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Abstract: - As the level of modern technology development, namely autonomous robots, drones, robotics, etc., 
is high, the topic under study is highly relevant. Since the level of development of modern technologies, namely 
autonomous robots, drones, etc., is high, the topic under study is highly relevant. Due to the use of the 
Simultaneous Localisation and Mapping System (SLAM) in the industrial sector, ensuring and empirically 
verifying its robustness under challenging conditions is essential. The study aimed to evaluate and verify the 
reliability of the SLAM algorithm in real conditions. The following methods were used to conduct the study: 
deep learning methods and recurrent neural networks. ATE and RPE metrics were used to measure the 
accuracy of maps and trajectories. The study revealed a relatively high stability of the developed SLAM 
algorithm in changing lighting conditions and dynamic objects' presence. The ATE and RPE metrics were 
within acceptable limits. The study's scientific novelty and originality lie in considering the real conditions 
during the experiment, such as different lighting and dynamic objects, which were rarely considered in previous 
studies. The developed algorithm will be helpful for autonomous systems and in the context of the latest 
advanced technologies and robotics. A promising area for further research may be improving the SLAM 
algorithm for use in tough conditions. 
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1  Introduction 
SLAM (Simultaneous Localisation and Mapping) is 
a class of algorithms used in robotics and computer 
vision systems. Their functions are to determine a 
robot's or autonomous system's location in a certain 
environment and build a map of this environment. 

The main components of SLAM include 
sensors, such as cameras, lidars, gyroscopes, and 
accelerometers, as well as algorithms for processing 
the data from these sensors. The robot or system 
first creates an initial estimated map and an estimate 
of its location and then gradually updates it by 
adjusting it with the data from the sensors. 

SLAM algorithms have a wide range of 
applications in various fields, including mobile 
robots [1], [2]; Virtual and augmented reality, [3], 
[4]; environmental mapping, [5], [6]; delivery and 
logistics, [7], [8]; search and rescue, [9], [10]:  

The development and improvement of SLAM 
algorithms are significant for society's technological 
development. This makes them particularly useful 
for a wide variety of applications. AR and VR use 

SLAM to interact with the real world, create and 
track objects, and provide highly realistic gaming 
experiences. SLAM autonomously navigates drones 
for various purposes, including delivery, aerial 
photography, and search and rescue operations. 
Autonomous vehicles use SLAM to safely navigate 
and locate themselves on the road, improving road 
safety and reducing accidents. In defense and 
security, SLAM can be used in military applications 
for autonomous missile and drone guidance and 
navigation in unknown areas. 

Validation of the robustness of SLAM 
algorithms is also of great importance. Since these 
algorithms operate in different, sometimes harsh 
environments, their robustness is critical. SLAM 
errors can lead to dangerous situations in the above 
applications. Therefore, validation helps ensure the 
algorithms function correctly, including limited 
visibility, many entities on the map, changing 
lighting, etc. Increasing the robustness of SLAM 
algorithms is an important task to improve the 
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reliability and safety of autonomous systems in the 
modern world. 

Given the high demand and usefulness of 
SLAM algorithms in many application areas, this 

study aims to investigate the robustness of the 
developed SLAM algorithm by testing it in real-
world conditions. To achieve this goal, the 
following tasks have been set and implemented: 

1. Development of a SLAM algorithm using 
deep learning methods. 

2. Testing in actual conditions, mainly 
conducting experiments with complications 
(emergencies, etc.). 

3. Analysing the results according to the selected 
metrics. 

 
 

2  Literature Review 
Today, SLAM systems with deep learning are 
increasingly being used. They have significant 
advantages that help improve the accuracy and 
reliability of SLAM systems, namely: 

- Increased localization accuracy; 
- Improving the accuracy and information 

content of maps; 
- improving the resistance of the SLAM system 

to various factors, such as variable illumination, 
glare, or interference; 

- reducing sensor data processing time and 
increasing the SLAM system's response to changes 
in the environment, which is especially important 
for real-time applications; 

- ability to work under challenging conditions 
(limited visibility). 

Deep learning helps make SLAM systems more 
efficient, reliable, and flexible in different 
environments and applications. It opens new 
possibilities for autonomous systems and allows 
them to understand their environment more 
accurately and navigate it efficiently. 

Therefore, there is a lot of research and 
development in this area. For example, 
authors, [11], proposed depth estimation algorithms 
for an image based on SLAM and CNN 
(convolutional neural networks) to compact and 
scale data and provide a real-time environment map 
suitable for real-time exploration. Authors, [12], 
proposed to combine the potential of feature 
descriptors based on deep learning with traditional 
VSLAM to increase the reliability of a conventional 
VSLAM system. Their results show an increase in 
the performance and reliability of the algorithm and 
resistance to sensory noise. The authors, [13], also 
proposed a real-time visual SLAM algorithm based 
on a deep learning method – the YOLOv5s 

convolutional neural network as a parallel semantic 
thread. 

A significant segment is the development of 
SLAM for work in dynamic environments, as it 
opens up new opportunities for the development of 
autonomous systems and the growth of robotics in 
various fields while improving safety, efficiency, 
and quality of life. Therefore, quite a few 
publications are devoted to this area. For 
example, [6], describes a Dynamic-SLAM based on 
a convolutional neural network with an improved 
performance of 10%. A similar study was 
conducted, [14], which describes the SLAM 
algorithm with multi-target tracking SLAMMTT. 
Also, authors, [15], describe DDL-SLAM (Dynamic 
Deep Learning SLAM), a robust RGB-D SLAM 
system for dynamic scenarios, which adds dynamic 
object segmentation capabilities based on ORB-
SLAM. Authors, [16], propose a new approach to 
visual Graph-SLAM for underwater robots; their 
model is also based on a Siamese convolutional 
network SCNN, which is designed to be easily 
trainable and compares pairs of underwater images, 
rejecting those that do not close the loop. The tests 
were conducted on semi-synthetic data. Deep 
learning methods are also used by, [17], in 
combination with LIDAR SLAM for people 
detection for autonomous indoor mapping in a 
populated environment. Authors, [18], propose a 
new dynamic RGB-D SLAM method, PLD-SLAM, 
based on point and linear functions for dynamic 
scenes. PLDSLAM contains a deep learning 
algorithm for segmenting semantic information and 
a K-Means clustering algorithm that considers the 
deep information to recognize dynamic features. 
Then, two consistency-checking methods are used 
to filter out the dynamic features. After a thorough 
analysis, it can be noted that PLD-SLAM performs 
better than conventional SLAM under dynamic 
conditions. 

In, [19], GO-SLAM, a visual SLAM framework 
based on deep learning that performs real-time 3D 
reconstruction, is presented. It is based on pose 
estimation and online full-package adjustments that 
optimize the frame by using the learned global 
geometry of the complete history of the input 
frames. In addition, GO-SLAM is versatile and can 
work with monocular, stereo, and RGB-D input. 

So, recently, advances in the development of 
SLAM algorithms have achieved significant results, 
especially with the use of deep learning methods, 
mostly convolutional networks. Nevertheless, there 
are still many problems related to ensuring the 
robustness of the developed algorithms and many 
ways to solve them. Therefore, this paper is devoted 
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to a detailed validation of the robustness of the 
developed SLAM algorithm. 

 
 

3  Methods and Materials 
SLAM algorithm using deep learning: 

1. Sensor information: the DJI MAVIC 3T drone 
collects visual data from its cameras, including the 
zoom and thermal cameras. It also uses vision and 
infrared sensors to detect obstacles. 

2. Preliminary data processing: visual data is 
processed to identify critical points and image 
features. Data from other sensors are also processed 
to create a comprehensive set of environmental data. 

3. Deep learning model (CNN): A deep 
convolutional neural network (CNN) trained on a 
large amount of data determines the depth of objects 
in images, which helps reconstruct a three-
dimensional map of the environment. 

4. Sequential analysis (RNN): A Recurrent 
Neural Network (RNN) combines information from 
different frames and follows the movement of 
objects and the localization of the drone. RNN helps 
to consider the temporal sequence and provides 
consistent localization and mapping. 

5. Data fusion: Information from CNN and RNN 
is combined to create a comprehensive 3D map of 
the environment and build the drone's route. Based 
on new data, localization and positioning parameters 
are updated in real-time. 

6. Validation and testing: The obtained map and 
traffic information are checked and validated based 
on known data from actual flights. The network and 
algorithm parameters are tuned for the best possible 
accuracy and reliability. 

Parameters and hyperparameters for the 
convolutional neural network CNN: 

Network architecture: deep convolutional 
network with ten convolutional layers and three 
fully connected layers. 

Filter size: 3x3 for all convolutional layers. 
Number of filters: 64 in the first two 

convolutional layers and 128 in the subsequent 
layers. 

Activation function: ReLU for all layers. 
Pulling parameters: MaxPooling with a size of 

2x2 after each convolutional layer. 
Loss function: Mean square error (MSE) for the 

loss function for depth reconstruction. 
The learning rate starts at 0.001 and adapts 

during training, reducing it by 50% if necessary. 
Parameters and hyperparameters for a recurrent 

neural network (RNN): 
RNN architecture: LSTM layers for modeling 

time dependencies. 

Number of layers: two LSTM layers for 
recurrent analysis. 

The size of the hidden state: 256 units for each 
LSTM layer. 

Activation function: hyperbolic tangent (tanh) of 
all LSTM layers. 

Optimizer parameters: Adam with a learning rate 
of 0.001. 

The internal parameters of SLAM are adjusted 
automatically during operation using auto-
calibration methods and optimization techniques. 
This approach allows the SLAM algorithm 
parameters to be adapted to changing conditions and 
environments. 

The block diagram of the described algorithm is 
shown in Figure 1 (Appendix). 

 
3.1  Main Technical Characteristics 
For the aim of our research, we used a DJI MAVIC 
3T drone with the following characteristics: 
Operational: 

 power supply - battery, Li-pol type; 
 battery capacity - 5000 mAh; 
 the warranty period is 24 months; 
 the parameters of the device are 347.5 x 283 

 x 107.7 mm; 
 weight - 920 grams; 
 the case material is plastic; 
 temperature conditions of use - from -10 to 

 +40°C. 
Multimedia: 

 internal memory - 8 GB; 
 connection - Glonass, GPS; 
 camera - 20 MP, CMOS 4/3; 
 the maximum altitude is 6000 meters; 
 the maximum climb speed is 68 km/h; 
 the maximum permissible wind speed is 

 43.2 km/h; 
 control - remote control; 
 remote control frequency - 2.4 GHz, 5.8 

GHz; 
 flight time - up to 45 minutes; 
 climbing speed - 28.8 km/h; 
 the descent speed is 21.6 km/h. 

Screen: 

 4K video recording resolution: 3840x2160, 
 30 fps, FHD: 1920x1080, 30 fps; 

 The resolution is 8000x6000 pixels. 
Additional features 

 a complete software package; 
 RTK module; 
 mobile station D-RTK 2. 
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These indicators make the drone highly popular 
among users, as evidenced by their positive 
feedback. 

 
3.2  Camera 
The UAV has a powerful dual camera, a high-
quality 4/3 CMOS sensor, and a reliable radiometric 
thermal sensor. These sensors provide high-quality 
thermal images to capture important information. 
The camera's three-axis stabilization produces 4K 
video at 30 frames per second. The x56 digital 
hybrid zoom provides maximum image detail. 

 

3.3  Energy Supply 
The quadcopter is equipped with a 5000 mAh 
lithium-polymer battery. The increased capacity 
ensures the device's autonomy. The battery has an 
increased level of safety, which reduces the risk of 
spontaneous combustion. Due to a slight voltage 
drop during discharge, the battery retains its 
performance for a long time without recharging. The 
battery's temperature range is from -20 to +50°C. 

The minimal thickness of the battery contributes 
to the compactness and improved ergonomics of the 
device. 

 

3.4  Speed, Altitude and Distance 
The maximum rate of climb reaches 68 km/h, and 
the average rate is 28.8 km/h. The descent speed is 
within 21.6 km/h. The quadcopter can fly to an 
altitude of up to 6000 meters. 
 
3.5  Thermal Imager 
The quadcopter has a powerful thermal imaging 
camera with a vanadium oxide matrix. The thermal 
imager has a lens with an aperture of f/1.0 and a 
viewing angle of 61°. Automatic focus is triggered 
at a distance of 5 meters and is valid indefinitely. 
The sensitivity reaches ≤50 mK. Video resolution is 
640 x 512 pixels at 60 fps. The wavelength of 
infrared radiation is from 8 to 14 µm. The 
temperature range of object recognition in the high 
gain mode varies from -20 to +150°C, and in the 
low gain mode, it ranges from 0 to 500°C. The 
measurement accuracy has an error of ± 2%. 

Due to the complexity of the process of assessing 
the stability of the SLAM algorithm, it is important 
to take into account many factors. To do this, 
conducting an experiment in natural conditions and 
using objective values to assess the effectiveness is 
necessary. Therefore, the following aspects were 
taken into account to assess the effectiveness of the 
algorithm: 

1.  The ability to work in dynamic conditions 
(lighting, weather conditions, object movement, 
etc.). To do this, it is important to assess the 
algorithm's adaptability to changes and ensure 
that it continues to work reliably. 

2.  Ability to recognize dynamic objects (people, 
vehicles, etc.). 

3.  Long-term stability (determining how the 
algorithm can work over time). This is 
important to prevent the effect of error 
accumulation. 

4.  Ability to continue working in case of data loss 
(loss of sensors or cameras). 

5.  Check for internal errors. 
 

3.6  Metrics for Evaluating the Results of 

Experiments 

The following indicators were used to assess the 
accuracy and reliability of the SLAM algorithm: 

1. Absolute trajectory error (ATE). 
The following formula is used to calculate ATE: 

 
 

 
Where: 
p_predicted - position calculated by the SLAM 

algorithm; 
p_ground_truth - known (ideal) position; 
n - number of points to compare on the 

trajectory. 
 

2. Relative position error (RPE). 
The following formula is used to calculate RPE: 

 

Where: 
p_predicted - the current position calculated by 

the SLAM algorithm. 
p_previous - the previous known position. 
n - number of pairs of items to compare. 

 
These metrics measure the accuracy and 

stability of a SLAM system's localization relative to 
known positions and trajectories. They help 
developers and researchers assess the quality and 
robustness of an algorithm, conduct a comparative 
analysis of different SLAM implementations, and 
improve algorithms to achieve better results in 
different conditions. 
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4  Results 
To evaluate the robustness of the algorithm 
described in the previous section, we conducted 
experiments under the following conditions: 
1.  Daylight, excluding dynamic objects. 
2.  Night lighting, excluding dynamic objects. 
3. Daytime lighting with dynamic object 

recognition. 
4.  Night lighting with dynamic object recognition. 
5.  Daytime lighting, presence of obstacles. 

100, 500, and 1000 m runs were performed for 
each set of conditions, and each experiment was 
repeated five times. Errors of the ATE (m), RPE 
(m), and RMSE (m) results are shown in Appendix 
in Table 1, Table 2, Table 3, Table 4, Table 5 and 
also depicted in the histograms (Figure 2, Figure 3 
and Figure 4). 

According to Table 1 (Appendix), in daylight 
(sufficient) conditions and when dynamic objects 
are ignored, the developed algorithm shows 
satisfactory results, which deteriorate with 
increasing drone flight range. The range of error 
values over several tests changes insignificantly and 
increases almost proportionally to the increase in 
flight range. 

According to Table 2 (Appendix), which 
describes the experiment in night (low) light 
conditions and when dynamic objects are ignored, 
the developed algorithm shows satisfactory results 
that deteriorate with increasing drone flight range, 
as in the case of daylight. Comparing the data in 
Appendix in Table 1 and Table 2, we can see a 
slight deterioration in the results when the lighting 
changes. This is within acceptable limits, given the 
scale of the system's complexity. The range of error 
values over several tests changes slightly and 
increases almost proportionally to the increase in 
flight range. 

Table 3 (Appendix) shows the experiment 
results in daylight and with the additional task of 
recognizing dynamic objects. In these conditions, 
the algorithm under study shows approximately 1.5 
times worse results than in Experiment 1, where 
dynamic objects were ignored. Nevertheless, the 
results remain satisfactory, and the range of error 
values changes only slightly over several trials. This 
indicates the reliability of the algorithm. 

Table 4 (Appendix) shows the experiment's 
results under night lighting and with the additional 
task of recognizing dynamic objects. Comparing 
these error values with the values in Table 3 
(Appendix), we conclude that the change in lighting 
does not critically affect the algorithm's 
performance when it’s necessary to recognize 
dynamic objects. Compared to the results of 

Experiment 2 (night lighting, ignoring dynamic 
objects), the results of this experiment deteriorate by 
an average factor of 1.5, as well as when comparing 
Experiments 1 and 3. 

Table 5 (Appendix) shows the experiment 
results in daylight, ignoring dynamic objects but 
with communication hindrances. The algorithm 
continues to work in these conditions and 
demonstrates slightly higher errors than in the 
experiment under similar conditions but with 
reliable communication. At the same time, the error 
values obtained in Experiment 5 are better than 
those obtained in dynamic systems and static 
systems under night lighting. 

Figure 2, Figure 3 and Figure 4 show the 
histograms of the mean values of ATE (m), RPE 
(m), and RMSE (m) errors for each experiment, 
respectively. 

Figure 2 shows each experiment's histograms of 
the average trajectory error values. As indicated in 
this figure, the errors increase proportionally with 
the drone's flight range, which is quite natural. The 
highest error values are found in Experiment 4, 
which has the most challenging conditions and 
tasks. 

 

 
Fig. 2: Histograms of the mean values of the ATE 
error for each experiment. 

 
Figure 3 shows histograms of the average 

position error values for each experiment. As in the 
case of trajectory error, the errors increase 
proportionally to the increase in the drone's flight 
range. Also, according to the results obtained, it can 
be argued that the position determination is entirely 
accurate, given that the highest RPE value of 0.182 
m is found in Experiment 4 under the most 
challenging conditions, task, and most extended 
range. 

Figure 4 illustrates the histograms of the mean 
values of each experiment's root mean square 
mapping error. As in the case of trajectory and 
position errors, the errors increase proportionately to 
the drone's flight range increase. 

The results generally indicate that the developed 
SLAM algorithm is highly robust and adaptable to 
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environmental conditions and problem formulation 
changes. 

 

 
Fig. 3: Histograms of mean RPE error values for 
each experiment. 

 

 
Fig. 4: Histograms of average RMSE error values 
for each experiment. 

 
 

5 Discussion 
This paper empirically verifies and confirms the 
robustness of the developed SLAM algorithm 
through a series of experiments conducted under 
actual conditions. 

The described algorithm demonstrated 
satisfactory results when environmental conditions 
change (day and night lighting), interference occurs 
(with the presence of dynamic objects), and when 
the task becomes more complex, such as obstacles 
or loss of communication. Based on deep learning 
(using convolutional and recurrent neural networks), 
this algorithm is promising and competitive. For 
example, [10], conducted a similar study but 
focused on the low hardware cost and neglected 
achieving high accuracy. As noted: “Although the 
quality of the generated point clouds is still low and 
not comparable to photogrammetric reconstructions, 
the scene scale is correctly scaled”, [10]. In contrast, 
the algorithm developed in this study has a more 
complex structure and sophisticated topology of the 
neural networks used due to its much higher 
accuracy. 

In colleagues' works, [11], [14], the 
convolutional network CNN is used in the presented 
SLAM algorithms using artificial neural networks of 
deep learning. Other convolutional networks were 
used, [13], [17]: YOLOv5s and SCNN, respectively. 

Instead, the algorithm described in this paper 
combines the work of CNN and RNN, which 
provides better performance and significantly 
increases the algorithm's reliability. 

In, [19], the SLAM algorithm combines a deep 
learning neural network with a clustering method, 
which is more capacious and less reliable than the 
consolidation of CNN and RNN. 

In addition, none of the reviewed works, [12], 
[15], paid sufficient attention to the data loss 
scenario (sensors or cameras). Therefore, this work 
is valuable because of the developed algorithm and 
the study of its robustness in emergencies. 

For example, in, [20], an algorithm using 
semantic segmentation DeeplabV3+ was applied to 
recognize dynamic objects, but no experiments were 
conducted with changing lighting. Instead, the 
authors describe experiments with the presence of 
dynamic objects in both day and night lighting. 
After all, this is a very important aspect of operating 
drones and autonomous robots in real-world 
conditions. Therefore, the algorithm should be 
tested in all possible scenarios. This is the only way 
to prove the robustness of the developed algorithm. 

A significant advantage of this study is that the 
algorithm was tested in real-world conditions rather 
than artificially simulated conditions, as in, [21]. 

The developed algorithm can be applied in 
several areas: autonomous drones, robotic 
environments with limited access, robots for 
exploring dangerous or hard-to-reach places, mobile 
robots in challenging environments, robots working 
in harsh conditions, such as during rescue 
operations, underwater exploration, etc. 

 
 

6 Conclusions 
Simultaneous localization and mapping (SLAM) 
algorithms are crucial to navigating mobile robots, 
drones and autonomous vehicles. However, their 
successful implementation in real-world 
environments requires research and verification of 
robustness. In this context, the results of the 
experiments, which include measurements of 
absolute trajectory error, relative position error, and 
mapping error, are significant. 

The developed SLAM algorithm using deep 
learning (CNN, RNN) was tested in several different 
experiments. Considering the data presented in the 
tables, the best results are achieved in daytime flight 
conditions by ignoring dynamic objects at distances 
of 100 meters. However, the results obviously and 
uncritically deteriorate with increasing distance, in 
night conditions, or when dynamic objects are 
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detected. This proves the robustness of the 
algorithm under study. 

The developed SLAM algorithm can be used in 
various applications, such as autonomous navigation 
of drones and robots in demanding environments, 
virtual reality, augmented reality, and robotics for 
research and rescue operations. 

Future research should focus on improving the 
robustness and reliability of SLAM algorithms in 
real-world environments. This may include 
developing new methods for filtering and 
compensating for sensor errors, adapting algorithms 
to changing conditions, and extending their 
application to a broader range of scenarios. 
 
 

Declaration of Generative AI and AI-assisted 

Technologies in the Writing Process 

During the preparation of this work the authors used 
ChatGPT in order to improve readability and 
language. After using this tool/service, the authors 
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Fig. 1: Block diagram of the algorithm 
 

 
Table 1. Errors of the SLAM algorithm in the first experiment 

Conditions 1. Daylight, excluding dynamic objects 
Range 100 500 1000 
Error ATE RPE RMSE ATE RPE RMSE ATE RPE RMSE 

1 0,5 0,02 1 1 0,05 2 2 0,1 4 
2 0,6 0,025 1,2 1,2 0,06 2,4 2,4 0,12 4,8 
3 0,55 0,022 1,1 1,1 0,055 2,2 2,2 0,11 4,4 
4 0,48 0,018 1,05 0,95 0,048 1,95 1,9 0,095 3,8 
5 0,52 0,021 1,08 1,05 0,052 2,1 2,1 0,105 4,2 

Average 0,53 0,0212 1,086 1,06 0,053 2,13 2,12 0,106 4,24 
Span 0,12 0,007 0,2 0,25 0,012 0,45 0,5 0,025 1 
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Table 2. Errors of the SLAM algorithm in the second experiment 
Conditions 2. Night lighting, excluding dynamic objects 
Range 100 500 1000 
Error ATE RPE RMSE ATE RPE RMSE ATE RPE RMSE 
1 0,6 0,03 1,2 1,2 0,06 2,4 2,4 0,12 4,8 
2 0,7 0,035 1,4 1,4 0,07 2,8 2,8 0,14 5,6 
3 0,65 0,028 1,3 1,3 0,065 2,6 2,6 0,13 5,22 
4 0,58 0,025 1,25 1,1 0,055 2,2 2,2 0,11 4,4 
5 0,62 0,027 1,28 1,15 0,057 2,3 2,3 0,115 4,6 
Average 0,63 0,029 1,286 1,23 0,0614 2,46 2,46 0,123 4,924 
Span 0,12 0,01 0,2 0,3 0,015 0,6 0,6 0,03 1,2 

 
 

Table 3. Errors of the SLAM algorithm in the third experiment 
Conditions 3. Daylight, with dynamic object recognition 
Range 100 500 1000 
Error ATE RPE RMSE ATE RPE RMSE ATE RPE RMSE 
1 1 0,04 2 2 0,08 4 3 0,15 6 
2 1,2 0,05 2,4 2,4 0,096 4,8 3,6 0,18 7,2 
3 1,1 0,045 2,2 2,2 0,088 4,4 3,3 0,165 6,6 
4 0,95 0,038 1,95 1,9 0,076 3,8 2,85 0,142 5,7 
5 1,05 0,042 2,1 2,1 0,084 4,2 3,15 0,157 6,3 
Average 1,06 0,043 2,13 2,12 0,0848 4,24 3,18 0,1588 6,36 
Span 0,25 0,012 0,45 0,5 0,02 1 0,75 0,038 1,5 
 
 

Table 4. Errors of the SLAM algorithm in the fourth experiment 
Conditions 4. Night lighting with dynamic object recognition 
Range 100 500 1000 
Error ATE RPE RMSE ATE RPE RMSE ATE RPE RMSE 
1 1,2 0,06 2,4 2,4 0,12 4,8 3,6 0,18 7,2 
2 1,3 0,065 2,6 2,8 0,14 5,6 4 0,2 8 
3 1,25 0,058 2,5 2,6 0,13 5,2 3,8 0,19 7,6 
4 1,1 0,052 2,2 2,2 0,11 4,4 3,3 0,165 6,6 
5 1,15 0,055 2,3 2,3 0,115 4,6 3,5 0,175 7 
Average 1,2 0,058 2,4 2,46 0,123 4,92 3,64 0,182 7,28 
Span 0,2 0,013 0,4 0,6 0,03 1,2 0,7 0,035 1,4 

 
 

Table 5. Errors of the SLAM algorithm in the fifth experiment 
Conditions 5. Daylight, with obstacles 
Range 100 500 1000 
Error ATE RPE RMSE ATE RPE RMSE ATE RPE RMSE 
1 0,8 0,03 1,6 1,5 0,06 3 2 0,1 4 
2 0,9 0,035 1,8 1,7 0,068 3,4 2,2 0,11 4,4 
3 0,85 0,032 1,7 1,6 0,064 3,2 2,1 0,105 4,2 
4 0,78 0,028 1,55 1,4 0,056 2,8 1,9 0,095 3,8 
5 0,82 0,033 1,62 1,45 0,058 2,9 2,05 0,1025 4,1 
Average 0,83 0,0316 1,654 1,53 0,0612 3,06 2,05 0,1025 4,1 
Span 0,12 0,007 0,25 0,3 0,012 0,6 0,3 0,015 0,6 
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