

Optimization of Single-user Task Migration based on Improved DDPG

CAO NING1, HE YANG2, HU CAN1

1College of Computer Science and Software Engineering,
Hohai University,

Nanjing,
CHINA

2College of Information Science and Engineering,

Hohai University,
Nanjing,
CHINA

Abstract: - Aiming at the problems of slow convergence and unstable convergence of traditional reinforcement
learning algorithms in minimizing computational cost on edge servers with random task arrivals and time-
varying wireless channels, an improved DDPG algorithm (IDDPG) was proposed. The Critic network structure
of DDPG was replaced by the Dueling structure, which converged faster by splitting the state value function
into an advantage function and a value function. The update frequency of the Critic network was adjusted to be
higher than that of the Actor-network to make the overall training more stable. The Ornstein- Uhlenbeck noise
was added to the actions selected through the Actor-network to improve the algorithm exploration ability, and
the action noise size was set in segments to ensure the stability of convergence. Experimental results show that,
compared with other algorithms, the IDDPG algorithm can better minimize the computational cost and has a
certain improvement in the convergence speed and convergence stability.

Key-Words: - deep reinforcement learning; edge computing; task offloading; strategy optimization; network
structure; algorithm optimization.

 Received: July 21, 2023. Revised: May 7, 2024. Accepted: June 22, 2024. Published: July 17, 2024.

1 Introduction
With the rapid development of artificial intelligence
and fifth-generation mobile communication
technology, a large number of computationally
intensive tasks have emerged on mobile devices, [1].
Examples include online 3D games, face
recognition, and augmented or virtual reality, all of
which are limited by the limited computational
capabilities, [2]. Additionally, in the Internet of
Things and intelligent transportation systems, [3],
wireless terminal devices with information
transmission capabilities need to preprocess massive
amounts of sensory data. To improve user
experience quality, Mobile Edge Computing (MEC)
technology, [4], has been proposed to bridge the gap
between the limited computational capabilities of
terminal devices and the massive computational
demand. Task offloading, as a core technology of
MEC, can offload computational tasks from mobile
devices to MEC servers close to base stations (BS).
Rational offloading strategies can not only minimize
transmission latency but also reduce the transmission
energy consumption of MEC servers, efficiently

completing massive computational tasks. To achieve
better user experience and higher transmission
efficiency, the research on task offloading strategies
in MEC has been widely studied.

For short-term optimization on quasi-static
channels, literature [5], studied the optimal
offloading and resource allocation on software-
defined ultra-dense networks (SD-UDN). Literature
[6], studied from the perspective of controlling the
CPU working frequency, aiming to minimize
computational energy consumption and execution
time. Literature [7], discussed the trade-off between
energy and delay in environments with sensitive
delay and limited energy, and further improved the
allocation of computational resources and
communication. Literature [8], improved the
performance of MEC further by using emerging
technologies such as wireless power transfer and
non-orthogonal multiple access. For stochastic task
arrivals and time-varying wireless channels, dynamic
joint control of radio and computational resources
has also been studied. In the single-user scenario,
literature [9], considered the energy consumption in

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 308 Volume 21, 2024

single-antenna mobile devices as the research
objective, optimizing the time and power required
for offloading. Literature [10], used heuristic
algorithms to solve the dynamic task offloading
problem in simple scenarios. Markov decision
process (MDP) can also be used for dynamic control
analysis and design of computation offloading, [11].
In addition, literature [12], demonstrated how to
learn dynamic task offloading strategies through
reinforcement learning (RL) algorithms without prior
knowledge of the system. However, traditional RL
algorithms can only solve small-scale problems, and
they are often powerless in the face of increased
complexity and dimensionality of the state space,
[13]. The association between deep nonlinear
network structures and reinforcement learning makes
Deep Reinforcement Learning (DRL) have end-to-
end perception and control, thus solving the problem
of space explosion, [14]. In the MEC system, online
resource allocation and scheduling based on DRL
algorithms have been studied. Literature [15],
designed an online offloading algorithm to maximize
the weighted sum computation rate in a wireless
power supply system. Literature [16], proposed a
DRL-based task offloading strategy to select a MEC
server for offloading and determine the offloading
rate. Literature [17], presented a policy computation
offloading algorithm based on deep Q-network
(DQN), where mobile devices learn the optimal task
offloading and energy allocation based on the task
queue state, energy queue state, and channel quality,
aiming to maximize long-term utility. Literature
[18], proposed using Deep Deterministic Policy
Gradient (DDPG) as the offloading strategy
algorithm to solve the allocation problem of energy
consumption and delay in a single-user scenario with
stochastic task arrivals and time-varying wireless
channel models, aiming to minimize computational
cost. Literature [19], proposed the ECOO algorithm
based on DDPG for optimizing candidate networks,
solving the problem of stochastic task offloading.
Literature [20], used DDPG to jointly optimize
service cache placement, task offloading decisions,
and resource allocation.

In summary, in the single-user scenario, the
current dynamic computation offloading strategies
based on DRL only utilize traditional reinforcement
learning algorithms. However, these algorithms,
such as Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG), suffer from
slow convergence and unstable convergence, leading
to high computational cost and latency in the system
as the base station collects information and allocates
it to the user. Therefore, for a single-user MEC
system, a more efficient task offloading strategy is

needed.
In this paper, a system consisting of a single-user

MEC server and a base station connected to it is
constructed, where tasks arrive randomly and the
user's channel conditions are time-varying. The
mobile user independently learns a dynamic
computation offloading strategy based on local
observations of the system. An improved Deep
Deterministic Policy Gradient algorithm, called
IDDGP, is proposed, which operates in a continuous
action space and enables more efficient local
execution and task offloading power control, to
minimize computational cost in the long term.

2 System Model
This article presents a system consisting of a BS(
with N antennas, a MEC server, and a group of
mobile users. The system adopts a discrete-time
model, where each operation m∈{1, 2, ..., M}is set
to a fixed time interval . The time slots are indexed
by t∈{0, 1, ..., T}. Due to the varying channel
conditions and task arrivals at each t, it is necessary
to calculate the proportion of local execution and
computation offloading to balance the average
energy consumption and latency of task processing,
thus achieving cost minimization.

2.1 Network Model
For each time slot t, the received signal at the
base station can be represented as follows:

where represents the

transmission power when user m migrates its task,
 represents the dimensional transmitted

signal, and is an additive
Gaussian white noise vector with variance .

 is used to characterize the correlation
between user m and time slot t, and its definition can
be found in [21].
represents the N×M channel matrix between the
mobile users and the base station. The base station
detector can represent the channel matrix's
pseudoinverse as . If
the m-th row of is represented as , then

represents the signal detected by the base station for
user m. Therefore, the corresponding signal-to-noise
ratio can be derived as shown in (2).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 309 Volume 21, 2024

2.2 Computation Model
We assume that the applications are fine-grained,
[22]. The definitions of and can be
found in reference [21], while the definition of

 is described in [20]. The relationship between
 and the task computation load is given by (3)

as shown in [20].

(3)

Where , and represents the

arrival task load.
The definitions of and Lm can be found

in [3]. By using the DVFS technique, [23], to adjust
the chip voltage, the CPU frequency of the local
device is determined as shown in (4), [20]:

where k represents the effective switching

capacitance of the chip.
The amount of local data processed by mobile

device m at time t is given by (5):

The amount of migration data processed by

mobile device m at time t is given by (6):

where W is the system bandwidth.

3 DRL-based IDDPG
This paper proposes a DRL-based IDDPG algorithm
that enables mobile devices to learn computation
offloading policies dynamically, minimizing the
computational cost of energy consumption and
buffer delay in the MEC system. The proposed
strategy observes the environment from its
perspective and selects actions to allocate power for
local execution and computation offloading. The
following sections define the DRL framework,
followed by an introduction to the DDPG algorithm
and the Dueling network architecture. Finally, the
proposed IDDPG algorithm is presented.

3.1 Deep Reinforcement Learning
State space: It is assumed that the state of the mobile
device is determined by its local observations of the
system. At the beginning of time interval t, the
mobile device updates the queue length of the data
buffer using (3) and estimates the incoming uplink

channel vector by receiving the signal-to-
noise ratio from the previous wireless
communication with the MEC server. The current
state of the mobile device is represented as follows:

where .

Action space: The mobile device selects an

action based on the observed state , as
represented by (8).

Reward function: The definition of the

relationship between energy consumption and delay
can be found in [24]. Based on this relationship, the
reward function , received by the mobile device
after time slot t is defined as follows:

Where and are non-negative

weighting factors, and . The
meaning of the reward function is the negative
weighted sum of the total energy consumption and
the length of the task buffer queue at time t. The
weighted sum of energy consumption and delay
represents the computational cost required for task
offloading. The optimization objective of this paper
is to minimize the computational cost, which is
equivalent to maximizing the reward. By setting
different values for the weighting factors and

, dynamic adjustments can be made between
the energy consumption and task execution delay in
the task migration strategy.

3.2 DDPG
DDPG, [25], is a deterministic policy algorithm that
utilizes deep learning techniques and is based on the
Actor-Critic algorithm. This algorithm uses deep
neural networks to establish approximate functions.
It directly generates deterministic actions from the
Actor-network, evaluates the actions using the Critic
network, and guides the Actor network in selecting
the next action. Additionally, DDPG maintains a set
of parameters for both the Actor and Critic
networks, which are used to calculate the expected
value of action values for improved stability and
enhancement of the Critic's policy guidance level.
The networks that use the backup parameters are
referred to as target networks, and their
corresponding parameters are updated with small
increments each time. Another set of parameters,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 310 Volume 21, 2024

corresponding to the Actor and Critic, is used to
generate actual interactive actions and calculate the
respective policy gradients, and these parameters are
updated after each learning iteration. This dual-
parameter setup aims to reduce non-convergence
occurrence due to the guidance of approximate data.
The specific usage scenarios for these four networks
are as follows:

Actor-network: The Actor network iteratively
updates its parameter θ. It generates specific actions
based on the current state s and interacts with the
environment to generate s', r.

Target Actor network: The target Actor network
periodically copies the parameters θ→θ'. It selects
the optimal exploratory action a' based on the
subsequent state s' provided by the environment.

Critic network: The Critic network iteratively
updates its parameter ω. It calculates the current
action value corresponding to the state s and the
generated action a.

Target Critic network: The target Critic network
periodically copies the parameters ω→ω'. It
calculates the target action value based on the
subsequent state s' and a'.

DDPG uses soft updates, where a portion of the
parameters is updated proportionally each time to
ensure training stability. The update expression is
shown as follows:

In action selection, DDPG does not use the ε-

greedy approach as in DQN. Instead, it adds a
certain amount of noise to the chosen action A to
increase randomness and learning coverage. The
expression is shown as follows:

where represents the action policy on the

Actor-network.
For the current Critic network, the mean square

error loss function is defined as shown in (12):

where

serves as the Critic target Q-value. The current
network parameters ω are updated using gradient
backpropagation.

For the current Actor-network, the loss gradient
is defined as shown as follows:

All parameters θ of the current Actor network are
updated through gradient backpropagation using a
neural network.

3.3 Dueling Network Architecture
In reinforcement learning, the agent needs to
estimate the value for each state. However, for many
states, the agent does not need to change its action
to adapt to the new state. Therefore, evaluating the
value of such state-action pairs could be more
efficient and meaningful, [9]. The Dueling network
architecture separates the state value and the action
advantage to evaluate, avoiding unnecessary action
evaluations and enabling more accurate estimation
of Q-values with faster convergence speed.

This paper incorporates the Dueling network
structure into the DDPG Critic main network and
target network, called the Dueling-Critic network.
The Dueling-Critic network separately evaluates the
observed state value and the action advantage
transmitted from the Actor-network. This network
allows finding stable policies in continuous action
spaces and speeds up convergence. The structure of
the Dueling-Critic network in this paper is
illustrated in Figure 1.

State-action value function represents
the expected return value when action a is chosen by
policy π in state s, while state value function
represents the expected return value generated by
policy π in state s. The difference between the two
represents the advantage of choosing action a in
state s, as defined in [9].

Fig. 1: Dueling-Critic network architecture

The output of the Dueling-Critic network

consists of the state value and the action
advantage . ω represents the parameters
of the Dueling-Critic network, while α and β
represent the parameters of the value function and
the action advantage function , [9]. The output of
the deep Q-network with the competitive network
structure is shown as follows:

Since the network directly outputs Q values

without explicitly knowing the state value V and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 311 Volume 21, 2024

action advantage A, to ensure interpretability, the
action advantage A is centrally processed, which
improves optimization stability while maintaining
performance. The modified Q value is defined as
follows:

3.4 Delayed Policy Updates
In DDPG, the Critic network extracts a portion of
experiences from the
replay buffer as the current Q-values for
calculation. Then, the mean squared error is
computed to estimate the Q-values, and the current
network parameters of the Critic are updated
through gradient backpropagation. These updated
parameters are then transferred to the target network
at a fixed interval τ. Similarly, the Actor network
shares the same network structure as the Critic, so it
synchronizes the parameter updates with the Critic
at the fixed interval τ.

However, synchronous updates may cause issues
when the Actor-network reaches its optimal point
during training while the Q-values of the Critic have
been updated. In this case, the Q-values here could
be more optimal. The Actor network can only
continue searching for new optimal points, which
increases the training duration. In the worst case, the
Actor-network may get trapped in suboptimal points
and fail to find the correct optimal point, leading to
poor training of both the Critic and Actor networks
and making it difficult for the model to converge.

This paper introduces asynchronous updates for
the Critic and Actor networks by setting τ1 and τ2 as
the soft update coefficients for the Actor and Critic
networks, respectively, and adjusting the update
frequency of the Critic network to be faster than the
Actor-network. The purpose is to stabilize the Critic
before the Actor proceeds with the next learning
step. Delayed updates not only reduce unnecessary
repeated updates but also minimize accumulated
errors in multiple updates.

3.5 Noise Segmentation
Reinforcement learning often struggles with the
exploration-exploitation trade-off. If an agent
always selects actions based on the maximum Q-
value, it can hardly learn the optimal policy in
complex environments. This is because such an
action selection strategy lacks exploration, and some
actions may never be explored, leading to getting
stuck in suboptimal situations. Common methods to

address the exploration-exploitation dilemma
include:
1. ε-greedy: With a probability of (1-ε), the agent

greedily selects the action that corresponds to
the currently perceived maximum Q-value, and
with a probability of ε, it randomly selects an
action from all available options.

2. Decaying ε-greedy: As time progresses, the
probability of selecting a random action ε
decreases.

3. Uncertainty-based exploration: When the value
of an action is uncertain, the agent has a higher
probability of choosing that action.

4. Information value-based exploration:
Approximating the value and function and
constructing a model based on the information
state to sample and approximate the solution.

5. Adding Gaussian noise or Ornstein-Uhlenbeck
(OU) exploration noise to action selection,
where OU noise is defined in [5], to enhance
exploration.

In this paper, due to the small-time granularity of
the system, the agent selects OU exploration noise.
To improve the efficiency of exploration, this paper
segments the magnitude of the OU noise, allowing it
to have different levels of exploration at different
stages of training. In the early stages of training, the
agent needs to explore a wide range of actions in
unknown environments, so a higher level of
exploration is required. As the agent interacts with
the environment and improves its learning ability,
the exploration level gradually decreases with the
number of steps.

This paper provides the settings for the noise
magnitude as shown in Table 1.

Table 1. Parameter configuration

Index Step number Noise magnitude

1 0<Step<60000 noise_sigma=0.2
2 60000≤Step<150000 noise_sigma=0.12
3 150000≤Step<300000 noise_sigma=0.08
4 300000≤Step<400000 noise_sigma=0.03

3.6 IDDPG
Algorithm 1: IDDPG

Input: Actor current network θ, Actor target network θ',
Critic current network ω, Critic target network ω', discount
factor γ, soft update coefficients τ1 and τ2, the batch size for
gradient descent m, value function network parameters α,
advantage function network parameters β, maximum iterations
for target network Tmax

Output: The optimal parameters for the current Actor
network θ and the current Critic network ω

1 Randomly initialize the Actor-network and the Dueling-Critic
network, initialize the weights of the target networks θ'←θ,
ω'←ω, α'←α, β'←β, initialize the experience replay buffer Bm,
and initialize the exploration noise process Δμ
2 for episode=1 to episode_max do

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 312 Volume 21, 2024

3 Initialize state s
4 for t=1 to Tmax do
5 Observe the current state s and select an action a by using

the current policy network in conjunction with the
segmented exploration noise Δμ

6 Take action a, receive reward r, and then observe the next
state s'

7 Collect the set of (s, a, r, s') for the current execution and
store it in the buffer Bm

8 Randomly sample m experiences {(sj, aj, rj, sj')} from Bm
to create a mini-batch

9 Update the Dueling-Critic network by minimizing the
loss function L using the sampled mini-batch

10 Update the Actor-network using the sample gradient

policy

11 Soft update the Dueling-Critic target network and the

Actor target network (τ1τ2<<1).

12 end for
13 end for

In the DRL-based IDDPG problem model, MEC

observes the environment and obtains an initial state
space s as (7). These high-dimensional states are
processed through deep neural networks to output
Q-value functions or policies. As an edge server, the
MEC selects actions a for local offloading power
and task migration power based on the current
policy network and segmented exploration noise Δμ
as shown in (8). Then, the reward value r based on
(9) is returned to the MEC, and the next state s' is
observed. The MEC collects the set (s, a, r, s') for
the current execution and stores it in the buffer Bm.
Afterward, a mini-batch of m experiences is
randomly sampled from Bm, and the Dueling-Critic
network Q(s, a, ω, α, β) is updated by minimizing
the loss function using the sampled gradient. The
Actor network is updated using the sample gradient.
The MEC receives the reward value r corresponding
to each action selection, and trains and improves the
network model to output the optimal policy that
maximizes the reward, which means minimizing the
MEC task offloading computational cost.

4 Simulation
To assess the practicality of the IDDPG algorithm in
a single-user MEC model. experimental simulations
were conducted in an environment with Windows 10,
CPU 8500, GTX 1080, Python 3.7, and TensorFlow
1.5. Four algorithms were compared: Greedy local
offloading (GD-Local), [20], Greedy migration
offloading (GD-Offload), [20], Discrete action DQN,
[11], Continuous action DDPG, [25].

4.1 Setup

In the MEC system, the time interval τ0 is set to 1
ms. At the beginning of each episode, the channel
vectors are
initialized, where the reference distance d0=1 m, the
path loss exponent α=3, and d represents the
distance between the mobile device and the MEC
server, which is set to 100m in this paper. The
channel correlation coefficient pm=0.95, the
bandwidth W=1 MHz, the maximum transmission
power of the mobile device po,m=2 W, the noise
power σR

2=10-9 W, the local execution parameter
k=10-27, the CPU cycle Lm=500 cycles/bit, the CPU
cycle frequency Fm=1.26 GHz, and the maximum
power for local execution pl,m=2 W.

To validate the effectiveness of the proposed
algorithm, the same neural network architecture and
parameters are used for DQN, DDPG, and ID-DPG.
The number of neurons in the hidden layers is set to
400 and 300, respectively. In IDDPG, the last
hidden layer of the dueling-critic network is split
into an advantage function and a value function.
ReLU is used as the activation function for the
hidden layers of the neural network, and the actions
outputted by the Actor-network are mapped using a
sigmoid function. The neural network parameter
settings are shown in Table 2.

Table 2. Network parameter setting

Index Parameter Value

1 Actor learning rate 0.001
2 Critic learning rate 0.0005
3 Actor soft update coefficient 0.001
4 Critic soft update coefficient 0.15
5 Noise parameter 0.12
6 Noise parameter 2.5×105

4.2 Training
The distance between the mobile device and the BS
is set to d1=100. As shown in Figure 2, Figure 3 and
Figure 4, the training process for dynamic
offloading in the single-user scenario is conducted
with different values of ω1. In Figure 2, the left plot
corresponds to ω1=0.5, and the right plot
corresponds to ω1=0.8, where episode_max=2000,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 313 Volume 21, 2024

Tmax=200. Each curve represents the average value
obtained from running the numerical simulation 10
times.

In each plot, two cases are shown, with task
arrival rates λ=2.0 Mbps and λ=3.0 Mbps. When
ω1=0.5, which represents a balance between delay
and energy consumption, although the average
energy consumption in Figure 3(left) is not the
lowest, the proposed IDDPG algorithm achieves
higher average rewards in Figure 2(left) compared
to the DDPG and DQN algorithms, by adjusting the
average delay in Figure 4(left).

Fig. 2: Average reward values for different task
arrival rates with different trade-off factors

Fig. 3: Average energy consumption values for
different task arrival rates with different trade-off
factors

Fig. 4: Average delay values for different task
arrival rates with different trade-off factors

When ω1=0.8, which indicates a higher emphasis

on energy consumption, the IDDPG algorithm
achieves lower average energy consumption in
Figure 3(right) compared to the compared
algorithms. Although there is a sacrifice in average
delay in Figure 4(right), the IDDPG algorithm still
achieves higher average rewards in Figure 2(right)

for task arrival rates λ=2.0 Mbps and λ=3.0 Mbps
compared to the DDPG and DQN algorithms.

Through comparative experiments, it can be
observed that the proposed IDDPG algorithm,
through interaction between the user agent and the
environment, achieves higher average rewards than
the compared algorithms under different trade-off
factors, and demonstrates greater stability. This
indicates that for continuous control problems, the
IDDPG algorithm is capable of better "exploration-
exploitation" and more efficient maximization of
rewards, i.e., minimizing computational costs, while
learning the optimal computation offloading
strategy.

The IDDPG algorithm demonstrates superior
performance in terms of average rewards and
convergence speed compared to the other algorithms,
regardless of the task arrival rate (λ = 2.0 Mbps or λ
= 3.0 Mbps) when the trade-off factor ω1 is set to
0.8. Furthermore, the advantage of the IDDPG
algorithm over the DDPG and DQN algorithms is
even greater when compared to the weighting factor
ω1=0.5. This indicates that the IDDPG algorithm is
more suitable for scenarios that prioritize power
consumption. In situations with more complex task
computations, the IDDPG algorithm demonstrates
superior performance due to its reasonable action
exploration and network structure optimization.

4.3 Test
After training for a total of 2000 episodes, we
obtained dynamic computation offloading strategies
learned by the IDDPG, DDPG, and DQN
algorithms, respectively. To compare the
performance of different strategies, we conducted
numerical simulations in 100 episodes with a test
step size of T=10000. The average values were
taken from 10 simulations for each of the five task
arrival rates: λ=1.0 Mbps, λ=1.5 Mbps, λ=2.0 Mbps,
λ=2.5 Mbps, and λ=3.0 Mbps.

Fig. 5: Average reward value for different task
arrival rates with different ω1

In the scenario of ω1 =0.5 in Figure 5(left), when

λ=3.0 Mbps, the average reward of the DQN-based
strategy is approximately equal to the greedy

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 314 Volume 21, 2024

migration offloading. This is because the DQN
strategy has a limited number of discrete power
levels, and although finer granularity in the action
space discretization may lead to better performance,
the number of operations increases exponentially
with the degrees of freedom, making efficient
exploration more challenging and thus reducing the
performance of the DQN strategy.

From Figure 5, it can be observed that as the task
arrival rate increases, the average rewards of all the
algorithms gradually decrease. This is because
higher demands lead to increased computational
costs (average rewards in this paper are defined as
the negative value of costs). In the case of low
arrival rates, such as λ=1.0 Mbps and λ=1.5 Mbps,
the IDDPG algorithm shows little difference in
average rewards compared to the DDPG algorithm
but performs better than the DQN and other greedy
algorithms. This is because the computational
workload is small and does not require deep
exploration in actions. The improved network
structure and exploration noise advantage in IDDPG
are not prominent. However, as the arrival rate
increases, the IDDPG algorithm gradually
demonstrates its advantages in terms of faster and
more stable convergence.

In summary, the IDDPG algorithm outperforms
the compared strategies in terms of average rewards
for different task arrival rates under different trade-
off factors. This indicates that the IDDPG strategy
can allocate local execution power and task
offloading power more reasonably based on
observations of the environment in unknown
information settings, thereby balancing energy
consumption and latency and achieving the goal of
minimizing long-term costs, highlighting the
superiority of this strategy.

5 Conclusion
In this paper, an improved DDPG algorithm is
proposed to address the slow convergence and
instability issues in task offloading of traditional
single-user MEC systems using reinforcement
learning algorithms. The improved DDPG algorithm
aims to minimize computational costs more
efficiently. Through experimental validation, our
proposed algorithm has been shown to outperform
traditional DDPG, DQN, and other greedy strategies
in terms of power consumption and buffer delay.
The main innovation of this paper lies in replacing
the Critic network structure of DDPG with a
Dueling structure. This structure decomposes the
state value function into the advantage function and
value function, ensuring faster convergence speed

and higher stability. Additionally, we set the update
frequency of the Critic network higher than that of
the Actor-network to stabilize the Critic network's
training and improve the Actor network's action
output. Furthermore, we segment the action noise,
initially setting it at a higher value to ensure
comprehensive exploration during the initial
training stage. As the training progresses and
stabilizes, we gradually reduce the noise level to
ensure convergence stability.In our future work, we
plan to incorporate multi-user collaboration into the
IDDPG framework to further enhance task
offloading in MEC systems and improve strategy
performance.

References:

[1] SHI Weisong, ZHANG Xingzhou, WANG
Yifan, ZHANG Qingyang. Edge computing:
State-of-the-art and future directions. Journal

of Computer Research and Development,
2019, 56 (1):69-89 (in Chinese).

[2] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu,
"Edge Computing: Vision and Challenges," in
IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637-646, Oct. 2016, doi:
10.1109/JIOT.2016.257919 8

[3] K. Zhang, Y. Mao, S. Leng, Y. He and Y.
ZHANG, "Mobile-Edge Computing for
Vehicular Networks: A Promising Network
Paradigm with Predictive Off-Loading," in
IEEE Vehicular Technology Magazine, vol.
12, no. 2, pp. 36-44, June 2017, doi:
10.1109/MVT. 2017.2668838

[4] Y. Mao, C. You, J. Zhang, K. Huang and K. B.
Letaief, "A Survey on Mobile Edge
Computing: The Communication
Perspective," in IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322-
2358, Fourthquarter 2017, doi:
10.1109/COMST.2017.2745201

[5] Maria J.P. Peixoto and Akramul Azim. 2021.
Using time-correlated noise to encourage
exploration and improve autonomous agents
performance in Reinforcement Learning.

Procedia Comput. Sci., 191, C (2021), 85-92.
https://doi.org/10.1016/j. procs.2021.07.014.

[6] M. Chen and Y. Hao, "Task Offloading for
Mobile Edge Computing in Software Defined
Ultra-Dense Network," in IEEE Journal on

Selected Areas in Communications, vol. 36,
no. 3, pp. 587-597, March 2018, doi:
10.1109/JSAC.201 8.2815360.

[7] H. Guo, J. Liu, J. Zhang, W. Sun and N. Kato,
"Mobile-Edge Computation Offloading for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 315 Volume 21, 2024

https://doi.org/10.1016/j

Ultradense IoT Networks," in IEEE Internet

of Things Journal, vol. 5, no. 6, pp. 4977-
4988, Dec. 2018, doi:
10.1109/JIOT.2018.2838584.

[8] J. Zhang et al., "Energy-Latency Tradeoff for
Energy-Aware Offloading in Mobile Edge
Computing Networks," in IEEE Internet of

Things Journal, vol. 5, no. 4, pp. 2633-2645,
Aug. 2018, doi: 10.1109/JIOT.2017.2786343.

[9] S. Bi and Y. J. Zhang, "Computation Rate
Maximization for Wireless Powered Mobile-
Edge Computing With Binary Computation
Offloading," in IEEE Transactions on

Wireless Communications, vol. 17, no. 6, pp.
4177-4190, June 2018, doi:
10.1109/TWC.201 8.2821664.

[10] J. Kwak, Y. Kim, J. Lee and S. Chong,
"DREAM: Dynamic Resource and Task
Allocation for Energy Minimization in Mobile
Cloud Systems," in IEEE Journal on Selected

Areas in Communications, vol. 33, no. 12, pp.
2510-2523, Dec. 2015, doi:
10.1109/JSAC.2015.2478718.

[11] N. Janatian, I. Stupia and L. Vandendorpe,
"Optimal resource allocation in ultra-low
power fog-computing SWIPT-based
networks," 2018 IEEE Wireless

Communications and Networking Conference

(WCNC), Barcelona, Spain, 2018, pp. 1-6, doi:
10.1109/WCNC.2018.8376974.

[12] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu
and G. Wei, "Power-Constrained Edge
Computing With Maximum Processing
Capacity for IoT Networks," in IEEE Internet

of Things Journal, vol. 6, no. 3, pp. 4330-
4343, June 2019, doi:
10.1109/JIOT.2018.2875218.

[13] J. Liu, Y. Mao, J. Zhang and K. B. Letaief,
"Delay-optimal computation task scheduling
for mobile-edge computing systems," 2016
IEEE International Symposium on

Information Theory (ISIT), Barcelona, Spain,
2016, pp. 1451-1455, doi: 10.1109/ISIT.201
6.7541539.

[14] T. Q. Dinh, Q. D. La, T. Q. S. Quek and H.
Shin, "Learning for Computation Offloading
in Mobile Edge Computing," in IEEE

Transactions on Communications, vol. 66, no.
12, pp. 6353-6367, Dec. 2018, doi:
10.1109/TCOMM.201 8 .2866572.

[15] Sutton R S, Barto A G. Reinforcement
learning: An introduction. MIT press, 2018.

[16] Mnih, V., Kavukcuoglu, K., Silver, D. et al.
Human-level control through deep
reinforcement learning. Nature, 518, 529–533
(2015), https://doi.org/10.1038/nature14236.

[17] L. Huang, S. Bi and Y. -J. A. Zhang, "Deep
Reinforcement Learning for Online
Computation Offloading in Wireless Powered
Mobile-Edge Computing Networks," in IEEE

Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581-2593, 1 Nov. 2020, doi:
10.1109/TMC.2019.2928811.

[18] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu
and W. Zhuang, "Learning-Based
Computation Offloading for IoT Devices
With Energy Harvesting," in IEEE

Transactions on Vehicular Technology, vol.
68, no. 2, pp. 1930-1941, Feb. 2019, doi:
10.1109/TVT.2018.2890685.

[19] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji and
M. Bennis, "Optimized Computation
Offloading Performance in Virtual Edge
Computing Systems Via Deep Reinforcement
Learning," in IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005-4018, June 2019, doi:
10.1109/JIOT.2018.2876279.

[20] Chen, Z., Wang, X. Decentralized
computation offloading for multi-user mobile
edge computing: a deep reinforcement
learning approach. J. Wireless Com Network,
2020, 188 (2020),
https://doi.org/10.1186/s13638-020-01801-6.

[21] H. Lu, C. Gu, F. Luo, W. Ding, S. Zheng and
Y. Shen, "Optimization of Task Offloading
Strategy for Mobile Edge Computing Based
on Multi-Agent Deep Reinforcement
Learning," in IEEE Access, vol. 8, pp.
202573-202584, 2020, doi:
10.1109/ACCESS.2020.3036416.

[22] Y. Yang, K. Wang, G. Zhang, X. Chen, X.
Luo and M. -T. Zhou, "MEETS: Maximal
Energy Efficient Task Scheduling in
Homogeneous Fog Networks," in IEEE

Internet of Things Journal, vol. 5, no. 5, pp.
4076-4087, Oct. 2018, doi:
10.1109/JIOT.2018.2846644.

[23] Asghari, A., Sohrabi, M.K. Combined use of
coral reefs optimization and multi-agent deep
Q-network for energy-aware resource
provisioning in cloud data centers using
DVFS technique. Cluster Comput., 25, 119–
140 (2022), https://doi.org/10.1007/s10586-
021-03368-3.

[24] Shortle JF, Thompson JM, Gross D, et al.
Fundamentals of queueing theory. New York:
John Wiley & Sons, 2018:1-576.

[25] Xu, Yi-Han, et al. “Deep Deterministic Policy
Gradient (DDPG)-Based Resource Allocation
Scheme for NOMA Vehicular
Communications.” IEEE Access, Jan. 2020,
pp. 18797–807, https://doi.org/10.1109/ac
cess.2020.2968595.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 316 Volume 21, 2024

https://doi.org/10.1038/nature14236
https://doi.org/10.1186/s13638-020-01801-6
https://doi.org/10.1007/s10586-021-03368-3
https://doi.org/10.1007/s10586-021-03368-3

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.30 Cao Ning, He Yang, Hu Can

E-ISSN: 2224-3402 317 Volume 21, 2024

https://doi.org/10.1109/ac%20cess.2020
https://doi.org/10.1109/ac%20cess.2020
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

