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Abstract: - Aiming at the problems of slow convergence and unstable convergence of traditional reinforcement 
learning algorithms in minimizing computational cost on edge servers with random task arrivals and time-
varying wireless channels, an improved DDPG algorithm (IDDPG) was proposed. The Critic network structure 
of DDPG was replaced by the Dueling structure, which converged faster by splitting the state value function 
into an advantage function and a value function. The update frequency of the Critic network was adjusted to be 
higher than that of the Actor-network to make the overall training more stable. The Ornstein- Uhlenbeck noise 
was added to the actions selected through the Actor-network to improve the algorithm exploration ability, and 
the action noise size was set in segments to ensure the stability of convergence. Experimental results show that, 
compared with other algorithms, the IDDPG algorithm can better minimize the computational cost and has a 
certain improvement in the convergence speed and convergence stability. 
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1   Introduction 
With the rapid development of artificial intelligence 
and fifth-generation mobile communication 
technology, a large number of computationally 
intensive tasks have emerged on mobile devices, [1]. 
Examples include online 3D games, face 
recognition, and augmented or virtual reality, all of 
which are limited by the limited computational 
capabilities, [2]. Additionally, in the Internet of 
Things and intelligent transportation systems, [3], 
wireless terminal devices with information 
transmission capabilities need to preprocess massive 
amounts of sensory data. To improve user 
experience quality, Mobile Edge Computing (MEC) 
technology, [4], has been proposed to bridge the gap 
between the limited computational capabilities of 
terminal devices and the massive computational 
demand. Task offloading, as a core technology of 
MEC, can offload computational tasks from mobile 
devices to MEC servers close to base stations (BS). 
Rational offloading strategies can not only minimize 
transmission latency but also reduce the transmission 
energy consumption of MEC servers, efficiently 

completing massive computational tasks. To achieve 
better user experience and higher transmission 
efficiency, the research on task offloading strategies 
in MEC has been widely studied. 

For short-term optimization on quasi-static 
channels, literature [5], studied the optimal 
offloading and resource allocation on software-
defined ultra-dense networks (SD-UDN). Literature 
[6], studied from the perspective of controlling the 
CPU working frequency, aiming to minimize 
computational energy consumption and execution 
time. Literature [7], discussed the trade-off between 
energy and delay in environments with sensitive 
delay and limited energy, and further improved the 
allocation of computational resources and 
communication. Literature [8], improved the 
performance of MEC further by using emerging 
technologies such as wireless power transfer and 
non-orthogonal multiple access. For stochastic task 
arrivals and time-varying wireless channels, dynamic 
joint control of radio and computational resources 
has also been studied. In the single-user scenario, 
literature [9], considered the energy consumption in 
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single-antenna mobile devices as the research 
objective, optimizing the time and power required 
for offloading. Literature [10], used heuristic 
algorithms to solve the dynamic task offloading 
problem in simple scenarios. Markov decision 
process (MDP) can also be used for dynamic control 
analysis and design of computation offloading, [11]. 
In addition, literature [12], demonstrated how to 
learn dynamic task offloading strategies through 
reinforcement learning (RL) algorithms without prior 
knowledge of the system. However, traditional RL 
algorithms can only solve small-scale problems, and 
they are often powerless in the face of increased 
complexity and dimensionality of the state space, 
[13]. The association between deep nonlinear 
network structures and reinforcement learning makes 
Deep Reinforcement Learning (DRL) have end-to-
end perception and control, thus solving the problem 
of space explosion, [14]. In the MEC system, online 
resource allocation and scheduling based on DRL 
algorithms have been studied. Literature [15], 
designed an online offloading algorithm to maximize 
the weighted sum computation rate in a wireless 
power supply system. Literature [16], proposed a 
DRL-based task offloading strategy to select a MEC 
server for offloading and determine the offloading 
rate. Literature [17], presented a policy computation 
offloading algorithm based on deep Q-network 
(DQN), where mobile devices learn the optimal task 
offloading and energy allocation based on the task 
queue state, energy queue state, and channel quality, 
aiming to maximize long-term utility. Literature 
[18], proposed using Deep Deterministic Policy 
Gradient (DDPG) as the offloading strategy 
algorithm to solve the allocation problem of energy 
consumption and delay in a single-user scenario with 
stochastic task arrivals and time-varying wireless 
channel models, aiming to minimize computational 
cost. Literature [19], proposed the ECOO algorithm 
based on DDPG for optimizing candidate networks, 
solving the problem of stochastic task offloading. 
Literature [20], used DDPG to jointly optimize 
service cache placement, task offloading decisions, 
and resource allocation. 

In summary, in the single-user scenario, the 
current dynamic computation offloading strategies 
based on DRL only utilize traditional reinforcement 
learning algorithms. However, these algorithms, 
such as Deep Q-Network (DQN) and Deep 
Deterministic Policy Gradient (DDPG), suffer from 
slow convergence and unstable convergence, leading 
to high computational cost and latency in the system 
as the base station collects information and allocates 
it to the user. Therefore, for a single-user MEC 
system, a more efficient task offloading strategy is 

needed. 
In this paper, a system consisting of a single-user 

MEC server and a base station connected to it is 
constructed, where tasks arrive randomly and the 
user's channel conditions are time-varying. The 
mobile user independently learns a dynamic 
computation offloading strategy based on local 
observations of the system. An improved Deep 
Deterministic Policy Gradient algorithm, called 
IDDGP, is proposed, which operates in a continuous 
action space and enables more efficient local 
execution and task offloading power control, to 
minimize computational cost in the long term. 

 
 

2   System Model 
This article presents a system consisting of a BS( 
with N antennas, a MEC server, and a group of 
mobile users. The system adopts a discrete-time 
model, where each operation m∈{1, 2, ..., M}is set 
to a fixed time interval . The time slots are indexed 
by t∈{0, 1, ..., T}. Due to the varying channel 
conditions and task arrivals at each t, it is necessary 
to calculate the proportion of local execution and 
computation offloading to balance the average 
energy consumption and latency of task processing, 
thus achieving cost minimization. 

 
2.1  Network Model 
For each time slot t, the received signal  at the 
base station can be represented as follows: 

 
 
where  represents the 

transmission power when user m migrates its task,  
 represents the  dimensional transmitted 

signal, and  is an additive 
Gaussian white noise vector with variance . 

 is used to characterize the correlation 
between user m and time slot t, and its definition can 
be found in [21].  
represents the N×M channel matrix between the 
mobile users and the base station. The base station 
detector can represent the channel matrix's 
pseudoinverse as . If 
the m-th row of  is represented as , then 

 
represents the signal detected by the base station for 
user m. Therefore, the corresponding signal-to-noise 
ratio can be derived as shown in (2). 
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2.2  Computation Model 
We assume that the applications are fine-grained, 
[22]. The definitions of  and  can be 
found in reference [21], while the definition of 

 is described in [20]. The relationship between 
 and the task computation load is given by (3) 

as shown in [20]. 

 
(3) 

 
Where , and  represents the 

arrival task load.  
The definitions of  and Lm can be found 

in [3]. By using the DVFS technique, [23], to adjust 
the chip voltage, the CPU frequency of the local 
device is determined as shown in (4), [20]: 

 
 
where k represents the effective switching 

capacitance of the chip.  
The amount of local data processed by mobile 

device m at time t is given by (5): 
 

 
The amount of migration data processed by 

mobile device m at time t is given by (6): 
 

 
where W is the system bandwidth. 
 
 

3  DRL-based IDDPG 
This paper proposes a DRL-based IDDPG algorithm 
that enables mobile devices to learn computation 
offloading policies dynamically, minimizing the 
computational cost of energy consumption and 
buffer delay in the MEC system. The proposed 
strategy observes the environment from its 
perspective and selects actions to allocate power for 
local execution and computation offloading. The 
following sections define the DRL framework, 
followed by an introduction to the DDPG algorithm 
and the Dueling network architecture. Finally, the 
proposed IDDPG algorithm is presented. 

 
3.1  Deep Reinforcement Learning 
State space: It is assumed that the state of the mobile 
device is determined by its local observations of the 
system. At the beginning of time interval t, the 
mobile device updates the queue length of the data 
buffer using (3) and estimates the incoming uplink 

channel vector  by receiving the signal-to-
noise ratio  from the previous wireless 
communication with the MEC server. The current 
state of the mobile device is represented as follows: 

 
 
where . 

 
Action space: The mobile device selects an 

action  based on the observed state , as 
represented by (8). 

 
 
Reward function: The definition of the 

relationship between energy consumption and delay 
can be found in [24]. Based on this relationship, the 
reward function , received by the mobile device 
after time slot t is defined as follows: 

 
 
Where  and  are non-negative 

weighting factors, and . The 
meaning of the reward function  is the negative 
weighted sum of the total energy consumption and 
the length of the task buffer queue at time t. The 
weighted sum of energy consumption and delay 
represents the computational cost required for task 
offloading. The optimization objective of this paper 
is to minimize the computational cost, which is 
equivalent to maximizing the reward. By setting 
different values for the weighting factors  and 

, dynamic adjustments can be made between 
the energy consumption and task execution delay in 
the task migration strategy. 

 
3.2   DDPG 
DDPG, [25], is a deterministic policy algorithm that 
utilizes deep learning techniques and is based on the 
Actor-Critic algorithm. This algorithm uses deep 
neural networks to establish approximate functions. 
It directly generates deterministic actions from the 
Actor-network, evaluates the actions using the Critic 
network, and guides the Actor network in selecting 
the next action. Additionally, DDPG maintains a set 
of parameters for both the Actor and Critic 
networks, which are used to calculate the expected 
value of action values for improved stability and 
enhancement of the Critic's policy guidance level. 
The networks that use the backup parameters are 
referred to as target networks, and their 
corresponding parameters are updated with small 
increments each time. Another set of parameters, 
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corresponding to the Actor and Critic, is used to 
generate actual interactive actions and calculate the 
respective policy gradients, and these parameters are 
updated after each learning iteration. This dual-
parameter setup aims to reduce non-convergence 
occurrence due to the guidance of approximate data. 
The specific usage scenarios for these four networks 
are as follows: 

Actor-network: The Actor network iteratively 
updates its parameter θ. It generates specific actions 
based on the current state s and interacts with the 
environment to generate s', r. 

Target Actor network: The target Actor network 
periodically copies the parameters θ→θ'. It selects 
the optimal exploratory action a' based on the 
subsequent state s' provided by the environment. 

Critic network: The Critic network iteratively 
updates its parameter ω. It calculates the current 
action value corresponding to the state s and the 
generated action a. 

Target Critic network: The target Critic network 
periodically copies the parameters ω→ω'. It 
calculates the target action value based on the 
subsequent state s' and a'. 

DDPG uses soft updates, where a portion of the 
parameters is updated proportionally each time to 
ensure training stability. The update expression is 
shown as follows: 

 
 
In action selection, DDPG does not use the ε-

greedy approach as in DQN. Instead, it adds a 
certain amount of noise  to the chosen action A to 
increase randomness and learning coverage. The 
expression is shown as follows: 

 
 
where  represents the action policy on the 

Actor-network. 
For the current Critic network, the mean square 

error loss function is defined as shown in (12): 

 
 
where  

serves as the Critic target Q-value. The current 
network parameters ω are updated using gradient 
backpropagation. 

For the current Actor-network, the loss gradient 
is defined as shown as follows: 

 

All parameters θ of the current Actor network are 
updated through gradient backpropagation using a 
neural network. 

 
3.3  Dueling Network Architecture 
In reinforcement learning, the agent needs to 
estimate the value for each state. However, for many 
states, the agent does not need to change its action 
to adapt to the new state. Therefore, evaluating the 
value of such state-action pairs could be more 
efficient and meaningful, [9]. The Dueling network 
architecture separates the state value and the action 
advantage to evaluate, avoiding unnecessary action 
evaluations and enabling more accurate estimation 
of Q-values with faster convergence speed. 

This paper incorporates the Dueling network 
structure into the DDPG Critic main network and 
target network, called the Dueling-Critic network. 
The Dueling-Critic network separately evaluates the 
observed state value and the action advantage 
transmitted from the Actor-network. This network 
allows finding stable policies in continuous action 
spaces and speeds up convergence. The structure of 
the Dueling-Critic network in this paper is 
illustrated in Figure 1. 

State-action value function  represents 
the expected return value when action a is chosen by 
policy π in state s, while state value function  
represents the expected return value generated by 
policy π in state s. The difference between the two 
represents the advantage of choosing action a in 
state s, as defined in [9]. 

 

 
Fig. 1: Dueling-Critic network architecture 

 
The output of the Dueling-Critic network 

consists of the state value  and the action 
advantage . ω represents the parameters 
of the Dueling-Critic network, while α and β 
represent the parameters of the value function and 
the action advantage function , [9]. The output of 
the deep Q-network with the competitive network 
structure is shown as follows: 

 
 
Since the network directly outputs Q values 

without explicitly knowing the state value V and 
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action advantage A, to ensure interpretability, the 
action advantage A is centrally processed, which 
improves optimization stability while maintaining 
performance. The modified Q value is defined as 
follows: 

 
 

3.4  Delayed Policy Updates 
In DDPG, the Critic network extracts a portion of 
experiences  from the 
replay buffer  as the current Q-values for 
calculation. Then, the mean squared error is 
computed to estimate the Q-values, and the current 
network parameters of the Critic are updated 
through gradient backpropagation. These updated 
parameters are then transferred to the target network 
at a fixed interval τ. Similarly, the Actor network 
shares the same network structure as the Critic, so it 
synchronizes the parameter updates with the Critic 
at the fixed interval τ. 

However, synchronous updates may cause issues 
when the Actor-network reaches its optimal point 
during training while the Q-values of the Critic have 
been updated. In this case, the Q-values here could 
be more optimal. The Actor network can only 
continue searching for new optimal points, which 
increases the training duration. In the worst case, the 
Actor-network may get trapped in suboptimal points 
and fail to find the correct optimal point, leading to 
poor training of both the Critic and Actor networks 
and making it difficult for the model to converge. 

This paper introduces asynchronous updates for 
the Critic and Actor networks by setting τ1 and τ2 as 
the soft update coefficients for the Actor and Critic 
networks, respectively, and adjusting the update 
frequency of the Critic network to be faster than the 
Actor-network. The purpose is to stabilize the Critic 
before the Actor proceeds with the next learning 
step. Delayed updates not only reduce unnecessary 
repeated updates but also minimize accumulated 
errors in multiple updates. 

 
3.5  Noise Segmentation 
Reinforcement learning often struggles with the 
exploration-exploitation trade-off. If an agent 
always selects actions based on the maximum Q-
value, it can hardly learn the optimal policy in 
complex environments. This is because such an 
action selection strategy lacks exploration, and some 
actions may never be explored, leading to getting 
stuck in suboptimal situations. Common methods to 

address the exploration-exploitation dilemma 
include: 
1.  ε-greedy: With a probability of (1-ε), the agent 

greedily selects the action that corresponds to 
the currently perceived maximum Q-value, and 
with a probability of ε, it randomly selects an 
action from all available options. 

2.  Decaying ε-greedy: As time progresses, the 
probability of selecting a random action ε 
decreases. 

3.  Uncertainty-based exploration: When the value 
of an action is uncertain, the agent has a higher 
probability of choosing that action. 

4. Information value-based exploration: 
Approximating the value and function and 
constructing a model based on the information 
state to sample and approximate the solution. 

5.  Adding Gaussian noise or Ornstein-Uhlenbeck 
(OU) exploration noise to action selection, 
where OU noise is defined in [5], to enhance 
exploration. 

In this paper, due to the small-time granularity of 
the system, the agent selects OU exploration noise. 
To improve the efficiency of exploration, this paper 
segments the magnitude of the OU noise, allowing it 
to have different levels of exploration at different 
stages of training. In the early stages of training, the 
agent needs to explore a wide range of actions in 
unknown environments, so a higher level of 
exploration is required. As the agent interacts with 
the environment and improves its learning ability, 
the exploration level gradually decreases with the 
number of steps. 

This paper provides the settings for the noise 
magnitude as shown in Table 1. 

 
Table 1. Parameter configuration 

Index Step number Noise magnitude 

1 0<Step<60000 noise_sigma=0.2 
2 60000≤Step<150000 noise_sigma=0.12 
3 150000≤Step<300000 noise_sigma=0.08 
4 300000≤Step<400000 noise_sigma=0.03 

 
3.6  IDDPG 
Algorithm 1: IDDPG 

Input: Actor current network θ, Actor target network θ', 
Critic current network ω, Critic target network ω', discount 
factor γ, soft update coefficients τ1 and τ2, the batch size for 
gradient descent m, value function network parameters α, 
advantage function network parameters β, maximum iterations 
for target network Tmax 

Output: The optimal parameters for the current Actor 
network θ and the current Critic network ω 

1 Randomly initialize the Actor-network and the Dueling-Critic 
network, initialize the weights of the target networks θ'←θ, 
ω'←ω, α'←α, β'←β, initialize the experience replay buffer Bm, 
and initialize the exploration noise process Δμ 
2 for episode=1 to episode_max do  
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3    Initialize state s 
4    for t=1 to Tmax do 
5        Observe the current state s and select an action a by using 

the current policy network in conjunction with the 
segmented exploration noise Δμ 

6        Take action a, receive reward r, and then observe the next 
state s' 

7        Collect the set of (s, a, r, s') for the current execution and 
store it in the buffer Bm 

8        Randomly sample m experiences {(sj, aj, rj, sj')} from Bm 
to create a mini-batch 

9        Update the Dueling-Critic network by minimizing the 
loss function L using the sampled mini-batch 

 
10        Update the Actor-network using the sample gradient 

policy 

 
11       Soft update the Dueling-Critic target network and the 

Actor target network (τ1τ2<<1). 

 
12    end for 
13 end for 

 
In the DRL-based IDDPG problem model, MEC 

observes the environment and obtains an initial state 
space s as (7). These high-dimensional states are 
processed through deep neural networks to output 
Q-value functions or policies. As an edge server, the 
MEC selects actions a for local offloading power 
and task migration power based on the current 
policy network and segmented exploration noise Δμ 
as shown in (8). Then, the reward value r based on 
(9) is returned to the MEC, and the next state s' is 
observed. The MEC collects the set (s, a, r, s') for 
the current execution and stores it in the buffer Bm. 
Afterward, a mini-batch of m experiences is 
randomly sampled from Bm, and the Dueling-Critic 
network Q(s, a, ω, α, β) is updated by minimizing 
the loss function using the sampled gradient. The 
Actor network is updated using the sample gradient. 
The MEC receives the reward value r corresponding 
to each action selection, and trains and improves the 
network model to output the optimal policy that 
maximizes the reward, which means minimizing the 
MEC task offloading computational cost. 

 
 
 
 

4   Simulation 
To assess the practicality of the IDDPG algorithm in 
a single-user MEC model. experimental simulations 
were conducted in an environment with Windows 10, 
CPU 8500, GTX 1080, Python 3.7, and TensorFlow 
1.5. Four algorithms were compared: Greedy local 
offloading (GD-Local), [20], Greedy migration 
offloading (GD-Offload), [20], Discrete action DQN, 
[11], Continuous action DDPG, [25]. 

 
4.1  Setup 

In the MEC system, the time interval τ0 is set to 1 
ms. At the beginning of each episode, the channel 
vectors  are 
initialized, where the reference distance d0=1 m, the 
path loss exponent α=3, and d represents the 
distance between the mobile device and the MEC 
server, which is set to 100m in this paper. The 
channel correlation coefficient pm=0.95, the 
bandwidth W=1 MHz, the maximum transmission 
power of the mobile device po,m=2 W, the noise 
power σR

2=10-9 W, the local execution parameter 
k=10-27, the CPU cycle Lm=500 cycles/bit, the CPU 
cycle frequency Fm=1.26 GHz, and the maximum 
power for local execution pl,m=2 W. 

To validate the effectiveness of the proposed 
algorithm, the same neural network architecture and 
parameters are used for DQN, DDPG, and ID-DPG. 
The number of neurons in the hidden layers is set to 
400 and 300, respectively. In IDDPG, the last 
hidden layer of the dueling-critic network is split 
into an advantage function and a value function. 
ReLU is used as the activation function for the 
hidden layers of the neural network, and the actions 
outputted by the Actor-network are mapped using a 
sigmoid function. The neural network parameter 
settings are shown in Table 2. 

 
Table 2. Network parameter setting 

Index Parameter Value 

1 Actor learning rate 0.001 
2 Critic learning rate 0.0005 
3 Actor soft update coefficient  0.001 
4 Critic soft update coefficient  0.15 
5 Noise parameter  0.12 
6 Noise parameter  2.5×105 

 
4.2  Training 
The distance between the mobile device and the BS 
is set to d1=100. As shown in Figure 2, Figure 3 and 
Figure 4, the training process for dynamic 
offloading in the single-user scenario is conducted 
with different values of ω1. In Figure 2, the left plot 
corresponds to ω1=0.5, and the right plot 
corresponds to ω1=0.8, where episode_max=2000, 
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Tmax=200. Each curve represents the average value 
obtained from running the numerical simulation 10 
times. 

In each plot, two cases are shown, with task 
arrival rates λ=2.0 Mbps and λ=3.0 Mbps. When 
ω1=0.5, which represents a balance between delay 
and energy consumption, although the average 
energy consumption in Figure 3(left) is not the 
lowest, the proposed IDDPG algorithm achieves 
higher average rewards in Figure 2(left) compared 
to the DDPG and DQN algorithms, by adjusting the 
average delay in Figure 4(left). 

 

 
Fig. 2: Average reward values for different task 
arrival rates with different trade-off factors 
 

 
Fig. 3: Average energy consumption values for 
different task arrival rates with different trade-off 
factors 
 

 
Fig. 4: Average delay values for different task 
arrival rates with different trade-off factors 

 
When ω1=0.8, which indicates a higher emphasis 

on energy consumption, the IDDPG algorithm 
achieves lower average energy consumption in 
Figure 3(right) compared to the compared 
algorithms. Although there is a sacrifice in average 
delay in Figure 4(right), the IDDPG algorithm still 
achieves higher average rewards in Figure 2(right) 

for task arrival rates λ=2.0 Mbps and λ=3.0 Mbps 
compared to the DDPG and DQN algorithms.  

Through comparative experiments, it can be 
observed that the proposed IDDPG algorithm, 
through interaction between the user agent and the 
environment, achieves higher average rewards than 
the compared algorithms under different trade-off 
factors, and demonstrates greater stability. This 
indicates that for continuous control problems, the 
IDDPG algorithm is capable of better "exploration-
exploitation" and more efficient maximization of 
rewards, i.e., minimizing computational costs, while 
learning the optimal computation offloading 
strategy. 

The IDDPG algorithm demonstrates superior 
performance in terms of average rewards and 
convergence speed compared to the other algorithms, 
regardless of the task arrival rate (λ = 2.0 Mbps or λ 
= 3.0 Mbps) when the trade-off factor ω1 is set to 
0.8. Furthermore, the advantage of the IDDPG 
algorithm over the DDPG and DQN algorithms is 
even greater when compared to the weighting factor 
ω1=0.5. This indicates that the IDDPG algorithm is 
more suitable for scenarios that prioritize power 
consumption. In situations with more complex task 
computations, the IDDPG algorithm demonstrates 
superior performance due to its reasonable action 
exploration and network structure optimization. 

 
4.3  Test 
After training for a total of 2000 episodes, we 
obtained dynamic computation offloading strategies 
learned by the IDDPG, DDPG, and DQN 
algorithms, respectively. To compare the 
performance of different strategies, we conducted 
numerical simulations in 100 episodes with a test 
step size of T=10000. The average values were 
taken from 10 simulations for each of the five task 
arrival rates: λ=1.0 Mbps, λ=1.5 Mbps, λ=2.0 Mbps, 
λ=2.5 Mbps, and λ=3.0 Mbps. 
 

 
Fig. 5: Average reward value for different task 
arrival rates with different ω1 

 
In the scenario of ω1 =0.5 in Figure 5(left), when 

λ=3.0 Mbps, the average reward of the DQN-based 
strategy is approximately equal to the greedy 
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migration offloading. This is because the DQN 
strategy has a limited number of discrete power 
levels, and although finer granularity in the action 
space discretization may lead to better performance, 
the number of operations increases exponentially 
with the degrees of freedom, making efficient 
exploration more challenging and thus reducing the 
performance of the DQN strategy. 

From Figure 5, it can be observed that as the task 
arrival rate increases, the average rewards of all the 
algorithms gradually decrease. This is because 
higher demands lead to increased computational 
costs (average rewards in this paper are defined as 
the negative value of costs). In the case of low 
arrival rates, such as λ=1.0 Mbps and λ=1.5 Mbps, 
the IDDPG algorithm shows little difference in 
average rewards compared to the DDPG algorithm 
but performs better than the DQN and other greedy 
algorithms. This is because the computational 
workload is small and does not require deep 
exploration in actions. The improved network 
structure and exploration noise advantage in IDDPG 
are not prominent. However, as the arrival rate 
increases, the IDDPG algorithm gradually 
demonstrates its advantages in terms of faster and 
more stable convergence. 

In summary, the IDDPG algorithm outperforms 
the compared strategies in terms of average rewards 
for different task arrival rates under different trade-
off factors. This indicates that the IDDPG strategy 
can allocate local execution power and task 
offloading power more reasonably based on 
observations of the environment in unknown 
information settings, thereby balancing energy 
consumption and latency and achieving the goal of 
minimizing long-term costs, highlighting the 
superiority of this strategy. 

 
 

5   Conclusion 
In this paper, an improved DDPG algorithm is 
proposed to address the slow convergence and 
instability issues in task offloading of traditional 
single-user MEC systems using reinforcement 
learning algorithms. The improved DDPG algorithm 
aims to minimize computational costs more 
efficiently. Through experimental validation, our 
proposed algorithm has been shown to outperform 
traditional DDPG, DQN, and other greedy strategies 
in terms of power consumption and buffer delay. 
The main innovation of this paper lies in replacing 
the Critic network structure of DDPG with a 
Dueling structure. This structure decomposes the 
state value function into the advantage function and 
value function, ensuring faster convergence speed 

and higher stability. Additionally, we set the update 
frequency of the Critic network higher than that of 
the Actor-network to stabilize the Critic network's 
training and improve the Actor network's action 
output. Furthermore, we segment the action noise, 
initially setting it at a higher value to ensure 
comprehensive exploration during the initial 
training stage. As the training progresses and 
stabilizes, we gradually reduce the noise level to 
ensure convergence stability.In our future work, we 
plan to incorporate multi-user collaboration into the 
IDDPG framework to further enhance task 
offloading in MEC systems and improve strategy 
performance. 
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