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Abstract: In this paper, we propose to apply compilation techniques to Documents Type Definition (DTD). At
the syntactic level, we create a context free grammar, denotedGDTD , for the set of all DTDs in order to generate
them. The semantic level is defined by using attributes. Each nonterminal ofGDTD is assigned a set of attributes
and for each production of GDTD a set of attribute equations is defined. This DTD compilation process can
be used in different domains. In this article, we provide an attribute grammar that can be used to eliminate
unnecessary parentheses in element declarations in a DTD. In addition, the DTD compilation process can be
applied to the domain of model conversion. It makes it possible to split the model conversion into two steps: the
syntactic transformation step, which consists of rewriting the source DTD in terms of XML syntax, and the second
step of the effective conversion algorithm, which can be easily expressed by an Extensible Stylesheet Language
Transformation (XSLT).
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1 Introduction

DTDs are textual models for the structure of Exten-
sible Markup Language (XML) documents which as
well as used for data exchange over the Internet, [1].
They are integrated into XML documents as well as
converted into relational models of databases. This is
because the Structured Query Language (SQL) lan-
guage offers a very powerful way of extracting data
from databases, [2]. It is important to know that we
store data in relational databases if we are interested
in data manipulation. If we need to exchange or trans-
form data over the Internet, we store it in XML docu-
ments.
Many mapping algorithms have been proposed in the
literature for the problem of mapping DTDs to rela-
tional schemas, [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13]. Some of these algorithms did not con-
sider the semantics of DTDs during the mapping pro-
cess, so the resulting relational schema loses the orig-
inal DTD information, [3], [4], [5]. In [6], the authors
use a table and object relational mapping. The ta-
ble based mapping cannot handle mixed content, and
the object based mapping of mixed content is ineffi-
cient. Therefore, these two models are poorly suited
for centered documents. Other mapping algorithms
preserved the cardinality constraints, [7], [8]. How-
ever, they did not take functional dependencies via
DTDs into account. In [9], the authors developed a
mapping algorithm that preserves both the structure

of DTDs and the semantics implied by the constraints
of DTDs, but the multivalued dependencies are not
preserved by the mapping algorithm. The mapping
algorithm in [10], was developed to map DTDs to a
relational schema that preserves not only the content
and structure, but also the semantics of the original
XML documents. A hybrid inline algorithm was pro-
posed to map DTDs to relational schemas while pre-
serving functional dependencies, [11]. In [12], the au-
thors defined the dependency relationships in XML
documents and, based on these relationships, created
a set of rules for mapping the XML document to a
relational database. In [13], the authors described a
technique for mapping a specific DTD to a relational
schema. This technique consisted of converting the
DTD to an Xschema, simplifying the Xschema con-
straints, and mapping the collection types.
Unfortunately, all studies focus on the conversion al-
gorithms and ignore how to read the DTD source
and divide it into small units for the conversion al-
gorithms. We believe that our approach is the first
to focus on applying of syntatic and semantic analy-
sis of the compilation process to DTDs. In fact, the
concept of attributed grammar has already been ap-
plied in various research area, [14], [15], [16]. In [14],
the author introduces the concept of attributed gram-
mar for compiler description as a declarative way by
associating attributes with nonterminals and attribute
equations with productions. In logic programming,
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the authors of [15], consider an abstract substitution
as an attribute attached to the nodes of a tree, and
then the propagation process of abstract substitutions
through the tree can be expressed in terms of attribute
evaluation. In the field of web development, the au-
thors of [16], give a system that is able to automati-
cally generate web forms or editors to collect data re-
lated to predefined DTDs. Once the the data entry is
complete, the web based form creates the correspond-
ing XML documents. The system receives a DTD
as input and relies on attributed grammars to assign
semantics to the elements and generates an HTML
based editor on the fly.
In this paper, we want to create a formal framework
for analyzing DTDs viewed as text models or strings.
For this purpose, we consider the set of DTDs as a
context free language called LDTD. We define a con-
text free grammarGDTD that recognizes the language
LDTD. Then, any DTD conversion can be realized
by enriching the grammar GDTD with an attributed
system which consists of associating attributes with
the nonterminals and attribute equations with the pro-
ductions of the grammar GDTD. We give an exam-
ple of an attribute grammar that eliminates unneces-
sary parentheses in an element declaration in a DTD.
An element declaration is a list or regular expres-
sion composed of the operator ’,’ , the disjunction se-
quence ’!’ , the opening and closing parentheses, and
the names of the subelements. Another example is the
model conversion from DTD to a relational model,
which consists of converting the DTD to another in-
termediate model in terms of XML syntax. The con-
tribution of this approach is that in the case of mul-
tiple transformations, a stylesheet can be written and
applied to a suitable intermediate XML based model
for each transformation without having to reanalyze
the source DTD, [17], [18]. The main advantage of
our approach:

1. The formalization of the set of DTDs by a context
free grammarGDTD. Then each operation over a
DTD consists of defining attributes over GDTD,
which means developing an attributed grammar
based compiler.

2. The application of GDTD in the field of DTD
conversion. We can define attributes via GDTD

that convert a given DTD into another DTD
while preserving the declaration of elements
and attributes and respecting the XML syntax.
The intermediate model thus obtained is called
DTDXML and any conversion algorithm for
the source DTD can be expressed by an XSLT
stylesheet applicable to the intermediate model
DTDXML. This approach makes it possible to
write the DTD conversion process in two sepa-
rate modules: one module is an attribute gram-

mar application for DTDS or a DTD compiler
and the other module is just an XSLT stylesheet
for the conversion algorithm (Fig. 1).

The paper is structured as follows: Section 2 ex-
plains the principle of algebraic and attributed gram-
mars in arithmetic theory. Section 3 defines an alge-
braic grammar for generating DTDs. Section 4 de-
fines an attributed grammar for eliminating unnec-
essary parentheses in DTD declarations. Section 5
shows the results of the experiment, while section 6
summarizes the paper with a conclusion.

2 Algebraic and Attributed

Grammars
This section is dedicated to explain the syntactic anal-
ysis of DTDs. These concepts include context free
and attributed grammars, which form the basis of
compilation theory in order to create compilers for
programming languages. A context free grammar
(CFG) is a system of rules that enables the genera-
tion of a set of words from an axiom. The alphabet of
the language is divided into two groups: Terminals,
i.e. the letters of the generated words, and nontermi-
nals, i.e. intermediate symbols that can be replaced by
terminals or other nonterminals. In formal language
theory, a context free grammar is a formal grammar
whose production rules can be applied to a nontermi-
nal symbol independently of its context. In particu-
lar, in a context free grammar, each production rule
has the form A → α, where A is a single nonterminal
symbol and α is a string of terminals and/or nontermi-
nals. α can be empty). Regardless of which symbols
surround it, the single nonterminal A on the left can
always be replaced by α on the right.

Attributed grammars are a formalism for describ-
ing the semantic analysis of programming languages
(Fig. 2). The principle is to assign attributes to each
nonterminal and to assign a system of attribute equa-
tions to each production of the grammar, [19], [20].
The attributes are evaluated along a derivation tree

Figure 1: Conversion steps: formalisation of the set of
DTDs by a context free grammar GDTD. Transform
of the DTD into intermediate modelDTDXML using
GDTD with attributes. Conversion algorithm can be
expressed by an XSLT stylesheet
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(for a specific input word) to determine the seman-
tics of the input word. In the case of programming
languages, there is a context free grammar for each
programming language. The attributes are used to
calculate the semantics of all statements of a pro-
gram when they are considered as input words of
the grammar of the corresponding programming lan-
guage. An Attribute Grammar (AG) is defined as
AG =< G,A,E > where:

• G =< Σ, N, S, P > where:

• Σ is the set of terminals symbols.

• N is is a set of nonterminal symbols.

• S is the start symbol (axiom) and X ∈ N .

• P is the set of the productions rules.

P = p / p: X0 → α1X1α2 …αnXnαn+1

where ∀i ∈ [0 . . . n] , Xi ∈ N and ∀j ∈
[1 . . . n+ 1] , αj ∈ Σ∗

• A is a set of attributes divided into two subsets
As and Ah, A = As ∪ Ah, and for each X ∈ N
are associated: As(X) is the set of synthesized
attributes where As(X) ⊂ As, Ah(X) is the set
of inherited attributes where Ah(X) ⊂ Ah.

• E is the set of equations in which for each syn-
thesized attribute s ∈ As(X0), there is an at-
tribute equation defining s(X0) of the form :
s(X0) = fs(s1(X1), . . . , sn(Xn), h(X0))where
∀i ∈ [1 . . . n] , si(Xi) ∈ As(Xi) and h ∈
Ah(X0), as shown in Fig. 3, and for each inher-
ited attribute hj ∈ Ah(Xj), there is an attribute
equation defining hj(Xj) of the form:
hj(Xj) = fhj(h0(X0), s1(X1), . . . , sn(Xn))
where h0 ∈ Ah(X0) and ∀i ∈ [1 . . . n], si ∈
As(Xi) as shown in Fig. 4.

Figure 2: Structure of a compiler. It composed of syn-
tax analysis and semantic analysis.

Figure 3: Order of computation of synthesized at-
tributes.

Figure 4: Order of computation of synthesized at-
tributes.

3 Definition of an Algebraic

Grammar for DTDs
In our approach for the formalization of the syntac-
tical analysis of the DTDs, we define the algebraic
grammar GDTD =< Σ, N, S, P > by :

• Σ = {<,>, (, ), |, ∗, ?,+, ", !, [, ], #, , , identifier,
DOCTYPE, ELEMENT, ATTLIST, EMPTY,
ANY, PCDATA, id, CDATA, ID, IDREF,
FIXED, REQUIRED, IMPLIED, string } : de-
notes the alphabet.

• N = {Start, DTD, LineType, Attlist, AttSuite, El-
ementType, List, Occurs, AttType, Enumerate,
EnumerateSuite, AttOption, InitialVal}: is the
set of non terminals,

• Start is the axiom.

• P is the following set of productions:

P0: Start→ DTD

P1: DTD → <!DOCTYPE identifier [Line-
Type]

P2: LineType→ <!ELEMENT identifier
ElementType> AttList LineType

P3: LineType→ ε

P4: AttList → <!ATTLIST identifier1 identi-
fier2 AttType AttOption AttSuite>
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P5: AttList→ ε

P6: AttSuite→ identifier AttType AttOption
AttSuite

P7: AttSuite→ ε

P8: ElementType→ EMPTY

P9: ElementType→ ANY

P10: ElementType→ (#PCDATA)

P11: ElementType→ (List) Occurs

P12: List→ id Occurs , List

P13: List→ id Occurs | List
P14: List→ (List) Occurs, List

P15: List→ (List) Occurs | List
P16: List→ (List) Occurs

P17: List→ id Occurs

P18: Occurs→ *

P19: Occurs→ ?

P20: Occurs→ ε

P21: Occurs→ +

P22: AttType→ CDATA

P23: AttType→ ID

P24: AttType→ IDREF

P25: AttType→(Enumerate) Initialval

P26: Enumerate→ string EnumerateSuite

P27: EnumerateSuite→ Enumerate

P28: EnumerateSuite→ ε

P29: AttOption→ #FIXED InitialVal

P30: AttOption→ #REQUIRED

P31: AttOption→ #IMPLIED

P32: InitialVal→ string

P33: InitialVal→ ””

We start in the grammar GDTD to write the produc-
tions P0 and P1 that define the syntax of aDTD. We
declare the elements with their productions. We asso-
ciate a nonterminal to produce an element and another
nonterminal to define the type of an element. These
nonterminals are ElementType and LineType respec-
tively. We add the Attlist nonterminal because the el-
ement can have attributes and the LineType can pro-
duce multiple elements (P2 and P3). The Attlist can
produce attribute declarations, the AttType nontermi-
nal stands for the type of an attribute and the AttOp-
tion nonterminal produces the options for an attribute.
We write the productions P4 -P7. The element type
can be (#PCDATA), ANY, EMPTY, composed or
generate a list of operators (P8 -P11). To develop
the nonterminal List, let’s look at an example of the
element declaration <!element A(B,C*,(D|E),F*)>.

The structure of a type element is therefore a paren-
thesized expression with operators (+, *, …) and sep-
arators (, and |). We therefore suggest the productions
P12 -P17 for List. The productions P18 -P21 generate
terminal operators such as *, ?, +, and ε. The produc-
tions P22 -P25 generate the attribute type, which can
be CDATA, ID, IDREF and enumerate with initial
value. The productions P26 -P28 are used to generate
the character string enumerate in XML. The produc-
tions P29 -P33 are used to generate attribute options
with an initial value. The attribute options can be
#FIXED, #REQUIRED, #IMPLIED. The initial value
is generated in the P32 and P33 productions. This
value can be empty or defined as a string.

Based on this grammar, the derivation tree of the
first two lines of following DTD is shown in Fig. 5
DTD→ <!DOCTYPE A [
<!ELEMENT A(B,(C,D)) >
<!ELEMENT B(#PCDATA) >
<!ELEMENT C(#PCDATA) >
<!ELEMENT D(#PCDATA) >
]>

Figure 5: Example of a derivation tree for a given
DTD: The productions P0 and P1 generate the first
line of the DTD. The production P2 defines the ele-
ment A and calls P11 using the nonterminal Element-
Type. We use the nonterminal List of productions
P11, P12, P16 and P17 to define the elements B, C and
D.
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4 Attributed Grammar for

Simplifying DTD Declarations.
In this section, we give an example of an attributed
grammar for eliminating useless parenthesis element
declarations in DTDs. The structure of an element
declaration in a DTD is a rational expression on the
alphabet composed of the operator (,), the or operator
(|), the star operator (*), the exclamation mark (!), the
parentheses, and the identifiers. We distinguish three
categories of lists:

• The lists that contain only the comma operator,
e.g. (B, C, D, E , F).

• The lists that contain only the or operator. For
example, (B| C | D | E | F).

• The list with the commas and an or operator. As
an example, (B, C | D, E ).

Now, we will define the notion of useless parenthesis
in the structure of the element declaration.
In general, parentheses are considered unnecessary if
they do not change the meaning of the declaration
and do not improve the readability of the code. In
our case, we consider parentheses unnecessary if they
only occur in inner lists. For example, the parenthe-
ses of the inner list (C, D) are useless in the list (B, (C,
D), E) and then (B, (C, D), E) can be reduced to the
corresponding list (B, C, D, E). In contrast, the paren-
theses of the inner list (C, D) should be retained in the
list (B | (C, D), E) as the operators of the inner and
outer lists are different.
The parentheses of the inner list (D, E, F) in the outer
list (B, C, ( D, E ,F), G) are useless, as the only opera-
tor of the list D, E, F is a comma (,) and the preceding
and following operators are also a comma (,). The
list (B, C ,(D, E, F), G) can be reduced to (B, C , D,
E, F, G). In addition, the parenthesis of the inner list
(C|D) should be retained in the list (A,B,(C|D),E). By
definition, the inner brackets are useless iff :

• Its list has a unique operator (, or | ).

• The two operators before and after the inner list in
the outer list are the same and equal to the unique
operator of the inner list.

Now, we consider the occurrence of the inner list in
a derivation tree in the grammarGDTD where we ex-
press:

• The unique operator of the inner list.

• The preceding and following operators in the
form of attributes over the production of GDTD.

First, we need an attribute to calculate the reduced list
and the other parts of an element declaration; this at-
tribute is the synthesized attribute which is called ”d”.

The unique operator of an inner list is represented by
a synthesized attribute ”o”. To calculate the value
of ”o” for an inner list, we use another inherited at-
tribute ”o1”, which is initialized to null at the begin-
ning of an inner list. Thus, the productions and their
attributes are given in Table 1, Table 2, Table 3, Ta-
ble 4, Table 5, Table 6, and Table 7 (Appendix). We
can divide the productions of the grammar GDTD
into three groups:

• group 1 : from P0 to P11.

• group 2 : from P12 to P17.

• group 3 : from P18 to P33.

The productions of group 1 and group 3 reproduce in
the attribute ”d” all parts of the given DTD that are
outside the inner parentheses. If we use the DTD :
<! Doctype A [
<! ELEMENT A ((B, (C))) >
<! ELEMENT B (#REQUIRED) >
<! ELEMENT C (#REQUIRED) >
]>
The evaluation of the attributes via the productions of
group 1 and group 3 generates the main parts of the
previous DTD, namely:
<! Doctype A [
<! ELEMENT A ( ) >
<! ELEMENT B (#REQUIRED) >
<! ELEMENT C (#REQUIRED) >
]>
The attribute evaluation on the productions of group
2 decides whether the parentheses of the inner lists
(B, (C)) and (C) in the productions P14 , P15, P16

should be eliminated or not. We note that the produc-
tion P11 generates the outer parentheses in the dec-
larations <! ELEMENT A (. . .) > and initializes
the preceding operator of the inner lists to the empty
string. The production P12 and P13 do the same as
P11 in terms of attributes. Note that if a nonterminal
appears multiple times in a production, these occur-
rences are numbered in order. Let us define in pro-
duction P14, o(List2) is the operator of the inner list
”List2”. The nonterminal ”List” appears three times
in the production. These occurrences are numbered
from 0 to 2. o1(List0) is the operator preceding the
inner list ”List2”. The operator ”,” which appears
after the nonterminal ”Occurs” is the following op-
erator of the list ”List2”. We check if the opera-
tor of the inner list ”List2” and the preceding oper-
ator o1(List0) are the same as the following operator
”,”. If it is true, we eliminate the parentheses, oth-
erwise we regenerate them in the statement defining
d(List0). The production P15 does the same as the
production P14 by using the operator ”|. The produc-
tionP16 verifies if the the operator preceding the inner
list o1(List0) is the same as the operator of the inner
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list o(List2), then the parenthesis are eliminated, oth-
erwise they should be generated. The production P17

generates the last identifier.

5 Experimental Results
At the implementation level, the syntactic analyzer
consists of functions that correspond to all GDTD

productions while the semantic analyzer consists of
a single function for the evaluation of attributes in a
derivation tree. This evaluation function is a switch
statement, in which there is one case for each GDTD

production. Fig. 6 shows the structure of the DTD
compiler. It is worth mentioning here that the syntac-
tic analyzer is the same for all DTD conversion meth-
ods. However, we create a new attribute evaluation
function for each DTD conversion method. The de-
veloped program takes a DTD as input and produces
a DTD as output by calculating the structure of an ele-
ment and removing unnecessary parentheses. An ex-
ample of the DTD:
<!DOCTYPE A [
<!ELEMENT A ((B, (C)))>
<!ATTLIST A id ID #REQUIRED>
<!ELEMENT B (#PCDATA)>
<!ELEMENT C (((E) | F))>
<!ELEMENT E (#PCDATA)>
<!ELEMENT F (#PCDATA)>
]>
We obtain the following output:
<!DOCTYPE A [
<!ELEMENT A (B, C)>
<!ATTLIST A id ID #REQUIRED>
<!ELEMENT B (#PCDATA)>
<!ELEMENT C (E | F)>
<!ELEMENT E (#PCDATA)>
<!ELEMENT F (#PCDATA)>
]>

6 Conclusion
In this paper, we have created a new formal frame-
work for the set of DTDs in the form of a context free
language and the corresponding context free gram-
mar. The context free grammar generates a tree based
implementation, called derivation tree, for each DTD
in the computer memory. In addition to this, we
can enrich the context free grammar GDTD with at-
tributes:

Figure 6: Algorithm Architecture using Compiling
Techniques in DTD Conversion

Table 1: Semantic rules for the productions P0-P4

of the grammar GDTD

P0:

d(Start) = d(DTD)
P1:

d(DTD) = ”<!DocType ” & identifier & ”[” &
d(LineType) & ”] > "
P2:

d(LineType0) = ”<! Element” & identifier &
d(ElementType) ”>” & d(AttList) & d(Line-
Type8)
P3:

d(LineType) = ””
P4

d(AttList) = ”<!ATTLIST” & identifier1 &
identifier2 & d(AttType) & d(AttOption) &
d(AttSuite) & ”>”
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• Perform syntactic transformation of the source
DTD such as eliminating the unnecessary paren-
theses in the declaration in the DTD.

• Rewrite the source DTD into an XML docu-
ment or an intermediate model while retaining
the DTD declarations. Then each DTD transfor-
mation can be expressed by an XSLT stylesheet
applicable to the intermediate model.

Our approach differs from existing approaches in that
it provides a formal framework for analyzing DTDs
based on compilation techniques. We define a con-
text free grammar that recognizes the language of the
DTD. Then any DTD conversion can be realized by
enriching this grammar with an attributed system.
Our contribution is that in the case of multiple trans-
formations, we can convert the DTD to another inter-
mediate model such as XML and apply a stylesheet to
the intermediate model for each transformation with-
out having to analyze the source DTD.
In the future, the entire framework, grammar with at-
tributes, can be used to split the model conversion
into two steps: The first step is to convert the DTD
into an intermediate model in terms of XML syntax,
while the second step of effective conversion can be
expressed by an XSLT stylesheet. We will also ex-
plore a way to map DTDs to relational schemas and
use traditional relational database engines to process
XML documents, since XML is emerging as the data
format of the Internet and there is a need for storing
and querying XML documents.
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APPENDIX

Table 2: Semantic rules for the productions P5-P10

of the grammar GDTD

P5:

x(AttList) = ” ”
P6

d(Attsuite0) = identifier & d(AttType) & d(At-
tOption) & d(AttSuite4)
P7:

d(AttSuite) = ” ”
P8:

d(ElementType) = ”Empty”
P9:

d(ElementType) = ”ANY”
P10:

d(ElementType) = ”#PCDATA”

Table 3: Semantic rules for the productions P11-P13

of the grammar GDTD

P11:

o1(List2) = ”
d(ElementType) = ”(” & d(List) & ”)” & d(Oc-
curs)
P12:

o1(List4) =


′,′ if(o1(List0) =′′ or

o1(List0) =′,′ )
′m′, otherwise

d(List0) = id & d(Occurs)& ”,” & d(List4)
o(List0) = o(List4)
P13:

o1(List4) =


′|′, if(o1(List0) =′′ or

o1(List0) =′ |′)
′m′, otherwise

d(List0)= id & d(Occurs) & ”|” & d(List4)
o(List0) = o(List4)
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Table 4: Semantic rules for the productions P14-P15

of the grammar GDTD

P14:

o1(List2) =’ ’

o1(List6) =


′,′ , if(o1(List0) =′′ or

o1(List0) =′,′ )
′m′, otherwise

if (o1(List0) = o(List2) & o(List2) =’,’) then
d(List0) = d(List2) & d(Occurs) & ”,” & d(List6)
else
d(List0) = ”(” & d(List2) & ”)” & d(Occurs) &
”,” & d(List6)
endif
o(List0) =o(List6)
P15:

o1(List2) =’ ’

o1(List6) =


′|′, if(o1(List0) =′′ or

o1(List0) =′ |′)
′m′, otherwise

if (o1(List0) = o(List2) & o1(List2) = ‘|’) then
d(List0) = d(List2) & d(Occurs) & ”|” & d(List6)
else
d(List0) = ”(” & d(List2) & ”)” & d(Occurs) &
”|” & d(List6)
endif
o(List0) = o(List6)

Table 5: Semantic rules for the productions P16-P20

of the grammar GDTD

P16:

o1(List2) =’ ’
if (o1(List0) = o(List2) ) then
d(List0) = d(List2) & d(Occurs)
else
d(List0) = “(” & d(List2) & ”)” & d(Occurs)
endif
o(List0) = o1(List0)
P17:

d(List) = identifier & d(Occurs)
o(List) = o1(List)

P18:

d(Occurs) = ”*”

P19:

d(Occurs) = ”?”

P20:

d(Occurs) = ” ”
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Table 6: Semantic rules for the productions P21-P27

of the grammar GDTD

P21:

d(Occurs) = ”+”
P22:

d(AttType) = ”CDATA”
P23:

d(AttType) = ”ID”
P24:

d(AttType) = ”IDREF”
P25:

d(AttType) = ”(” & d(Enumerate) & ”)” & d(Ini-
tialVal)
P26:

d(Enumerate) = string & d(EnumerateSuite)
P27:

d(EnumerateSuite) = d(Enumerate)

Table 7: Semantic rules for the productions P28-P33

of the grammar GDTD

P28:

d(Enumerate) = ””
P29:

d(AttOption) = ”#” & ”FIXED” & d(InitialVal)
P30:

d(AttOption) = ”#REQUIRED”
P31:

d(AttOption) = ”#IMPLIED”
P32:

d(InitialVal) = string
P33:

d(InitialVal) = ” ”
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