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Abstract: - Swarm intelligence is a branch of artificial and natural intelligence that studies systems with many 

characters that manage their activities through distributed control and self-organisation. The field focuses on 

the actions of social insects such as fish schools, bird flocks, ants, termites, bees, and wasp colonies. Particle 

swarm optimisation (PSO) and ant colony optimisation (ACO) are two of the most common systems reported 

by swarm intelligence. Ant Colony Optimization (ACO) is a probabilistic method used to find optimal 

pathways in computationally complex situations by condensing the problem. This paper analyses the use of 

ACO metaheuristics to find the initial basic feasible solution in an unbalanced and balanced transportation 

method. Then, it compares it to other traditional methods (The least cost method, Northwest Corner method, 

and Vogel’s approximation method). The primary goal of this study is to provide a helpful framework for 

understanding new trends in applying swarm intelligence in system optimisation and implementing/using the 

ACO algorithm in a real-life situation. Examples were generated online. At the end of the paper, for the 

unbalanced transportation problem, the Least Cost method, Northwest Corner method, Vogel’s Approximation 

method, and ACO method gave us (472, 547, 374, and 389) as the total cost, respectively. For the balanced 

transportation problem, the Least Cost, Northwest Corner, Vogel’s Approximation, and ACO methods gave us 

(2450, 3700, 2150, and 3650) as the total cost, respectively. 
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1  Introduction 
Swarm intelligence (SI) is an artificial intelligence 

technique that studies essential species teaming 

behaviours in various distributed systems, including 

animal herding, ant colonies, bird flocking, and bee 

colonies harvesting honey. By their very nature, SI 

systems are composed of a population of simple 

agents interacting locally with one another and their 

surroundings. Nature, particularly biological 

organisms, provides stimulation, even though a 

simple individualistic approach is characterised 

primarily by autonomy, distributed function, self-

organised capacities, and social communication 

among simple individuals, frequently leading to a 

universal ideal solution, [1]. This study looks into 

applying swarm intelligence, especially ant colony 

optimisation, in system optimisation. We would also 

look at research done by other people and some 

problems that can be solved by using numerous 

swarm intelligence models, including Self-propelled 

particles, Boids, Stochastic diffusion search (SDS), 

Particle swarm optimisation, Artificial swarm 

intelligence, Ant colony optimisation, are employed 

to address various real-world issues. This paper 

focuses explicitly on Ant Colony optimisation. A 

population-based metaheuristic for estimating 

solutions to complex optimisation problems is called 

"ant colony optimisation", [2], [3]. An established 

set of software agents nicknamed "artificial ants" 

looks for practical solutions to finding the lowest 

price track on a weighted graph in ant colony 

optimisation (ACO). As they construct solutions, the 

virtual ants go over the graph piece by piece. The 
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pheromone model, a collection of inventions linked 

to a section of the graph (either nodes or edges), 

impacts the stochastic solution-building process. 

The ants alter the values of these inventions in real 

time. 

Several classical combinatorial and optimisation 

problems with stochastic and active elements have 

produced valuable results using Ant Colony 

Optimization (ACO). Examples include the 

explanation of routing in communication networks, 

[4] and a stochastic variant of a well-known 

combinatorial optimisation problem, such as the 

probabilistic travelling salesperson problem and 

manufacturing scheduling, [5]. Likewise, ACO has 

been extended to address infinite-variable and 

mixed-variable optimisation issues. Because of its 

many practical uses, ant colony optimisation is 

perhaps the most well-known example of an 

artificial/engineering swarm intelligence system.  

Ant colony optimisation (ACO) is a refinement 

of optimisation methods based on ant colony 

motions. Artificial 'ants' - model agents - find 

optimal solutions by traversing a constrained space 

containing all feasible solutions. While studying 

their environment, real ants set aside pheromones to 

guide each other to supplies. The model ants also 

record their locations and the characteristics of their 

solutions, allowing additional ants to detect better 

solutions in subsequent recreation cycles. One 

variation from this style is the bees' algorithm, 

which resembles honeybee scavenging habits. Ant 

Colony Optimization (ACO) is concerned with 

simulated systems that are stimulated by the 

scavenging activity of actual ants and are depleted 

to solve specific optimisation problems. The critical 

impression is the ants' unintentional connection via 

chemical pheromone trails, which qualifies them to 

locate short pathways between their nest and food. 

Different kinds of software have also been used to 

solve ACO modelling problems, such as lingo [6], 

Lindo, R, etc. 

 

    
Fig. 1: Ants Finding the Shortest Path, [7] 

 

Figure 1 shows the movement of ants from their 

nest to their food source and shows the shortest part 

of the transportation, [7]. Applications of swarm 

intelligence are crowd simulation, crowd control, 

human swarming, Swarm art, swarm robotics, 

swarm intelligence routing, and shortest path 

problem. The shortest path problem (SPP) is 

common in computer science society. Many people 

have deliberated it, but the existing standard is 

Dijkstra’s shortest path algorithm, which exploits 

dynamic programming to unravel the problem, [8]. 

Fundamentally, what the shortest path problem 

deals with is if you have a graph. 𝐺 = (𝑀, 𝑁),Here 

M is a set of points or positions, and N is a set of 

vertices that links points in M where N is a subset of 

𝑀 × 𝑀. In SPP, each peak in N also has a mass 

related to it, and the problem that needs to be 

unravelled is how to get from any point in M to any 

other point in M with the lowest mass on the 

vertices used. An unsophisticated instance is to let 

M be all the airports examined by an airline, and N 

is the airline's departure. Furthermore, let the mass 

of N be the cost of each flight. The problem to be 

unravelled in this condition would be to locate the 

most typical way to get from any airport to any 

other airport. 

A particular kind of Linear Programming 

Problem (LPP) called the “Transportation problem” 

entails transporting goods between several sources 

and destinations while accounting for supply and 

demand at each point to reduce the total cost of 

transportation, it is also known as the Hitchcock 

problem. The linear programming approach can 

tackle transportation-related challenges, starting 

with the most basic workable solution and working 

your way up to the ideal answer. The latter portion 

of the transportation problem solution is the main 

topic of this study. Transportation issues can be 

divided into two categories: balanced and 

imbalanced. When supply and demand are equal, 

there is a balanced transportation problem; when 

not, there is an imbalanced transportation problem. 

In this work, we investigated the ability of the Ant 

Colony Optimization method to locate the first 

fundamentally feasible solution. We compared it to 

Vogel's Approximation Method, the Least Cost 

method, and the Northwest Corner approach. 

When using the ant colony optimisation (ACO) 

metaheuristic to solve a problem, we use the 

probability of an ant passing a path, which deals 

with the pheromone concentration, the heuristic 

factor of the ant. When ants deposit pheromones, 

evaporation occurs, leading to a second formula 

called the pheromone update rule. However, in this 

paper, we would not be looking at that. Since we are 

applying it to transportation, we would start 

allocating maximum demand and supply from the 

second highest probability to avoid congestion 

(when ants move, they tend to hit themselves, but in 

real life, it cannot happen with cars). There is still a 
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chance that the allocation at the end would still fall 

on the highest probability. So, in this paper, we 

looked at both balanced and unbalanced 

transportation problems. 

 

1.1  Literature Review 
[9], employed the Ant Colony Optimization (ACO) 

algorithm to solve the transit traffic assignment 

problem using a line-based strategy. Additionally, 

numerical efficiency was demonstrated compared to 

the conventional multiple sequence alignment 

(MSA) algorithm. This was an extension of the idea 

put forth in an algorithm for random traffic 

assignment based on ant colony optimisation, which 

enables the simulation of mass transit systems with 

the same accuracy but in a shorter amount of time 

when compared to traditional optimisation 

algorithms. The ideal equivalency between mass-

transit riders and artificial ants regarding hyper 

path-choosing behaviour was then postulated. 

[10], advised that the ant colony optimisation 

(ACO) method should be used to find the nearest 

route search in the distribution of light food 

production because Indonesians were having trouble 

getting refreshments distributed around their region. 

The problems were resolved by placing four ants 

using the ant colony optimisation technique. 

According to the study, the ants moved from 

position A to position H. Four ants moved in sync, 

with ant 2 having the highest results and travelling 

the closest to point H, where the value hit 0.00015. 
[11], cited three selected and comprehensively 

detailed examples of swarm intelligence algorithms: 

the Whale Optimization Algorithm (WOA), the Salp 

Swarm Algorithm (SSA), and the Grey Wolf 

Optimizer (GWO). These three were first studied in 

the literature, specifically about problems with 

antenna design optimisation. Subsequently, a 

comparison analysis was carried out with popular 

test functions. After that, they were applied to 

develop peak sidelobe level (pSLL) optimised linear 

antenna arrays. Numerical testing shows that WOA 

outperforms SSA, GWO, and particle swarm 

optimisation. Last but not least, the algorithm's 

ability to construct complex and compact structures 

for use in resolving antenna design optimisation 

problems was illustrated by applying WOA to the 

optimisation problem of an aperture-coupled E-

shaped antenna. 

[12], presented a novel approach for maximising 

the transportation problem (TP) and generating a 

feasible solution (BFS). In most cases, the study’s 

methodology produces an initial solution that is near 

to or ideal. Several numerical examples were 

presented to illustrate the new method. The 

suggested method is well-known for its ability to 

analyse transportation issues with a maximising 

objective function, whether the study is balanced or 

unbalanced. The new technique was compared with 

Vogel’s Approximation, Least Cost Method, South-

East Corner Method, and North West Corner 

Method using four numerical examples from real-

world applications. It was found that the new 

algorithm provides a more accurate response. The 

paper noticed that the optimum solution obtained by 

the novel algorithm is superior to that of existing 

methods based on the comparison data. 

[13], used effective heuristics to tackle a 

cooperative transport planning challenge inspired by 

a situation in the food business in Germany. A set of 

rich vehicle routing problems (VRP) with capacity 

limits, maximum operating time window constraints 

for the vehicles, outsourcing alternatives, and order 

delivery deadlines were displayed following a 

suitable breakdown of the complete problem into 

smaller issues. A greedy heuristic that considers the 

time window constraints and the distance between 

the consumer locations solves each of these 

subproblems. The greedy heuristic is further 

enhanced by using an Ant Colony System (ACS). 

According to the results of certain early computer 

tests, the ACS-based heuristic performs better than 

the greedy heuristic. 

[14], used the ant colony optimization technique 

to solve a problem with multiple competing 

objectives in the cost-entropy trade-off for projects 

involving reinforced concrete office buildings. The 

research used the average costs of fourteen 

components from twenty chosen projects. An ideal 

solution was discovered and confirmed to be 

consistent with the current currency equivalent 

within the framework of the prior development 

method. 

[15], the modified ant colony optimisation 

algorithm (MACOA), a meta-heuristic approach, 

was used to find an initial feasible solution (IFS) for 

a transportation problem. The comparison analysis 

demonstrates that, in terms of solution quality, both 

the MACOA and the current Juman and Hoque's 

Method (JHM) are effective when compared to the 

methodologies under study. As a result, the 

MACOA is crucial for reducing transportation 

expenses and maximising transportation procedures, 

which can greatly enhance an organization's 

standing in the marketplace. 

[16], the Modified ASM technique is intended 

to generate optimal solutions for transportation-

related issues directly. The research process 

identified and created a model of transportation 

problems (constraint functions, objective functions, 
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and variable decisions), classified transportation 

problems as balanced or unbalanced, and found 

direct solutions by applying the Modified ASM 

method to solve transportation problems. This study 

demonstrates that the Modified ASM approach, 

which generates optimal solutions more easily than 

the ASM approach, effectively addresses the issue 

of balanced and imbalanced transportation. 

[17], suggested a novel approach to the 

Transportation problem (TP) called the N.R. 1 

method. In contrast to the three conventional 

approaches, the NOOR1 method provided us with 

an initial solution that was either ideal or very close 

to it. Both balanced and unbalanced TP can be 

easily solved using the recommended method 

(NOOR1), which has a minimised objective 

function. 

 

The advantages of Ant Colony Optimization to 

a Transportation Problem are as follows: 

 Complex optimisation problems like 

transportation problems are ideally suited for 

ACO, mainly when dynamic components like 

demand, fluctuating costs, or real-time traffic 

data are involved. 

 ACO makes use of several agents (ants) that 

investigate the solution space at the same time. 

This makes the method naturally adapted for 

parallel computing, which can shorten 

computation times and thoroughly investigate 

viable options. 

 Particularly for vast and complicated 

transportation networks, ACO provides 

mechanisms to escape local optima through 

evolving pheromone trails based on exploration 

and previous solutions. This increases the 

likelihood that it will find near-optimal or global 

solutions. 

The limitations of Ant Colony Optimization to 

a Transportation Problem are as follows: 

 ACO frequently takes many iterations to get an 

ideal or almost ideal solution, particularly when 

dealing with large-scale transportation issues. 

For conventional transportation issues with 

more straightforward, linear structures, this may 

render it less effective than alternative 

approaches like linear programming. 

 Ant population size, the impact of pheromone 

vs. heuristic information, and pheromone 

evaporation rate are some parameter choices 

that significantly affect how effective ACO is. 

Longer computation times or less-than-ideal 

answers may result from improper parameter 

tweaking. 

 ACO can be computationally demanding 

because it iteratively updates pheromone trails 

and simulates several agents. This becomes 

challenging when applied to extensive 

transportation networks with numerous nodes 

and pathways. 

 

 

2  Problem Formulation 
 

2.1  Mathematical Model 

 

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑗(𝑡)]𝛼[𝜂𝑖𝑗]𝛽𝑘
𝑖𝑗

                              (1) 

 
 Where 𝑃𝑖𝑗(𝑡) is the probability of 𝑘th and 

passing a chosen path concerning time. 

 𝜏𝑖𝑗(𝑡)  is the concentration of pheromone 

associated with a path 𝑖𝑗.  

 𝜂𝑖𝑗 =
1

𝐶𝑖𝑗
Is the visibility or heuristic factor 

favouring the path. 

 𝐶𝑖𝑗 is the path cost. 

 α and β control the relative importance of the 

pheromone and the local heuristic factor. 

 

 

Steps in applying Ant Colony Optimization (ACO) 

to Transportation Problems: 

 Step 1: Use the formula to find the probability 

of each distance between the two locations. 

Above the probability of an ant in choosing a 

particular path. 

 Step 2: Start allocation from the second highest 

probability (because we are dealing with 

vehicles which can cause congestion) to start 

allocation till all the allocations are complete. 

 Step 3: Test for degeneracy. If there is 

degeneracy, stop at step 4. 

 Step 4: Find the total cost, i.e. the initial basic 

feasible solution. 

 Step 5: Use the MODI method to find the 

optimal solution. 

 

NOTE: In this paper, let,𝜏𝑖𝑗(𝑡) = 0.5 and α, β = 1. 

 

2.2  Problem Statement 
We would adopt the unbalanced transportation 

problem, [18], as seen in Table 1 and the balanced 

transportation problem [19] in Table 2. 

 

Table 1. Example of Unbalanced Transportation 

Problem, [18] 
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 D1 D2 D3 D4 D5 Supply 

O1 5 1 8 7 5 15 

O2 3 9 6 7 8 25 

03 4 2 7 6 5 42 

03 7 11 10 4 9 35 

Demand 30 20 15 10 20  

 

 

Table 2. Example of Balanced Transportation 

problem, [19] 
 D1 D2 D3 D4 Supply 

O1 3 1 7 4 250 

O2 2 6 5 9 350 

O3 8 3 3 2 400 

Demand 200 300 350 150  

 

 

3  Problem Solution 
 

3.1  Unbalanced 
The example used for the Unbalanced transportation 

problem is Table 1, [18]. Below is the solution to 

the unbalanced transportation problem using the 

least cost, northwest corner, Vogel’s approximation, 

and ant colony methods. 

 

 LEAST-COST METHOD 

Table 3 shows the solution to the unbalanced 

transportation problem (i.e. Table 1.) using the least 

cost method.  

 

Table 3. Least Cost of Unbalanced Transportation 

Problem 
 D1 D2 D3 D4 D5 D6 Supply 

O1 5 1 8 7 5 0 15 15 

O2 3 18 9 6 7 8 0 7 25 

O3 4 12 2 20 7 6 5 10 0 42 

O4 7 11 10 15 4 10 9 10 0 35 

Demand 30 20 15 10 20 22  

 

Test for degeneracy=m+n-1=6+4-1=9 

 

There is no degeneration since the number of 

allocations is 9. 

 

Total Cost: (0×15) + (3×18) + (4×12) + (2×20) + 

(10×15) + (4×10) + (9×10) + (5×10) + (0×7) =472 

 

 

 NORTHWEST CORNER METHOD 

Table 4 shows the solution to the unbalanced 

transportation problem (i.e. Table 1.) using the 

Northwest corner method.  

 

 

Table 4. Northwest Corner of Unbalanced 

Transportation Problem 

 D1 D2 D3 D4 D5 D6 Supply 

O1 5 15 1 8 7 5 0  15 

O2 3 15 9 10 6 7 8 0  25 

O3 4  2 10 7 15 6 10 5 17 0 42 

O4 7 11 10  4  9 13 0 22 35 

Demand 30 20 15 10 20 22  

 

Test for degeneracy=m+n-1=6+4-1=9 

 

There is no degeneration since the number of 

allocations is 9. 

 

Total Cost: (5×15)+ (3×15)+ (9×10)+ (2×10)+ 

(7×15)+ (6×10)+ (5×7)+ (9×13)+ (0×22)=547 

 

 VOGEL’S APPROXIMATION METHOD 

Table 5 shows the solution to the unbalanced 

transportation problem (i.e. Table 1.) using Vogel’s 

Approximation method.  

 

Table 5. Vogel’s Approximation of Unbalanced 

Transportation Problem 
 D1 D2 D3 D4 D5 D6 Supply 

O1 5 1 15 8 7 5 0  15 

O2 3 25 9 6 7 8 0  25 

O3 4 5 2 5 7 12 6 5 20 0 42 

O4 7 11 103 4 10 9  0 22 35 

Demand 30 20 15 10 20 22  

 

Test for degeneracy=m+n-1=6+4-1=9 

 

There is no degeneration since the number of 

allocations is 9. 

 

Total Cost: (1×15)+ (3×25)+ (4×5)+ (2×5)+ 

(7×12)+ (10×3)+ (4×10)+ (5×20)+ (0×22)=374 

 

 ANT COLONY OPTIMISATION METHOD 

a. HEURISTIC FACTOR 

𝜂𝑖𝑗 =
1

𝐶𝑖𝑗
 

 
Table 6. Heuristic Table of Unbalanced 

Transportation Problem 
 D1 D2 D3 D4 D5 D6 Supply 

O1 0.2 1.0 0.125 0.143 0.2 0  15 

O2 0.333 0.111 0.167 0.143 0.125 0  25 

O3 0.25 0.5 0.143 0.167 0.2 0 42 

O4 0.143 0.091 0.1 0.25 0.111 0 35 

Demand 30 20 15 10 20 22  

 

Table 6 shows the heuristic factor favouring 

each path in the unbalanced transportation table. 

 

 

b. TAU*HEURISTICFACTOR 

[𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽 
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Table 7. Tau Heuristic Factor of Unbalanced 

Transportation Problem 
 D1 D2 D3 D4 D5 D6 Supply 

O1 0.1 0.5 0.063 0.072 0.1 0 15 

O2 0.167 0.056 0.084 0.072 0.063 0 25 

O3 0.125 0.25 0.072 0.084 0.1 0 42 

O4 0.072 0.046 0.05 0.125 0.056 0 35 

Demand 30 20 15 10 20 22  

 

Table 7 shows the tau heuristic factor of an 

unbalanced transportation table (i.e. tau is the 

concentration of pheromone level, which we 

assumed to be 0.5) 
 

c. PROBABILITY TABLE 

𝑃𝑖𝑗(𝑡) =
[𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽𝑚
𝑘=1

 

 

Table 8. Probability of Unbalanced Transportation 

Problem 
 

 

D1 D2 D3 D4 D5 D6 Supply 

O1 0.044 0.222        0.028 0.032 0.044    

15 

0 15 

O2 0.074     

25       

0.025 0.037 0.032 0.028 0 25 

03 0.055    

5 

0.111    

20 

0.032    

12 

0.037 0.044    

5 

0 42 

04 0.032 0.020 0.022    

3 

0.055    

10 

0.025     0  

22 

35 

Demand 30 20 15 10 20 22  

 

Table 8 shows the probability of each path and 

the allocation of both the demand and the supply. 

 
Table 9. ACO of Unbalanced Transportation 

Problem 
 D1 D2 D3 D4 D5 D6 Supply 

O1 5 1  8 7 5 15 0  15 

O2 3 25 9 6 7 8 0  25 

O3 4 5 2 20 7 12 6 5 5 0 42 

O4 7 11 103 4 10 9  0 22 35 

Demand 30 20 15 10 20 22  

 

Table 9 shows the solution when the table is 

returned to its original data of the unbalanced 

transportation problem in Table 1 with the 

allocations obtained from Table 8. 

 

Test for degeneracy=m+n-1=6+4-1=9 

 

There is no degeneration since the number of 

allocations is 9. 

 

Total Cost: (3×25)+ (4×5)+ (2×20)+ (7×12)+ 

(10×3)+ (4×10)+ (5×15)+ (5×5)+ (0×22)=389 

3.2  Balanced 
An example of Balanced Transportation is from 

Table 2, [19]. Below is the solution to the balanced 

transportation problem using the least cost, 

northwest corner, Vogel’s approximation, and ant 

colony methods. 

 

 

 LEAST-COST METHOD 

Table 10 shows the solution to the balanced 

transportation problem (i.e. Table 2) using the least 

cost method.  

 

Table 10. Least Cost of Balanced Transportation 

Problem 

 

Test for degeneracy=m+n-1=4+3-1=6 

 

There is no degeneration since the number of 

allocations is 6. 

 

Total Cost: (2×200)+ (1×250)+ (3×50)+ (5×150)+ 

(3×200)+ (2×150)=2450 

 

 

 NORTHWEST CORNER METHOD 

Table 11 shows the solution to the balanced 

transportation problem (i.e. Table 2) using the 

Northwest corner method.  

 

Table 11. Northwest Corner of Balanced 

Transportation Problem 

 

Test for degeneracy=m+n-1=4+3-1=6 

 

There is no degeneration since the number of 

allocations is 6. 

 

Total Cost: (3×200)+ (1×50)+ (6×250)+ (5×100)+ 

(3×250)+ (2×150)=3700 

 

 VOGEL’S APPROXIMATION METHOD 

Table 12 shows the solution to the balanced 

transportation problem (i.e. Table 2) using Vogel’s 

Approximation method.  

 

 

Table 12. Vogel’s Approximation of Balanced 

Transportation Problem 

 D1 D2 D3 D4 Supply 

O1 3       1      250 7 4 250 

O2 2      200       6       5     150 9 350 

03 8           3      50 3      200 2     150  400 

Demand 200 300 350 150  

 D1 D2 D3 D4 Supply 

O1 3     200 1     50 7 4 250 

O2 2             6      250 5    100 9 350 

03 8      3       3     250 2     150 400 

Demand 200 300 350 150  
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Test for degeneracy=m+n-1=4+3-1=6 

 

There is no degeneration since the number of 

allocations is 6. 

 

Total Cost: (2×200)+ (1×250)+ (3×50)+ (5×150)+ 

(3×200)+ (2×150)=2150 

 

 

 ANT COLONY OPTIMISATION METHOD 

c. HEURISTIC FACTOR 

𝜂𝑖𝑗 =
1

𝐶𝑖𝑗
 

 

Table 13. Heuristic Factor of Balanced 

Transportation Problem 
 D1 D2 D3 D4 Supply 

O1 0.333 1.0 0.143 0.25 250 

O2 0.5 0.167 0.2 0.111 350 

O3 0.125 0.333 0.333 0.5 400 

Demand 200 300 350 150  

 

Table 13 shows the heuristic factor favouring 

each path in the balanced transportation table. 
 

d. TAU*HEURISTICFACTOR 

[𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽 

 

 

Table 14. Tau Heuristic Factor of Balanced 

Transportation Problem 
 D1 D2 D3 D4 Supply 

O1 0.167 0.5 0.072 0.125 250 

O2 0.25 0.084 0.1 0.056 350 

O3 0.063 0.167 0.167 0.25 400 

Demand 200 300 350 150  

 

Table 14 shows the tau heuristic factor of a 

balanced transportation table (i.e. tau is the 

concentration of pheromone level, which we 

assumed to be 0.5) 

 

e. PROBABILITY TABLE 

𝑃𝑖𝑗(𝑡) =
[𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽

∑𝑚
𝑘=1 [𝜏𝑖𝑗(𝑡)]𝛼 × [𝜂𝑖𝑗]𝛽

 

 
Table 15. Probability of Balanced Transportation 

Problem 
 D1 D2 D3 D4 Supply 

O1 0.083 0.250    

50 

0.036  

200 

0.063 250/50/0 

O2 0.125   

200       

0.042 0.050   

150 

0.028 350/150/0 

03 0.031     0.083    

250 

0.083     0.125   

150 

400/250/0 

Demand 200/0 300/50/0 350/200/0 150/0  

 

Table 15 shows the probability of each path and 

the allocation of both the demand and the supply. 

 

Table 16. ACO of Balanced Transportation Problem 
 D1 D2 D3 D4 Supply 

O1 3 1     50 7    

200 

4 250 

O2 2       

200       

6 5    

150 

9 350 

03 8       3    

250 

3        2    150 400 

Demand 200 300 350 150  

 

Table 16 shows the solution when the table is 

returned to its original data of the balanced 

transportation problem in Table 2 with the 

allocations obtained from Table 15. 

 

Test for degeneracy=m+n-1=4+3-1=6 

 

There is no degeneration since the number of 

allocations is 6. 

 

Total Cost: (2×200)+ (1×50)+ (3×250)+ (7×200)+ 

(5×150)+ (2×150)=3650 

 

 

4  Conclusion 
This paper looked into swarm intelligence and used 

Ant Colony Optimisation (ACO) to find the initial 

basic feasible solution in a balanced and unbalanced 

transportation problem. It also compared ACO to 

other traditional methods (Least Cost, Northwest 

Corner, Vogel’s Approximation method) to find the 

initial basic feasible solution using online generated 

data. This paper showed that ACO can be used to 

find the Initial Basic feasible solution, which was 

applied data and gave the total cost for unbalanced 

and balanced transportation problems as 389 and 

3650, respectively. In contrast, the Least Cost 

method gave the total cost to be (472, 2450) for both 

unbalanced and balanced respectively; 

the Northwest Corner method gave the total cost to 

be (547, 3700) for both unbalanced and balanced 

respectively, Vogel’s Approximation method gave 

the total cost to be (374, 2150) for both unbalanced 

and balanced respectively. With the above data, 

Vogel’s Approximation still gave us the best result. 
In the transportation problem, Vogel's 

 D1 D2 D3 D4 Supply 

O1 3 1    250 7 4 250 

O2 2       

200 

6 5      150 9 350 

03 8       3      50 3      200 2    150 400 

Demand 200 300 350 10  
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Approximation Method (VAM) is well-known for 

identifying early feasible solutions since it 

frequently produces a near-ideal solution compared 

to other crucial techniques like the Least Cost 

Method or the Northwest Corner Rule. By analysing 

the penalty (difference) between the two lowest 

costs in each row and column, VAM considers the 

opportunity cost of not selecting the least expensive 

option, which is why it is still recommended. This 

leads to a more efficient allocation, frequently 

resulting in a lower total transportation cost than 

alternative heuristics. 
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