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Abstract: - This paper presents the utilization of a developed pilot wireless-based Air Quality Index (AQI) 

monitoring system, reporting live geo-grid resolved air quality data, for the purposes of healthy route 
generation and recommendation to users. The generated routes are visualized on a map and recommended to 

users through a specially developed web-based application, as part of the client tier of the supporting IoT 

platform EMULSION. A distributed computing architecture is utilized for the generation of healthy (more 
precisely, ‘least air pollution exposure’) routes, performed in near real-time using the dynamic Dijkstra 

algorithm, based on the interpolated AQI values. In addition, the fastest and shortest routes for each journey, 

requested by a user, are generated as well. The importance of the presented work lies within the practical 

applicability of the proposed method for healthy route generation, either as a stand-alone version of the 
software application developed for the purpose or integrated into the existing popular navigation systems and 

applications alike. 
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1  Introduction 
The existing web-based route planners and real-time 
navigation systems, accessed by fixed or mobile 

personal devices, allow planning and adjusting 

journeys by providing comfort and a sense of safety 
to users, [1]. By supplying dynamic and integrated 

technological support tools to users, along with 

interactive planning and navigation features for 

various travel modes, these systems mainly find the 

shortest, fastest, or cheapest traveling routes. 
However, people (especially urban residents) have 

begun to pay more attention to their quality of life 

(QoL), by considering environmental factors 
affecting their health, such as air quality, and this 

has become their new focus when traveling, [2]. 

Travel schemes with relatively low pollutant 

exposure can not only improve human health but 
can also benefit social stability and sustained 

progress. In contrast, path-based long-distance 
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outdoor activities, surrounded by poor air quality, 

have a negative effect on human health, especially 

when cycling, running, jogging, or walking, [3]. 
Therefore, an alternative approach should be taken 

in route planning, including health-related 

optimization criteria, based on the concept of 
“healthy route” (a.k.a. “green route”, “clean route”) 

and related concepts of “safe route” and 

“sustainable route”, [1].  
A common indicator, used in many countries to 

measure air pollution, is the Air Quality Index 

(AQI), which was developed by the United States 

Environmental Protection Agency (US EPA), based 
on the following six major pollutants: ground-level 

ozone (O3), particulate matter (PM2.5 and PM10), 

carbon monoxide (CO), sulfur dioxide (SO2), and 
nitrogen dioxide (NO2). The US EPA AQI values 

run from 0 to 500, divided into six levels of concern, 

as shown in Table 1, [4]. The higher the AQI value, 
the greater the level of air pollution and the greater 

the health concern. The green level (AQI ≤ 50) 

represents satisfactory air quality, whereby air 

pollution poses little or no risk to humans. At the 
yellow level (51 ≤ AQI ≤ 100), the air quality is 

acceptable, but there may be a risk for some people, 

particularly those who are unusually sensitive to air 
pollution. At the orange level (101 ≤ AQI ≤ 150), 

sensitive groups (people with lung diseases, older 

people, and children) may experience air-quality-

related health problems, whereas the general public 
is less likely to be affected. At the red level (151 ≤ 

AQI ≤ 200), part of the general public may 

experience health effects, whereas sensitive groups 
may experience more serious health effects. The 

purple level (201 ≤ AQI ≤ 300), signifies a health 

alert, whereby the risk of health effects is increased 
for everyone, and most people may experience 

increasingly severe adverse health effects. The 

maroon level (AQI ≥ 301) represents hazardous air 

quality and serves as a health warning of emergency 
conditions, so everyone is more likely to be 

affected.  

The health-driven measurement of air quality 
with reasonable geo-grid resolution is in a growing 

demand across the world. As the current geo-grid 

resolved AQI is informative of environmental 
conditions related to personal health, in many 

countries, especially in urban areas, there are people 

needing to be able to daily check the current AQI 

value before going to work or doing outdoor 
activities. This can be integrated into mobile apps 

and such. To enable millions of simultaneous AQI 

requests, a server-side AQI monitoring and 
publishing system is required, operating with high 

throughput and high availability. It is easy to 

visualize such a system, established on a 

corresponding Internet of Things (IoT) platform, 

e.g., functioning as an integral part of a smart city. 
Given the sizeable deployment and maintenance 

expense involved, the general public service thrust 

is to build a low-resolution AQI geo-grid network, 
e.g., with AQI monitoring points a kilometer apart. 

Figure 1 shows a sample low-resolution AQI 

network, established in Hebei Province (China) with 
just 62 AQI monitoring stations. The Chinese 

government’s national requirement would be for 

around 10,735 AQI monitoring stations deployed in 

such an area of 10,735.78 km². Hence there is a 
good motivation and market for the development of 

low-cost sensor-based AQI monitoring stations.  

 
Table 1. The AQI levels of concern 

AQI range Level of concern Color 

0–50 good green 

51–100 moderate yellow 

101–150 
unhealthy for sensitive 

groups 
orange 

151–200 unhealthy red 

201–300 very unhealthy purple 

301–500 hazardous maroon 

 

 
Fig. 1: The utilized low-resolution AQI network  

 

The AQI monitoring stations in the established 

network function as part of the developed pilot AQI 
monitoring system, operating on top of the IoT 

platform EMULSION [5], which was successfully 

implemented and tested. EMULSION is a horizontal 

IoT platform of a combined type (hardware and 
software), built with low-cost electronics and open-

source software, and consisting of seven tiers. In the 

sensor & actuator tier, different types of sensors, 
environment monitoring stations, location trackers, 

etc., operate to capture the changes occurring in the 
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physical world and send the corresponding 

information to the cloud tier through data/remote 

transfer units (D/RTUs) and smart communication 
gateways, through different wireless access 

networks. After analyzing the data sent by the 

sensor & actuator tier, the cloud tier makes 
appropriate decisions, generates suitable 

recommendations for users, and sends the necessary 

configuration information and/or commands to the 
controllers, actuators, guards, etc., located in the 

sensor & actuator tier, for enforcing the required 

actions needed for the realization of the imposed 

changes in the physical world. 
Each AQI monitoring station includes a variety 

of pollution sensors connected with an ultra-low-

power geo-grid identified D/RTU. Sensors 
communicate periodically (usually every 5 minutes) 

with the corresponding D/RTU. Each D/RTU sends 

the collected air-quality data, according to the 
scheduling algorithm used, to the cloud tier of 

EMULSION, which employs a distributed Redis 

database, a Hadoop cluster [6], and a web-based 

Geographic Information System (GIS) [7]. The 
cloud tier provides scaled GUI services for the 

mobile and desktop client applications’ requests. 

This paper demonstrates the use of the developed 
pilot AQI monitoring system for the generation of 

healthy routes for outdoor activity planning by 

users. The difference between the presented work 

with those published in the literature is that most of 
the published research suggests a specific 

application that does some specific things. In 

contrast, we offer here a more generic architecture 
that is technology-independent (i.e., w.r.t. hardware, 

operating system, programming language) and 

distributed in nature (i.e., hosted on multiple 
machines), which provides an opportunity for 

extending it almost without a limit. A clear 

explanation of the healthy route calculation is 

provided in the paper, along with a concrete 
implementation in the form of a web-based 

application, demonstrating the way it works in 

reality. The usefulness of the presented study relates 
to the possible integration of the proposed method 

for healthy route generation into the existing 

navigation systems and applications alike. 
 

 

2  Related Work  
In general, there are two primary types of methods 

for route cost calculation, [3], i.e., using: (1) static 
cost of paths serving as an input to the standard 

Dijkstra algorithm [8]; and (2) dynamic cost of 

paths, varying over space and time, such as the AQI 

value and the travel time which depends on the path 

infrastructure’s condition and traffic flow. As more 

advanced, multiple methods of the second type have 

been proposed, e.g., based on adaptive decision 
rules [9], genetic algorithms [10], [11], [12], 

probabilistic models [13], uncertainty [14], etc. 

Previous studies on “healthy route” generation 
can be divided into two main groups [2], i.e., using: 

(1) monitoring stations to measure pollutant 

exposure on various types of roads, followed by 
classification of roads as healthy or unhealthy, based 

on the exposure levels; and (2) pollution distribution 

data obtained by different means, e.g., by a land use 

regression (LUR) [15], [16], an operational street 
pollution model (OSPM) [17], an interpolation 

method, [3], [18], etc., as an input to the (dynamic) 

Dijkstra algorithm for generating healthy routes 
[19], using different indicators (traffic volume, AQI, 

potential pollutant dose taken, etc.) as road network 

weights. If taking full advantage of modern 
pollutant retrieval technologies, the trustworthiness 

of the generated healthy routes could be 

significantly increased. For this, [2] proposes a 

short-distance healthy route planning approach, 
utilizing fine spatial resolution images, and 

meteorological and socioeconomic data to retrieve 

the spatial distribution of PM2.5 concentration in 
hourly intervals via a back-propagation neural 

network. The effectiveness of the approach is 

verified by comparing the PM2.5 potential dose 

reduction rate between the generated healthy route 
and the shortest route, reaching up to 20% reduction 

in some cases. As an important factor affecting the 

AQI values, PM2.5 concentration can be used also 
to predict the AQI, [3]. 

By utilizing an interpolation method from the 

second group, the current paper is focused on the 
‘least air pollution exposure’ aspect of the “healthy 

route”, computed in near real-time by applying the 

dynamic Dijkstra algorithm, whereby the potential 

exposure rate is calculated based on the AQI values, 
whereby the desired values of the main air 

pollutants (PM2.5, PM10, O3, CO, SO2, NO2) serve 

as upper boundaries for reducing the number of 
possible routes.  

 

 

3 Utilized Data 
 

3.1 Permanent Data  
This type of data rarely or never changes. The open 

data of the OpenStreetMap [20] are used as map 
data for the study area, shown in Figure 1. This is a 

rectangular area enclosed between the GPS 

coordinates (36.846000/114.345000) and 

(37.655772/115.684369) with a total coverage of 
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10735.78 km², which includes most of Hebei 

Province (China). We initially focused on the roads. 

In the data provided by the OpenStreetMap, the 
roads have their own type (motorway, primary road, 

etc.) and are described by an ordered list of nodes. 

The number of nodes in the study area is equal to 
246,686. Each node has its own unique number and 

is described with GPS coordinates. Distances 

between nodes, and between nodes and the AQI 
monitoring stations deployed in the area, can be 

calculated, based on their GPS coordinates, using 

the haversine formula, as follows: 

 
 

where 𝜑1 and 𝜑2 denote the latitudes of the two 

points (in radians), 𝛥𝜑 denotes the difference 

between the latitudes of the two points, 𝛥𝜆 denotes 

the difference between the longitudes of the two 

points (in radians), and 𝑅 denotes the radius of the 
Earth. 

The minimum, maximum, mean, and mode 

values of the distances between any two 
OpenStreetMap nodes in the study area are 

presented in Table 2. 

 

Table 2. Distances between OpenStreetMap nodes 
in the study area 

Distances (m) 

Min  

value 

Max  

value 

Mean 

value 

Mode 

value  

0.02 2633.79 96.14 11.00 

 
We converted the OpenStreetMap node data into 

a graph, suitable for applying the Dijkstra algorithm. 

Each edge in the graph represents a connection 
between two nodes along a particular road existing 

in the area. The indicators used are the edge length 

and road type. 
 

3.2 Refreshable Data 
These data come from the AQI monitoring system, 
operating on top of the IoT platform EMULSION, 

which provides data on the main air pollutants 

(PM2.5, PM10, O3, CO, SO2, NO2) and the AQI. 

There are 62 AQI monitoring stations in the study 
area (c.f., Figure 1). These data are updated on 

every hour. 

 

3.3 Computable Data 
To implement the Dijkstra algorithm, each 
OpenStreetMap node is assigned with a particular 

air quality value 𝐴𝑖𝑟𝑄, obtained by interpolation, 

using the air quality values of the three nearest AQI 
monitoring stations, as follows: 

 
 

where 𝐴𝑖𝑟𝑄1, 𝐴𝑖𝑟𝑄2, and 𝐴𝑖𝑟𝑄3 denote the air 

quality values of the three nearest AQI monitoring 

stations, and 𝑑1, 𝑑2, and 𝑑3 denote the distance 
from the OpenStreetMap node to each of these three 

stations, respectively. 

Table 3 presents statistics of the minimum, 
maximum, mean, and mode values of the distances 

between the OpenStreetMap nodes in the study area 

and the corresponding three nearest AQI monitoring 

stations (Station 1 is the nearest, and Station 3 is the 
farthest). 

 

Table 3. Distances between OpenStreetMap nodes 
and the three nearest AQI monitoring stations                          

in the study area 

 Distances (m) 

 
Min 

value 

Max 

value 

Mean 

value 

Mode 

value  

Station 1 9 44251 8585 6847 

Station 2 507 45406 10269 8756 

Station 3 939 47254 11784 10448 

 

As can be seen from Table 3, there are 
worryingly large distances between some 

OpenStreetMap nodes and the nearest AQI 

monitoring stations, but these gaps can be 
compensated by deploying more stations in the area 

in the future. 

 
 

4 Distributed Computing Architecture  
The elaborated computing architecture is divided 

into four subsystems, as presented in Figure 2. Each 

subsystem is platform- and program-independent 
and can be implemented using different 

programming languages, operating systems, and 

hardware. Communication between subsystems 
adheres to open standard protocols. A major 

advantage of this architecture is the use of multiple 

computing servers, which makes it easily scalable 

depending on the expected number of users and 
workload. 
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4.1 Data Collection Subsystem 
This subsystem consists of multiple AQI monitoring 
stations and an information server to which these 

stations periodically send their collected data. This 

subsystem is apart from the other three subsystems 
and is managed separately. The information server 

provides the aggregated collected data through an 

API in a JSON format. 

 

 
Fig. 2: The operation of the developed distributed 

architecture, utilized for route computation 
 

4.2 Data Update Subsystem 
This subsystem consists of an update script and a 

database server. Periodically, the script is activated, 

making a request to receive updates from the 

information server of the first subsystem. The 
received data are processed in an appropriate form 

and sent to the database server for caching. The 

update script then sends an update notification to 
each computing server, operating as part of the third 

subsystem, described next. 

 

4.3 Computing Subsystem  
When a computing server receives an update 

notification, it makes a request to the caching 
database server to receive the necessary new data, 

associated with its activity. Once the data are 

received, these are arranged in a form optimized for 
fast reading, preferably by caching in RAM. 

 

4.4 Route Generation Subsystem 
Through a corresponding client application, the user 

makes a request to the API of the proxy server to 

calculate a route (of a particular type) between two 

points on the map, according to her/his 
requirements. The proxy server selects one of the 

computing servers suitable for the request and 

forwards the request to it. After performing the 
required calculations, the computing server returns 

the result to the proxy server, which in turn forwards 

it to the client application, which renders the result 

to the user. 
The most recent (updated) data are used for 

route calculations. When the time to pass a route 

exceeds the updating time of data coming from the 
AQI monitoring stations, new requests can be made 

during the journey in order to regenerate the route 

with greater truthfulness. It is also possible to apply 
predictive algorithms based on historical data (such 

algorithms have not been implemented yet). 

 

 

5  Implementation 
The computing architecture proposed in the 

previous section is independent of the programming 

language, operating system, and hardware, but in 
order to have some implementation, concrete 

technologies must be chosen. In the solution 

presented here, the Linux Debian (trixie) operating 

system is used for all servers (except for the first 
subsystem) and PHP is used as a programming 

language (for console and web execution). 

 

5.1 Data Collection Subsystem 
This subsystem was developed before starting the 

work presented here; thus, it is not discussed further. 
 

5.1.1 Data Update Subsystem 

The update script is executed at a certain time 
interval (currently, each hour) via cron. The script 

makes an HTTP GET request to the information 

server of the first subsystem and receives a response 

in JSON format. The received data are processed 
and sent to the MySQL server for caching. 

Notification is then made via parallel GET requests 

to the computing servers. Security measures are 
taken by applying a unique key for each computing 

server so that this call cannot be made by an 

unauthorized participant. 
 

5.1.2 Computing Subsystem  

A major problem of the current implementation 

relates to the natural way PHP scripts work. When a 
PHP script is called, a new instance of it is created, 

the required resources are allocated, the necessary 

operations are performed, and a response is 
returned, followed by the release of all allocated 

resources. This continuous allocating and releasing 

of resources for each call, involving huge data 
structures, is extremely inefficient and cumbersome. 

To solve this problem, the data are cached in two 

stages: 
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1) Stage 1: Structuring the data in a jagged 

array format in a PHP file, suitable for 

importing via include() into the computation 
script; 

2) Stage 2: Transferring the obtained data 

structure to RAM via the APCu extension 
for Apache. Thus, once the structure is 

allocated in the Apache server's RAM, it is 

accessible by all instances of the computing 
script without the need for multiple resource 

allocations and releases. 

When the Apache server is restarted, the cache in 

RAM is lost, but the structure located in a file 
(created in the first stage) is usable and allows it to 

be cached in RAM again. 

 

5.1.3 Route Generation Subsystem 

This subsystem includes a client application, an API 

proxy server, and multiple computing servers, 
operating as follows: 

 The developed client application is accessible 

through the official website of the 

EMULSION project [21], which is hosted on 

an Odroid-HC2 web server with a 32-bit 
ARM CPU: Samsung Exynos5422 ARM® 

Cortex™-A15 Quad 2.0GHz/Cortex™-A7 

Quad 1.4GHz. The web application sends 
requests to the API proxy using the HTTP 

GET commands and receives responses in a 

JSON format. 

 The API proxy is hosted on the same web 

server and is implemented in PHP. When 
requesting a route computation, it chooses a 

random computation server, by taking into 

account the server capabilities (more 
powerful servers are called more often). The 

received response is forwarded to the client 

application. Necessary security measures are 
taken by applying a unique secret key for 

each computing server to prevent 

unauthorized requests. 

 The computing servers include: 

 A PC with 2xCPU: Intel(R) Xeon(R) 
Gold 6134 CPU @ 3.20GHz (cores: 16, 

threads: 32). Only ¼ of its computing 

capabilities are reserved for the route 
computation task (threads: 8), whereas 

the remaining capabilities are used for 

performing other activities, as a 
demonstration of the ability to use a 

shared server. 

 A PC with Intel(R) Xeon(R) CPU E3-

1220 v3 @ 3.10GHz (cores/threads: 4). 
 15 single-board computers Odroid-N2+ 

with 64-bit ARM CPU: Amlogic 

S922X, Quad Cortex-A73 2.4GHz and 

Dual Cortex-A53 2GHz (cores/threads: 

4+2). 
When the compute script is called, it looks for 

an available RAM cache. If such a cache is not 

available, the data are loaded from the cached file 
(Stage 1) and a new RAM cache is created. 

During the trial experiments conducted with 

single-board servers Odroid MC1 (with 4 servers 
per unit) with 32-bit CPU (per server): Samsung 

Exynos5422 ARM® Cortex™-A15 Quad 

2.0GHz/Cortex™-A7 Quad 1.4GHz (cores/threads 

per server: 8), the route computations often 
exceeded two minutes. Therefore, this type of 

single-board computer was excluded from the final 

version of this subsystem. However, with another 
software implementation of the computing process, 

it would probably be possible to utilize such 

inexpensive server hardware as well. 
The used ARM computing servers (without the 

two non-ARM servers) are depicted in Figure 3. 

 

 
Fig. 3: The utilized Odroid single-board computers                             

(15x Odroid-N2+ and 5x Odroid-MC1) 
 

 

6  Client Application 
 

6.1 Setting up Maximum Values of Air 

 Quality Parameters 
The user can specify a preferred maximum value for 

each specific air pollutant (PM2.5, PM10, O3, CO, 
SO2, NO2) and for the AQI, which must be not 

exceeded in any case along the route. 

  

6.2 Travel Modes 
Different travel modes could be used by users, each 

with its own exposure to polluted air and speed of 
movement, which results in different inhaled doses. 

In [22], [23], the rate of exposure to a particular air 

pollutant on a route is calculated as follows: 

           𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 = 𝑀𝑉𝑅 × 𝑃𝐶 × 𝑡𝑖𝑚𝑒      (3) 
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where 𝑀𝑉𝑅 (L/min) denotes the minute ventilatory 

rate (MVR), 𝑃𝐶 (μg/m3) denotes the pollutant 

concentration, and 𝑡𝑖𝑚𝑒 (min) denotes the travel 
time on the route. 

Based on (3), we calculate the rate of exposure 

to polluted air on a route, based on the AQI value, 
as follows: 

  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 = 𝐶𝑚𝑜𝑑𝑒 × ∑ (𝐴𝑄𝐼𝑖 × 𝑡𝑖𝑚𝑒𝑖𝑖 ) (4) 

 

where 𝐴𝑄𝐼𝑖  denotes the AQI value of the 𝑖th section 
between two consecutive/neighboring 

OpenStreetMap nodes on the route (calculated as 

the average value of the interpolated AQI values of 

the two nodes), 𝑡𝑖𝑚𝑒𝑖   denotes the travel time 

through that section (calculated by dividing the 

section length by the average travel speed on that 

section), and 𝐶𝑚𝑜𝑑𝑒  denotes the corresponding 
coefficient of the travel mode, calculated by 

comparing the MVRs for different travel modes, 

using their average values reported by ChatGPT. 

Coefficient 𝐶𝑚𝑜𝑑𝑒  takes values between 0 and 1, 

whereby a value of 1 means maximum exposure to 

air pollution, and a value closer to 0 implies 
minimum exposure. By comparing the MVRs of the 

considered travel modes, shown in Table 4, it can be 

seen that cycling leads to maximum exposure, so its 

coefficient 𝐶𝑚𝑜𝑑𝑒  is set to 1. The 𝐶𝑚𝑜𝑑𝑒   values of 
other travel modes are calculated by dividing their 

MVRs to the MVR of the cycling mode. More 

accurate values of coefficient 𝐶𝑚𝑜𝑑𝑒  can be obtained 
with more precise empirical studies investigated and 

taken into account in the future. If a user decides to 

wear a protection mask when traveling, this could 

be easily reflected in (4) by applying a 

corresponding protection coefficient 𝐶𝑝𝑟𝑜𝑡𝑒𝑐𝑡 . 

In each travel mode, for each road type, there is 

a default value for the average speed, which can be 

adjusted in the application itself depending on the 

legal regulations for road traffic (e.g., according to 
maximum speed limits set), and can be further 

adjusted by the user depending on her/his abilities 

and habits related to the specific travel mode used. 
Some travel modes may be prohibited on certain 

road types (e.g., a car cannot be used within a 

pedestrian zone). 

 

6.3 Routes’ Start and End Points 
In the current implementation, the selection of the 
start and end points of a route is done by the user by 

clicking on the map with the left (for the start point) 

and right (for the end point) mouse buttons. The 

specified coordinates will hardly coincide exactly 
with the coordinates of any OpenStreetMap node in 

the dataset. Therefore, the closest node existing on 

the map is used for the route generation. 

 
Table 4. Different travel modes and their 

corresponding minute ventilatory rates (MVRs)                             

and 𝐶𝑚𝑜𝑑𝑒  coefficients 
Travel  

mode 

MVR  

(L/min) 
𝑪𝒎𝒐𝒅𝒆 

Driving a car  

(with closed windows) 
7 0.200 

Driving a car  

(with open windows) 
8 0.229 

Motorcycling 10 0.286 

Cycling 35 1.000 

Walking 15 0.429 

 

6.4 Route Types 
In addition to the ‘least air pollution exposure’ 

route, the developed web-based application can 

generate and recommend also the fastest route and 
shortest route for traveling. All route computations 

are performed by means of the Dijkstra algorithm, 

using, respectively, the ‘exposure rate’, defined in 

(4), as a cost for the ‘least air pollution exposure’ 
route, the ‘time’ for the fastest route, and the 

‘length’ for the shortest route.  

 

6.5 Results 
The final result for each generated route type 

includes a route visualization, presented as a set of 
ordered GPS coordinates used for route 

visualization on the map, as shown in Figure 4(a) 

(each route type is drawn in a different color), and 
information about air quality parameter values on 

each route type, as presented in Figure 4(b). More 

specifically, the developed application generates 

three different types of routes for traveling between 
any two points in the study area. In the example 

presented in Figure 4, these are (i) the healthiest 

route with a minimum exposure rate of 1120.45 
AQI.minutes, (ii) the fastest route with a minimum 

travel duration of 1:29 h, and (iii) the shortest route 

with a minimum travel distance of 133.069 km. 
Additional data include the GPS coordinates of the 

start and end points (respectively, 

(37.53357480/114.51482110) and 

(36.99950980/115.51223270) in this example), the 
exposure rate, and the name of the server used for 

the computation of each route type.  
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(a) 

 
(b) 

Fig. 4: Sample route generation: (a) different route 

types (i.e., healthiest, fastest, and shortest route) 

between two points in the study area; (b) the air 
quality parameter values on the healthiest route, 

generated in (a) 

 

 

7  Conclusion 
This paper has presented an elaborated distributed 

computing architecture for the generation of the 

healthiest routes (more precisely, the ‘least air 
pollution exposure’ routes), performed in near real-

time by means of the dynamic Dijkstra algorithm, 

based on the air quality index (AQI). In addition, the 
fastest and shortest routes are generated as well. The 

generated routes are visualized on a map and 

recommended to users through a specially 
developed web-based application, as part of the 

client tier of the supporting IoT platform 

EMULSION. The generated healthiest routes, in 

particular, allow the users to avoid air-polluted areas 
posing particular health risks to them. 

Future work will be focused on the development 

of suitable models to predict the future AQI, based 
on historical data, current meteorological data, and 

weather forecasts, for the purposes of smart 

proactive “healthy routes” planning for outdoor 

activities of users. The routes will be initially 
preplanned, with the possibility to be dynamically 

changed later, if needed, depending on the current 

environmental conditions. The incorporation of such 
health-related criteria into existing navigation 

systems and applications for route generation and 

recommendation is envisaged as an important 
functionality extension of the latter, [5]. 
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