies from 10 to 200. The 
primary objective is to meet customer needs with 
minimal cost. This section also evaluates factors like 
determining transportation charges between 
warehouses, optimal stock levels in warehouses, and 
the relationship between the production rates of 
plants in the first stage and suppliers. Customer 
demands are initially addressed from warehouses; if 
the products are not available there, they are sourced 
from plants. The demand chain initiates from the 
customer and flows down to warehouses, plants, and 
suppliers. The optimization factors include customer 
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demand sizes, warehouse and plant stock levels, 
plant production rates, and part supply speed. GA 
optimization typically does not rely on the analytical 
properties of the objective function. It mainly 
involves two fundamental operations: repeated 
iterations and the random generation of new 
solutions, followed by evaluating their optimality 
based on predefined fitness functions. These 
characteristics empower GA. Permutation-based 
GAs like Hu's and Haupt & Haupt's, as well as the 
improved program discussed here, are known for 
effectively finding solutions to complex problems, 
including those in mobile sales and tabulation 
domains. At the start of the GA process, each 
chromosome represents a potential optimal solution. 
The integrated supply chain management approach 
involves several stages: distribution, production, and 
contribution. In this study, we designed three 
different chromosome structures: Chromosome A 
for the first stage, Chromosome B for the second 
stage, and Chromosome C for the third stage. Table 
1 details the reception of order data by the 
warehouses and provides data for the first stage. 
Table 2 shows materials that are unavailable in 
warehouses and need to be supplied by warehouses 
from plants. It also outlines the processing methods 
and how data is used in the second stage. Table 3 
demonstrates the parts that are not provided by the 
plant and need to be produced and supplied by 
suppliers in this production stage. The data 
presented in Table 3 corresponds to the third stage. 
The related demand is primarily met by the 
permutation-based genetic algorithm at the 
warehouse level in the first stage. If the first stage 
cannot fulfill the demand, the second stage is 
activated, and if the second stage also falls short, the 
third stage comes into play. 

The supply chain model's aim is to provide 
customers with products at a lower cost through 
faster service. Key factors affecting the system 
include production cost, supply, and transportation, 
as they contribute to the overall cost of the process. 
A faster system implies a shortened production 
cycle and quicker product delivery to customers. 
Additionally, the company seeks to reduce 
production costs and enhance the entire system's 
performance by accurately estimating the firm's cost 
status and customer demands in terms of timing and 
quantity. 
 
 
 
 
 

Table 1. Data Representation in the First Stage (For 
a Customer Set of 5) 

 
 

In the practical implementation of the system, 
optimization was carried out utilizing data from the 
Warehouse, Plant, and Supplier databases. The 
optimization process commenced by considering lot 
sizes ranging from 10 to 200 as data sets, and a 
permutation-based Genetic Algorithm (GA) was 
applied and assessed, with the system costs not yet 
factored in. The data contained in Table 2, Table 3 
and Table 4, as shown in the operational columns of 
Figure 3, were leveraged to evaluate the overall 
system cost. Table 4 presents information from the 
warehouse database, housing data specific to the 
first stage. This database includes details such as 
product type, distance from the central point, and 
current stock status. Conversely, Table 5 provides 
insights regarding the plant database in the second 
stage, encompassing product types, stock status, 
production rates, and distances from the central 
point. 

 
Table 2. Warehouse Database and Its Contents 
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Table 3. Plant Database and Its Contents 

 
 

The data within the initial stage's database forms 
the system's primary decision-making mechanism. It 
should a product become unavailable in the 
warehouses, the plant information, which is part of 
the second stage's database, comes into play, 
triggering the system's decision-making mechanism. 
 

Table 4. Supplier database and content 

 
 

Table 6 encompasses a database containing 
supplier details relevant to the third stage. This 
information comprises elements like product 
components and supply lead time. Figure 3 displays 
the operational flow of the system's general 
functioning mechanism. The system operates by 
deducing the optimal operational pattern through the 
application of a genetic algorithm after receiving 
essential input data from the database module. Table 
5 illustrates the product selection from various 
warehouses based on heuristically chosen x and y 
coordinates to satisfy the demands of a group of 10 
customers. Meanwhile, Table 6 provides insight into 
the product quantities remaining in the warehouses 
after meeting these customer demands. The 
distribution of the leftover products following the 
fulfillment of all customer group requirements is 
detailed in Table 9. 

 
Fig. 3: Evaluation process of the supply chain with 
GA  
 
Table 5. The amount of products in all warehouses 
after the demand of customer group of 10 persons 

are met 

 
 

Table 6. Distribution of products selection by a 
customer group of 10 persons 

 
 

As indicated in Table 7, customer demand is 
fulfilled at Level 1, corresponding to the warehouse 
level, when it falls within the range of 10-110. In the 
case of demand ranging from 120-140, it is 
addressed at Level 2, which represents the plant 
level. For demand falling within the range of 150-
200, fulfillment occurs at Level 3, denoting the 
supplier level. This implies that customer demand is 
promptly satisfied when the first two levels are 
involved. However, the system requires a certain 
response time to fulfill the demand when it falls 
between 150-200. 
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Table 7. Inventory Status in Response to Product 
Demand from Customers 

 
 
 
5   Results 
Table 8 presents CPU time (in seconds) and cost 
values derived from three programs. When 
considering customer demand in the range of 10-
110, Hu's program demonstrates remarkable 
efficiency, completing operations swiftly, while 
Haupt & Haupt's program delivers cost savings of 
nearly 40%. Notably, as customer demand increases 
over time in Haupt & Haupt's programs, the 
operational duration also extends, as visually 
represented in Figure 4. Especially when customer 
demand stands at 40, Haupt & Haupt's program 
stands out, offering a solution at a substantial 86% 
cost reduction. Consequently, Haupt & Haupt's 
program appears well-suited for Stage 1 customer 
demands. 

For customer demand levels ranging from 120 
to 140, the improved program emerges as an 
attractive option, providing cost-efficient solutions 
with a 25% reduction, albeit at the expense of a 3-5 
second increase in operational time compared to 
Hu's program. Similarly, when the demand falls 
within the 150-200 range and is addressed at the 
third level, the improved program may be the 
preferred choice. Although the improved program 
does entail an 18% higher cost than Haupt & 
Haupt's program for customer demands at this stage, 
it offers specific advantages. A detailed breakdown 
of solution costs provided by the three programs is 
available in Figure 5. 

 
 

Table 8. Contrasting CPU Time (in seconds) and 
Cost Results of Hu's, Haupt & Haupt's Permutation-

Based Genetic Algorithm Program, and the 
Enhanced Program. 

 
 

 
Fig. 4: Contrasting CPU Time (in seconds) Values 
for Customer Demand - A Comparative 
Examination of Hu, Haupt & Haupt, and Enhanced 
Permutation-Based Genetic Algorithm Programs 
 

 
Fig. 5: Comparison of cost values among the Hu 
method, Haupt & Haupt method, and an enhanced 
Permutation-Based Genetic Algorithm program in 
response to customer demand. 
 
 
6 Conclusion 

In supply chain management, operational efficiency 
and customer satisfaction are the key factors in 
ensuring production and distribution coordination. 
Permutation-based Based Genetic Algorithm 
(PBGA) was used to reduce cost and improve lead 
time. With the results obtained, the effectiveness of 
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the optimization technique applied in supply chain 
management was tested. 

The implementation of the PBGA method 
resulted in a 15% improvement in production costs 
and a 12% improvement in distribution costs. This 
improvement was achieved through efficient use of 
resources and effective task sequencing. These 
factors also contribute to a direct increase in the 
profitability of the model considered. 

It also contributes directly to customer 
satisfaction with a 20% reduction in delivery times. 
These improvements also strengthen the competitive 
position in the market. It is seen that the PBGA 
method gives a better result compared to the basic 
GA method. As a result, the PBGA method can be 
preferred as a method that can be used effectively in 
such models. 

Effective resource allocation is crucial for cost 
control and operational efficiency. By optimizing 
the allocation of production and distribution 
resources, PBGA reduced idle time at production 
facilities by 25% and vehicle idle time for 
distribution activities by 15%. These improvements 
underline the algorithm's ability to maximize the use 
of available resources. 

In comparison with the classical GA method, 
the proposed PBGA method shows a higher 
performance in terms of both cost and time 
parameters. Therefore, the use of this method should 
be preferred for such model structures in terms of 
analyzing results closer to the actual optimal result 
value in a shorter time. 

In conclusion, the Permutation-Based Genetic 
Algorithm has proven to be a powerful tool to 
address the challenges of supply chain optimization. 
Its adaptability, robustness, and ability to deliver 
substantial cost reductions and lead time 
improvements make it a valuable asset for modern 
supply chain management. The results obtained 
from this research have direct and tangible 
implications for our business, including improved 
profitability, heightened customer satisfaction, and 
enhanced operational efficiency. 

Within the scope of the next study, taking into 
account the following parameters in the 
performance analysis process, consistent predictions 
can be realized by using machine learning 
approaches, especially deep learning, in the 
clustering of data and prediction processes with 
Artificial Intelligence / ML Based algorithms. At the 
same time, by developing a digital twin approach in 
the AI-based production planning and scheduling 
process, instantaneous changes in the system can be 
easily observed with an equivalent simulation 
approach.  

 SCM KPIs: Typical KPIs used to monitor SCM 
improvements: 
- Demand fulfillment index 
- Inventory Supply Days (average) 
- Forecast Accuracy (weighted average) 
- Delivery Performance/shipment compliance 
- Commitment to production 
- Supply alignment 
- End-to-end cycle time (from procurement to sale) 
 

As we move forward, it is important to 
acknowledge that the field of supply chain 
management is dynamic, and future challenges and 
opportunities will continue to emerge. This research 
lays the foundation for further exploration, 
including multi-objective optimization, 
sustainability considerations, and real-time 
adaptation to dynamic supply chain conditions. By 
embracing innovation and advanced optimization 
techniques, we position ourselves to meet these 
challenges head-on and sustain our leadership in the 
ever-evolving landscape of supply chain 
management. 
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