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Abstract: -  Every day, we generate enormous amounts of data from a wide range of personal devices. The 
rapid increase in data amount and velocity is pushing our limits to process and analyze them. Traditional 
machine learning and data analytics methods and algorithms use all historical data in the dataset to build their 
analyses and models. This may lead to processing and analyzing large amounts of historical data being 
computationally expensive and time-consuming, especially in real-time applications where speed is crucial. 
Furthermore, using all historical data may not account for changes in the models and dynamics underlying the 
data over time. This could lead to inaccurate forecasts or insights. Streaming analytics, on the other hand, 
processes each point of continuous data as it is received. It is more efficient than batch processing in certain 
cases. Real-time data processing using stream analytics allows organizations to make immediate and proactive 
decisions based on up-to-date information. This can be especially beneficial in time-sensitive industries, such as 
finance or logistics, where even a slight delay in data analysis can result in missed opportunities or costly errors. 
Additionally, stream analytics enables businesses to detect and respond to anomalies in real time, leading to 
enhanced operational efficiency and customer experiences. Statistically significant outliers are instances that don’t 
follow the general trend of the data. Datasets may contain outliers for several reasons, such as mistakes made 
during data collection or the presence of extremely high or low values. Because of the potential impact of outliers 
on analysis, it is worthwhile to carefully consider whether or not they should be included. This is useful for 
spotting inconsistencies or discrepancies, as well as determining which parts of the data need more in-depth 
analysis. This study discusses topics related to stream data analysis. These topics include a variety of 
frameworks for processing and analyzing streaming data, methods for detecting outliers, and human activity 
detection. 
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1 Introduction 
Remarkable developments all over the world have 
led to rapid technological growth. Many exciting 
concepts have emerged, such as the Internet of Things 
(IoT), one of the technologies behind many big data 
solutions, [1]. This has created new demands, such 
as high efficiency and real-time data processing. 
The challenges of processing and analyzing big data 
have led researchers to develop advanced algorithms 
and technologies that can handle large-scale and 
heterogeneous data in real time, [2]. The challenges 
of processing and analyzing big data include the 
overwhelming volume of data but also the variety and 
velocity at which it is generated. Traditional data 
processing techniques and tools are often inadequate 
to handle such massive and diverse datasets in real 
time. As a result, researchers have been working 

on developing parallel processing algorithms and 
technologies that can effectively extract insights and 
value from big data while maintaining high efficiency 
and accuracy, [3]. 

There are times when anomalous samples are 
more critical than normal ones, [4]. Detecting 
fraud in credit card transactions, machine fault 
diagnosis, and network intrusion detection are the 
most common examples. There are a number of 
factors that pose challenges for analysts to deal 
with. First, outlier detection requires storing infinitely 
massive amounts of data streams before processing, 
which results in high memory usage.  Second, 
the curse of dimensionality results in data sets 
having a high number of dimensions, making the 
calculation of distance between points less effective 
and meaningless, [5]. Thirdly, because there are no 
labeled data in unsupervised learning, the model 
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must take into account hidden patterns from the 
available data. Finally, most anomaly detection 
algorithms have difficulty detecting anomalies in 
unbalanced data. This is due to the fact that they are 
based on an awareness of the behavior of more 
common, normal samples. 

Stream data processing, however, presents 
challenges in terms of feature engineering and 
delivery to the machine learning model, which 
affects the model’s overall performance. The 
complexity of the data itself presents a challenge for 
processing stream data. The nature of data makes 
it difficult to comprehend since it is constantly 
changing and moving. The consequences of this are 
significant for feeding data into a machine-learning 

model, since each data point becomes less 
useful with time, [6]. It is essential to process each 
data point before the next one arrives to prevent 
delays as illustrated in Appendix in Figure 1 and 
Figure 2. 

Considering the speed and volume of data, 
low throughput, and high latency challenges affect 
computation quality and data value. Low throughput 
limits the amount of data the pipeline can receive, 
while high latency restricts its ability to process it. 
Further, when data messages are streamed, they may 
encounter various scenarios. For example, messages 
may be lost or sent more than once, with clients 
having to read them again. To properly address these 
scenarios, organizations must have a comprehensive 
data latency and throughput strategy, including proper 
data replication and caching techniques. 

A real time streaming pipeline for 
machine-learning models is challenging to set 
up. First, the lack of fault tolerance makes data 
delivery more likely to fail, which could cause 
data loss and stop the whole streaming pipeline 
process. Also, there is a lack of scalability, which 
means that the streaming pipeline will have to be 
redesigned every time there are more data producers 
or consumers. There is a chance that this could pose 
a burden and result in pipeline improvements being 
halted. The most critical problem with not being 
able to scale is not being able to decouple. This 
affects how long the pipeline lasts and how data 
flows between producers and consumers. 

In this paper, we will discuss a few 
interconnected areas: frameworks for processing 
and analyzing streaming data, methods for 
identifying anomalies, and human activity 
recognition using only a smartphone.  Figure 3 
(Appendix) provides an overview of the system 
implementation. This study is broken down into 
three sections. The first section of the paper focuses 
on the infrastructure and software for processing 

streaming data. In the second section, we’ll look at 
how various outlier detection algorithms deal with 
huge, multidimensional, and potentially infinite data 
streams. The final section of the study covers 
research into recognizing human activity using 
sensors embedded in mobile phones. 
 
 
2 Big Data Stream Processing and 

Analysis 
There has been a huge increase in open-source 
streaming framework availability recently.  As 
a result, deciding on the right framework for 
streaming data use cases might be confusing. 
Stream processing techniques offer distinct 
advantages and disadvantages. For example, 
window-based processing allows for efficient 
time-based aggregation but does not support the 
handling of out-of-order events. On the other hand, 
event-oriented processing offers flexibility but may 
require more complex logic for time-dependent 
aggregation. It is, therefore, a necessity to decide 
which method will be used depending on the specific 
requirements of the particular use case before 
choosing a stream processing technique. 

A majority of studies evaluated Apache Spark 
Streaming, Flink, and Storm, three of the most 
well-known stream processing engines. [7], 
developed a benchmarking application at Yahoo 
to simulate a real-world stream processing use 
case. Their study compares, evaluates, and analyzes 
respective engines. Additionally, [8] conducted an 
in-depth study to assess common stream processing 
frameworks. Each framework is analyzed in terms of 
performance, scalability, and resource utilization. 

Alternatively, [9] compares Spark and Storm 
frameworks to determine how they differ in latency. 
He was interested in how well these frameworks 
performed when executing a variety of tasks, such as 
“Word Count”. Due to the aggregation required for 
processing small logs, Storm can handle data much 
faster than Spark Streaming. Storm’s performance 
decreases linearly with increasing record sizes. In 
contrast, Spark streaming performed very well in 
this scenario. It was six times faster at processing 
1,000-byte records than Storm. 

A further discussion of Apache Flink is found in 
[7]. They used streaming windows to ingest data 
from Kafka, count and aggregate it for live analysis of 
advertising campaigns. Flow motor performance was 
evaluated for 30 minutes. Storm and Flink displayed 
similar latency characteristics while Spark was faster 
due to its micro-batching design. Spark Streaming 
provides an advantage over other frameworks due 
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to its ability to change batch sizes on the fly. 
Additionally, Storm failed to handle the data volume 
when it reached 135,000 events per second, whereas 
Spark did not experience any problems. 

Similarly, [10] discussed novel ways to meet the 
growing demand for non-batch processing needs and 
Hadoop’s incapacity to handle them. They concluded 
that Spark is a more efficient option for in-memory 
computing among the frameworks examined.  It 
is also a suitable alternative for handling real-time 
and streaming demands. Apache Spark was built 
to address MapReduce’s constraints, [11].  Spark 

[12] and Spark streaming [13] are key tools for 
building large data applications. Several studies 
have evaluated Spark’s performance across different 
workloads and benchmarks, [14]. 

Spark streaming was introduced in [15] as a 
dependable and high-throughput API for live data 
streams.  Spark focuses on making a single 
pass over the data utilizing data stream clustering. 

Further research into Spark’s potential to 
challenge MapReduce and Flink has been 
published. These works emphasize key points such 
as effective memory management, [16], [17], [18]. 

According to research such as [19], no single 
framework can handle all data kinds, sizes, and 
business models. The study found that Spark 
outperforms Flink in big graph processing by about 
1.7 times.  In contrast, Flink beats Spark by up 
to 1.5 times in scenarios such as batch and small 
graph workloads. As a result, it uses fewer resources 
and is easier to set up.  Other studies, such as 
[20] and [21], revealed that Apache Spark’s Stream 
outperformed Storm in terms of resource usage and 
peak throughput. This was verified by [7] that Storm 
struggled at high throughput.  Storm, on the 
otherhand, performed better in latency. 

Standard data mining techniques and machine 
learning models are challenging to apply to vast 
amounts of data at varying speeds, [22]. To meet this 
challenge, Apache Spark not only facilitates high-end 
data analytics and efficient general processing tasks 
but also allows machine learning algorithms. Spark 
has been a point of interest for various types of 
research where they use it as a large data stream 
processing engine to stream data in real-time in 
various fields. The results show that their system 
achieved exemplary performance and robustness, 
[23], [24], [25]. 

[26], proposed a study that divided the streaming 
pipeline into two stages (Reading and Processing) to 
analyze the impact of each stage on the end-to-end 
delay. The proposed study uses interconnects, a 
decoupling layer, to optimize the streaming pipeline 
by implementing a message queueing mechanism 

during the reading stage. Apache Kafka can 
considerably increase the overall performance of the 
streaming pipeline system. Furthermore, Apache 
Kafka is the most appropriate choice for employing 
Spark streaming as a data input phase. This is because 
of its dependability and compliance with Apache 
Spark streaming. Furthermore, it creates a separate 
queue for message delivery and guarantees correct 
sequencing. 

Apache Kafka was utilized in many stream 
processing applications as a message broker system. 
For instance, [27] implemented a study to model 
the design characteristics of distributed-based 
frameworks such as Spark. Apache Spark processes 
a tuple faster than Storm using an average flat 
incremental clustering algorithm. This is because it 
utilizes Kafka as a message broker, ensuring proper 
order and delivery of messages. 

Another study utilized Apache Kafka as a robust 
messaging broker system, [28]. The researchers built a 
real-time Twitter streaming and data analytics system. 
The framework is divided into three primary parts. 
Kafka is used as a data intake phase to extract data 
from Twitter and provide quick access to Kafka 
producers. The system analyzes and processes tweets 
in real time as possible. In contrast, Spark streaming 
was used as a stream processing engine throughout 
the processing step. At the end of the process, the data 
was visualized. Experiments have been conducted 
to evaluate Kafka’s performance with traditional 
message brokers, notably known as scalable and 
efficient implementations of Advanced Message 
Queuing Protocol (AMQP), such as RabbitMQ, [29]. 
According to the study’s findings, both systems 
can process messages with low latency. The 
Kafka protocol is better suited to applications that 
handle huge volumes of messages. Increasing 
Apache Kafka partitions can greatly boost throughput 
and producer/channel count. Besides, it increases 
RabbitMQ’s performance. 

[30], conducted a comparison of five message 
queueing techniques. The authors reported their 
findings using a replicable experimental setup and a 
defined comparison metric. The authors concluded 
the experimental analysis by demonstrating that 
RocketMQ has a shorter latency. Kafka has a higher 
throughput. According to [31], integrating Spark and 
Kafka can significantly reduce the time consumed and 
increase performance within streaming data analysis 
and processing applications. However, evaluating 
and recommending stream processing engines for 
streaming data with different use cases remains an 
ongoing research field. They are considering the 
massive demand for large data stream mining and 
processing platforms that integrate and use distributed 
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stream processing in a single open source. In addition, 
they want the ability to simultaneously apply machine 
learning techniques to the stream. Flink and Spark are 
cutting-edge distributed stream processing engines 
that provide these capabilities. However, more 
work is needed to integrate and extend analytical 
libraries within the same processing platform. For 
example, with all these huge advantages of Spark 
and this enormous ability to process data in real 
time, many machine learning algorithms still need to 
be supported on the platform within the structured 
streaming service. 

 
 

3 Outlier Detection 
In some contexts, outliers in data are more appealing 
than expected ones, so it is vital to recognize 
and identify them since they may contain critical 
information.  There is currently a lot of interest 
in identifying outliers among researchers. By 
understanding and addressing these outliers, 
researchers can improve the accuracy and reliability 
of their findings, leading to more robust and 
meaningful conclusions. 

Various studies provide a detailed analysis 
of state-of-the-art strategies for discovering 
outliers, dividing them into distinct approaches and 
categories, [32]. They were divided into statistical, 
distance, density, clustering, and ensemble methods. 
Furthermore, the authors investigated their primary 
strengths and limitations. 

[33] highlighted the significance of detecting 
outliers, especially in time series data. The authors 
organized the topic around distinct data types and 
provided multiple outlier definitions. They also 
briefly defined the associated processes and reviewed 
a variety of applications where these strategies 
have been successfully used. The statistics-based 
technique [34] creates conventional distribution 
models by analyzing historical data. It looks for data 
points that deviate from the distribution of other data 
points. Later, these data points would be labeled 
anomalies. Most models, however, are based on 
a single variable. As a result, detecting anomalies 
becomes difficult when monitoring parameters are 
multi-dimensional. Furthermore, the original data, 
which contains some noisy data that greatly affects 
the distribution model building, is used to generate 
these models, [35]. 

The distance-based technique [36] computes the 
distance between two data sets. Two points are 
deemed “neighbors” when their distance is less than 
a threshold value. Suppose a group of data points are 
less than a threshold value. In that situation, they will 
be classified as abnormal. However, this strategy is 

inappropriate for instances where the data distribution 
is multi-cluster, [37]. When an anomaly occurs, 
numerous continuous abnormal resource metric data 
arise and are grouped together as neighbors. This 
approach, however, needs help to identify them. 

Similarly, other studies like [38] employ 
windowing concepts and clustering algorithms 
to identify temporal data anomalies. Furthermore, to 
identify outliers in multivariate data, [39] applied an 
alternative model of One-Class SVM. It is, however, 
impossible to consider the method to be a practical 
approach for large-scale data due to two critical 
factors, space complexity and time complexity. 

IoT sensors create large amounts of data that 
must be processed. Due to the streaming nature of 
this data, it is becoming increasingly important to 
identify trends. [40], proposed an approach for 
dealing with such data. The high computing cost of 
this technique reveals opportunities to optimize the 
process. 

The majority of the previously outlined 
techniques have two key limitations.  They 
demand a lot of computations during training or 
are intended to detect/recognize typical system 
characteristics. This may lead to the conclusion that 
discovering outliers in these systems is just a result 
of mismatched classification procedures. When such 
factors are examined, more than the possible benefits 
of current approaches may be necessary to overcome 
their limits and application risks. This is because 
their detection abilities are the consequence of an 
algorithm devised and tailored for a purpose other 
than detecting anomalies. These techniques could 
have been developed for various uses, such as 
clustering and classification challenges. 

In light of the scenarios described above, an 
algorithm not using the density or distance function 
is needed to advance anomaly detection significantly. 
In addition to offering reduced computation costs, 
this technique should also be able to handle big 
and multi-dimensional datasets and be less complex 
in terms of time. The available offline anomaly 
detection algorithms and techniques, such as density- 
and distance-based, as well as statistical approaches, 
may be inefficient at finding outliers due to memory 
constraints that require a single pass through the 
whole data. They are computationally demanding 
and may encounter overfitting because they require 
numerous passes through the data. They must also 
evaluate the complete dataset to find anomalies, [41]. 
As a result, a cutting-edge method was developed 
that does not assume prior knowledge of the system’s 
underlying dynamics. It assumes that anomalous 
cases are few and distinct from the rest of the data. 
As a result, they are more susceptible to isolation 
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procedures. This limits the number of such instances 
and brings them closer to the decision tree’s root. 
In contrast, regular data items are more likely to be 
buried significantly deeper in the decision tree. 

[42] suggested a fundamentally revised anomaly 
detection strategy prioritizing anomalous isolation 
above regular instance identification. Isolation 
forests (IF) are a highly successful solution to spot 
abnormalities. Tree separates anomalies closer to the 
tree’s root than normal points using the few different 
characters of anomalies. IF have a low constant 
time complexity and minimal memory consumption, 
making them appropriate for large data sets. IF 
usually outperforms distance-based techniques with 
near-linear time complexity. Furthermore, it detects 
anomalies efficiently since it converges rapidly with 
a small ensemble size. 

The IF technique has earned a reputation due 
to its extraordinary effectiveness in a wide range 
of high-dimensional, complex pattern identification 
challenges. [43] conducted a comparative research 
on outlier detection methods. Three different time 
series models are tested on 14 synthetic and real data 
sets. According to the paper, IF is better suited 
than other methods since it is an effective approach 
to efficiently detecting outliers while demonstrating 
exceptional scalability.  It is memory efficient 
and can handle datasets of up to one million 
samples. [44] adopted IF for unmanned aerial 
vehicles. It was used in unsupervised learning. Using 
the Aero-Propulsion System Simulation dataset, 
the authors demonstrated the IF’s suitability for 
various engineering applications. It outperforms 
all other alternative unsupervised distance-based 
algorithms considering their capacity to handle 
massive datasets. In addition, it results in lower 
linear time and total computing costs. [45] 
conducted an actual industry case study with IF. 
This was linked to one of the critical processes 
in semiconductor manufacturing known as etching. 
IF has been compared with univariate chart-based 
and multi-dimensional angle-oriented approaches. 
The results revealed that IF performed with higher 
accuracy than other multi-dimensional techniques. 

[46] proposed a technique to detect credit card 
fraud with IF. They calculated various performance 
metrics such as accuracy, F1-score, ROC-score, and 
false positive rate of various approaches. During 
the experiment, IF proved to be very effective in 
detecting abnormalities in credit card transactions. 

[47] used Spark streaming as a distributed 
computing platform to create a streaming application 
for time series data. Similarly, IF was tested on 
additional high-dimensional data in the author’s 
implementation, [48]. The experiment was 

conducted using actual data acquired from eight 
separate CFM56-7B aero engines. A comparison of 
IF to other unsupervised anomaly detection 
algorithms revealed its scalability to high-
dimensional data. 

Another study [49] provided an anomaly 
detection solution based on an IF for streaming 
data, particularly time-series data.  The study 
used a sliding window approach to analyze four 
real-world datasets from the UCI repository. In 
streaming data applications, the proposed approach 
successfully locates outliers with great scalability. 
Several published studies, [50], [51], [52], [53] have 
compared IF to other distance-based outlier detection 
methods in terms of performance measures such as 
precision, accuracy, and AUC. Performance findings 
reveal that the isolation forest-based approach 
outperforms other algorithms. Figure 4 (Appendix) 
summarizes the most common anomaly detection 
methods. 

 
 

4 Human Activity Recognition 
Health care and smart home applications can benefit 
from solutions that recognize human activity. 
Various sensors have been used to identify human 
activity, including wearable LED lights, cameras, 
and cell phones, [54]. Several Human Activity 
Recognition (HAR) systems integrate accelerometers 
to distinguish daily activities, including standing, 
walking, sitting, jogging, and lying. [55], searched for 
repeated behaviors using accelerometer data created 
from recordings of 30 participants doing routine 
activities daily. They tried to identify and prevent 
older adults from falling into a smart environment. 
Figure 5 (Appendix) depicts the components of a 
typical HAR system. 

Human activity recognition tasks using wearable 
sensors have been examined in earlier studies. They 
indicated that wearable sensors could remarkably 
enhance human activity recognition accuracy, 
[56].  Some previous research has been applied 
to enhance recent wearable sensor-based HAR 
investigations. [57] developed a customized human 
activity recognition system. Using a multi-modal 
sensing device, they collected data on a variety of 
activities from a group of 28 volunteers ranging in 
gender, age, weight, and height. The data was then 
utilized to create a variety of hybrid activity models. 

[58] utilized a wearable device to capture 
acceleration data based on a data set consisting of 20 
computationally efficient features for human activity 
recognition. They achieved a 94% accuracy. In 
addition, [59] used three wearable accelerometers 
to gather data from 10 patients to track lower body 
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movements. A previous study, [60], presented eight 
activities; running, walking, standing, sit-ups, 
vacuuming, brushing teeth, stairs-down, and 
stairs-up.  Those activities were detected with 
only one triaxial accelerometer worn near the pelvis. 

Numerous studies have been conducted on 
the ability to use cellphones instead of wearable 
sensors to perform human activity identification 
tasks due to their high computing capabilities. 
Smartphones support several sensors, including 
gyroscopes and accelerometers. Moreover, its 
wireless connectivity capabilities make it valuable 
for recognizing and detecting human activity. Mobile 
devices incorporating built-in sensors have become 
a natural part of everyday life.  Consequently, 
they can be considered a promising platform for 
HAR applications, [61]. [62] presented an online 
user-independent human activity classification 
approach using statistical features that include global 
and valuable properties of the time series. [63] 
combined a smartwatch and a smartphone sensor to 
identify 13 daily human activities. 

Research shows that human activities can be 
accurately detected with a single accelerometer, based 
on earlier studies, [64]. A single accelerometer 
worn on the right waist achieved the highest 
recognition accuracy. [65] developed a sliding 
window approach to recognize physical activity for 
signal segmentation. A unified method is not 
available for identifying activities from sensor 
signals. Activity recognition can be achieved using 
a variety of algorithmic strategies. We want to 
examine and consider the processing power and 
time available based on the number of activities. 
Thus, depending on the approach used, the input to 
the HAR system’s learning algorithms may alter. 

Sensor signals are usually analyzed first to 
extract features before being sent to a classifier. 
These features are known as “handcrafted features” 
and represent raw signal data. The derived features 
from the original signal provide an appropriate 
description of the user’s activity. Then, machine 
learning algorithms are applied to them. The 
“handcrafted features” technique is recommended in 
many applications since it improves classification 
accuracy. [66] analyzed many statistical parameters, 
including standard deviation, binned distribution, 
average, and duration between peaks. Furthermore, 
several classifiers were built based on these collected 
features to determine which behavior corresponds to 
which features.  [67] combined classifiers used by 

[66] using similar features and ensemble 
techniques to improve their findings. 

Some studies extract features directly from the 
time-varying acceleration signal, [68]. The authors 

developed an independent human position activity 
identification system by extracting time-domain 
elements from raw data. [60] presented a study 
on identifying time-domain attributes. The authors 
then selected certain features, including standard 
deviation, mean, and energy. To classify the 
accelerometer signals, a classification algorithm 
was used, with the selected features as input. [58] 
suggested a method to identify human physical 
activities using a time-domain-based feature 
extraction methodology. The most acceptable 
features were investigated, including the mean value 
of min and max sums and root mean squared. With 
random forest as a classifier, activities were classified 
more accurately. 

Several other researchers have worked on 
obtaining frequency-domain features from frequency 
analysis, [69], [70]. Moreover, [71] introduced an 
ensemble empirical mode decomposition (EEMD) 
based features extraction method to classify triaxial 
accelerometer signals for activity recognition. The 
Fast Fourier Transform (FFT) and Discrete Fourier 
Transform (DCT) coefficients are also used in 
various research studies, [64]. These methods can 
be considered frequency-based features. In addition, 
other features that have been utilized in experiments 
and yielded successful results include Principal 
Component Analysis (PCA) [72] and Haar filters 
[73]. 

An overview of human activity recognition 
research is shown in Figure 6 (Appendix). There 
are several factors to consider when planning to 
implement a project related to this area. A 
general description of these criteria includes types 
of recognition, approaches used, algorithms applied, 
data sources, and application areas. 

 
 

5 Conclusion 
Stream data is constantly generated by thousands 
of sources and sent simultaneously to the ingestion 
system in small sizes. However, processing and 
analyzing stream data poses several challenges due 
to its high velocity and volume. Real-time 
processing is required to handle the continuous flow 
of data, and algorithms need to be efficient enough 
to detect anomalies in real time without causing 
delays or bottlenecks in the system. Additionally, 
since stream data is constantly evolving, 
maintaining anomaly detection models’ accuracy 
and relevance becomes a continuous and dynamic 
task. As a result, effective anomaly detection 
systems are required for fraud and cyberattack 
detection systems that need quick responses. For 
effective anomaly detection, it is critical to apply 
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big data analysis techniques like map-reduce. In 
contrast to previous review articles, we concentrated 
on big data tools and frameworks for processing and 
analyzing streaming data to recognize human 
activities. Three different architectures can be used 
for applications dealing with static, stream, or time-
series data. Nevertheless, since not all data can be 
stored in memory, stream data analysis might pose 
particular difficulties when finding outliers. Outlier 
detection methods are appealing in stream data 
because they allow anomalies to be discovered in 
real time. This is especially useful for applications 
that need to react quickly to changes in data or 
find things that don’t make sense automatically. 
Furthermore, the methods can be applied to large 
datasets and scaled up. Therefore, they are ideal for 
big data applications. They can also detect outliers 
even when the data is noisy or partially complete. 
Lastly, they can reveal patterns and trends in data 
that might otherwise remain hidden. Stream data 
can be analyzed and visualized with these methods, 
as well as interpreted based on their results. 
 
 
Declaration of Generative AI and AI-assisted 

Technologies in the Writing Process 

During the preparation of this work the authors used 
Wordtune for language editing. After using this 
service, the authors reviewed and edited the content 
as needed and take full responsibility for the content 
of the publication. 
 
 
References: 
[1] Juarizo, Charles G and Rogelio, Jayson P 

and Balbin, Jessie R and Dadios, Elmer P, 
“IoT-based end-to-end monitoring of logistics 
and tracking of truck vehicles using Arduino 
microcontroller”, In Proceedings of The 

World Congress on Engineering, pp. 3–5, 
2019. 

[2] Zhang, Huajie and Song, Lei and Zhang, Sen, 
“Parallel Clustering Optimization Algorithm 
Based on MapReduce in Big Data Mining”, 
IAENG International Journal of Applied 

Mathematics, vol. 53, no. 1, 2023. 
[3] Gazder, Uneb, “Studying Patterns of Rainfall 

and Topographical Clustering for Kingdom 
of Bahrain: An Application of Big Data”, 
Engineering World, vol. 6, pp. 29–34, 2024, 
doi: 10.37394/232025.2024.6.5. 

[4] Sathishkumar, E. N. and Thangavel, K., “A 
Novel Approach for Outlier Detection Using 
Rough Entropy”, WSEAS Transactions on 

Computers, vol. 14, pp. 296–306, 2015. 

[5] Aggarwal, Charu C. and Hinneburg, 
Alexander and Keim, Daniel A., “On the 
surprising behavior of distance metrics in 
high dimensional space”, In Database 

Theory—ICDT, pp. 420–434, 2001, doi: 
10.1007/3-540-44503-X_27. 

[6] Zaharia, Matei and Das, Tathagata and Li, 
Haoyuan and Hunter, Timothy and Shenker, 
Scott and Stoica, Ion, “Discretized streams: 
Fault-tolerant streaming computation at 
scale”, In Proceedings of the Twenty-fourth 

ACM Symposium on Operating Systems 

Principles, pp. 423–438, 2013, doi: 
10.1145/2517349.2522737. 

[7] Chintapalli, Sanket and Dagit, Derek and 
Evans, Bobby and Farivar, Reza and Graves, 
Thomas and Holderbaugh, Mark and Liu, 
Zhuo and Nusbaum, Kyle and Patil, 
Kishorkumar and Peng, Boyang Jerry and 
others, “Benchmarking streaming computation 
engines: Storm, flink and spark streaming”, In 

IEEE International Parallel and Distributed 

Processing Symposium Workshops (IPDPSW), 
pp. 1789–1792, 2016, doi: 
10.1109/ipdpsw.2016.138. 

[8] Wissem Inoubli and Sabeur Aridhi and 
Haithem Mezni and Alexander Jung, “Big 
Data Frameworks: A Comparative Study”, 
CoRR, vol. abs/1610.09962, 2016, doi: 
10.48550/arXiv.1610.09962. 

[9] Córdova, Patricio, “Analysis of real time 
stream processing systems considering 
latency”, University of Toronto patricio@ 
cs. toronto. edu, 2015, [Online]. 
https://www.datascienceassn.org/sites/defau
lt/files/Analysis%20of%20Real%20Time%
20Stream%20Processing%20Systems%20C
onsidering%20Latency.pdf (Accessed Date: 
October 4, 2024). 

[10] Shahrivari, Saeed, “Beyond batch 
processing: towards real-time and streaming 
big data”, Computers, vol. 3, no. 4, pp. 117–
129, 2014, doi: 
10.3390/COMPUTERS3040117. 

[11] Quinto, Butch, “Next-Generation Machine 
Learning with Spark: Covers XGBoost, 
LightGBM, Spark NLP, Distributed Deep 
Learning with Keras, and More”, 2020, 
Apress, doi: 10.1007/978-1-4842-5669-5_1. 

[12] APACHE Spark, “Spark Research”, 
[Online].
 https://spark.apache.org/research.html 
(Accessed Date: October 10, 2024). 

[13] Anonymous, “Spark Structured Streaming”, 
[Online]. https://spark.apache.org/streaming/ 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 110 Volume 22, 2025

https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
file:///C:/Users/Bülent%20Tuğrul/Downloads/%09https:/spark.apache.org/research.html
https://spark.apache.org/streaming/


(Accessed Date: October 10, 2024). 
[14] Xiao, Wen and Hu, Juan, “SWEclat: a 

frequent itemset mining algorithm over 
streaming data using Spark Streaming”, 
The  Journal  of  Supercomputing,  vol. 
76,  no. 10,  pp. 7619–7634,  2020,  doi: 
10.1007/s11227-020-03190-5. 

[15] Ghesmoune, Mohammed and Lebbah, 
Mustapha and Azzag, Hanene, “Micro-
batching growing neural gas for clustering 
data streams using spark streaming”, 
Procedia Computer Science, vol. 53, pp. 
158–166, 2015, doi: 
10.1016/j.procs.2015.07.290. 

[16] Awan, Ahsan Javed and Brorsson, Mats and 
Vlassov, Vladimir and Ayguade, Eduard, 
“How data volume affects spark based data 
analytics on a scale-up server”, In Big Data 

Benchmarks, Performance Optimization, 

and Emerging Hardware, pp. 81–92, 2015, 
doi: 10.1007/978-3-319-29006-5_7. 

[17] Veiga, Jorge and Expósito, Roberto R and 
Pardo, Xoán C and Taboada, Guillermo L 
and Tourifio, Juan, “Performance evaluation 
of big data frameworks for large-scale data 
analytics”, In IEEE International 

Conference on Big Data, pp. 424–431, 
2016, doi: 10.1109/BigData.2016.7840633. 

[18] Shi, Juwei and Qiu, Yunjie and Minhas, Umar 
Farooq and Jiao, Limei and Wang, Chen and 
Reinwald, Berthold and Özcan, Fatma, “Clash 
of the titans: Mapreduce vs. spark for large 
scale data analytics”, Proceedings of the 

VLDB Endowment, vol. 8, no. 13, pp. 
2110–2121, 2015, doi: 
10.14778/2831360.2831365. 

[19] Marcu, Ovidiu-Cristian and Costan, 
Alexandru and Antoniu, Gabriel and Pérez-
Hernández, María S, “Spark versus flink: 
Understanding performance in big data 
analytics frameworks”, In IEEE International 

Conference on Cluster Computing 

(CLUSTER), pp. 433–442, 2016, doi: 
10.1109/CLUSTER.2016.22. 

[20] Lu, Ruirui and Wu, Gang and Xie, Bin 
and Hu, Jingtong, “Stream bench: Towards 
benchmarking modern distributed stream 
computing frameworks”, In IEEE/ACM 7th 

International Conference on Utility and 

Cloud Computing, pp. 69–78, 2014, doi: 
10.1109/UCC.2014.15. 

[21] Qian, Shilei and Wu, Gang and Huang, 
Jie and Das, Tathagata, “Benchmarking 
modern distributed streaming platforms”, In 

IEEE International Conference on Industrial 

Technology (ICIT), pp. 592–598, 2016, doi: 
10.1109/ICIT.2016.7474816. 

[22] Attigeri, Girija and Pai MM, Manohara and 
Pai, Radhika M, “Supervised Models for 
Loan Fraud Analysis using Big Data 
Approach”, Engineering Letters, vol. 29, no. 
4, 2021. 

[23] Nair, Lekha R and Shetty, Sujala D and 
Shetty, Siddhanth D, “Applying spark based 
machine learning model on streaming big data 
for health status prediction”, Computers & 

Electrical Engineering, vol. 65, pp. 393–399, 
2018, doi: 
10.1016/j.compeleceng.2017.03.009. 

[24] Ed-daoudy, Abderrahmane and Maalmi, 
Khalil, “Application of machine learning 
model on streaming health data event in 
real-time to predict health status using 
spark”, In International Symposium on 

Advanced Electrical and Communication 

Technologies (ISAECT), pp. 1–4, 2018, doi: 
10.1109/ISAECT.2018.8618860. 

[25] Alnafessah, Ahmad and Casale, Giuliano, 
“Artificial neural networks based techniques 
for anomaly detection in Apache Spark”, 
Cluster Computing, vol. 23, no. 2, pp. 1345–
1360, 2020, doi: 10.1007/s10586-019-02998-
y. 

[26] Javed, M Haseeb and Lu, Xiaoyi and Panda, 
Dhabaleswar K, “Characterization of big 
data stream processing pipeline: a case study 
using Flink and Kafka”, In Proceedings of the 

Fourth IEEE/ACM International Conference 

on Big Data Computing,  Applications 

and Technologies, pp. 1–10, 2017, doi: 
10.1145/3148055.3148068. 

[27] Solaimani, Mohiuddin and Iftekhar, 
Mohammed and Khan, Latifur and 
Thuraisingham, Bhavani and Ingram, Joey 
Burton, “Spark-based anomaly detection 
over multi-source VMware performance 
data in real-time”, In IEEE Symposium 

on Computational Intelligence in Cyber 

Security (CICS), pp. 1–8, 2014, doi: 
10.1109/CICYBS.2014.7013369. 

[28] Yadranjiaghdam, Babak and Yasrobi, 
Seyedfaraz and Tabrizi, Nasseh, 
“Developing a  real-time  data  
analytics  framework for twitter streaming 
data”, In IEEE International Congress on 

Big Data (BigData Congress), pp. 329–
336, 2017, doi: 
10.1109/BigDataCongress.2017.49. 

[29] Dobbelaere, Philippe and Esmaili, Kyumars 
Sheykh, “Kafka versus RabbitMQ: A 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 111 Volume 22, 2025



comparative study of two industry reference 
publish/subscribe implementations: Industry 
Paper”, In Proceedings of the 11th ACM 

International Conference on Distributed 

and Event-based Systems, pp. 227–238, 
2017, doi: 10.1145/3093742.3093908. 

[30] Fu, Guo and Zhang, Yanfeng and Yu, Ge, 
“A fair comparison of message queuing 
systems”, IEEE Access, vol. 9, pp. 421–432, 
2020, doi: 10.1109/ACCESS.2020.3046503. 

[31] Tun, May Thet and Nyaung, Dim En and 
Phyu, Myat Pwint, “Performance 
evaluation of intrusion detection streaming 
transactions using apache kafka and 
spark streaming”, In International 

Conference on Advanced Information 

Technologies (ICAIT), pp. 25–30, 2019, doi: 
10.1109/AITC.2019.8920960. 

[32] Wang, Hongzhi and Bah, Mohamed Jaward 
and Hammad, Mohamed, “Progress in 
outlier detection techniques: A survey”, 
IEEE Access, vol. 7, pp. 107964–108000, 
2019, doi: 10.1109/ACCESS.2019.2932769. 

[33] Gupta, Manish and Gao, Jing and Aggarwal, 
Charu C and Han, Jiawei, “Outlier detection 
for temporal data: A survey”, IEEE 

Transactions on Knowledge and data 

Engineering, vol. 26, no.  9, pp.  2250–
2267,  2013,  doi: 10.1109/TKDE.2013.184. 

[34] Chandola, Varun and Banerjee, Arindam 
and Kumar, Vipin, “Anomaly 
detection: A survey”, ACM Computing 

Surveys (CSUR), vol. 41, no. 3, pp. 1–
58, 2009, doi: 10.1145/1541880.1541882. 

[35] Khoa, Nguyen Lu Dang and Chawla, Sanjay, 
“Robust outlier detection using commute time 
and eigenspace embedding”, In Pacific-Asia 

Conference on Knowledge Discovery and 

Data Mining, pp. 422–434, 2010, doi: 
10.1007/978-3-642-13672-6_41. 

[36] Ramaswamy, Sridhar and Rastogi, Rajeev 
and Shim, Kyuseok, “Efficient algorithms 
for  mining  outliers  from  large  data 
sets”, In Proceedings of the 2000 ACM 

SIGMOD International Conference on 

Management of Data, pp. 427–438, 2000, 
doi: 10.1145/342009.335437. 

[37] Angiulli, Fabrizio and Basta, Stefano and 
Pizzuti, Clara, “Distance-based detection and 
prediction of outliers”, IEEE Transactions 

on Knowledge and Data Engineering, 
vol. 18, no. 2, pp. 145–160, 2005, doi: 
10.1109/TKDE.2006.29. 

[38] Khaleghi, Azedeh and Ryabko, Daniil and 
Mari, Jeremie and Preux, Philippe, 

“Consistent algorithms for clustering time 
series”, Journal of Machine Learning 

Research, vol. 17, no. 3, pp. 1–32, 2016. 
[39] Khan, Muhammad Aamir and Khan, Aunsia 

and Khan, Muhammad Nasir and Anwar, 
Sajid, “A novel learning method to classify 
data streams in the internet of things”, In 

National Software Engineering Conference, 
pp. 61–66, 2014, doi: 
10.1109/NSEC.2014.6998242. 

[40] Giannoni, Federico and Mancini, Marco and 
Marinelli, Federico, “Anomaly detection 
models for IoT time series data”, arXiv 

preprint arXiv:1812.00890, 2018, doi: 
10.48550/arXiv.1812.00890. 

[41] Aggarwal, Charu C, “An introduction to 
outlier analysis”, In Outlier Analysis, pp. 1–
34, 2017, Springer, doi: 10.1007/978-3-319-
47578-3_1. 

[42] Liu, Fei Tony and Ting, Kai Ming and Zhou, 
Zhi-Hua, “Isolation forest”, In Eighth IEEE 

International Conference on Data Mining, 
pp. 413–422, 2008, doi: 
10.1109/ICDM.2008.17. 

[43] Domingues, Rémi and Filippone, Maurizio 
and Michiardi, Pietro and Zouaoui, Jihane, 
“A comparative evaluation of outlier 
detection algorithms: Experiments and 
analyses”, Pattern Recognition, vol. 74, pp. 
406–421, 2018, doi: 
10.1016/j.patcog.2017.09.037. 

[44] Khan, Samir and Liew, Chun Fui and 
Yairi, Takehisa and McWilliam, Richard, 
“Unsupervised anomaly detection in 
unmanned aerial vehicles”, Applied Soft 

Computing, vol. 83, pp. 105650, 2019, doi: 
10.1016/j.asoc.2019.105650. 

[45] Susto, Gian Antonio and Beghi, Alessandro 
and McLoone, Seán, “Anomaly detection 
through on-line isolation forest: An 
application to plasma etching”, In 28th 

Annual SEMI Advanced Semiconductor 

Manufacturing Conference (ASMC), pp. 
89–94, 2017, doi: 
10.1109/ASMC.2017.7969205. 

[46] Ounacer, Soumaya and El Bour, Hicham 
Ait and Oubrahim, Younes and Ghoumari, 
Mohamed Yassine and Azzouazi, 
Mohamed, “Using Isolation Forest in 
anomaly detection: the case of credit card 
transactions”, Periodicals of Engineering 

and Natural Sciences (PEN), vol. 6, no. 2, 
pp. 394–400, 2018. 

[47] Weng, Yu and Liu, Lei, “A collective 
anomaly detection approach for 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 112 Volume 22, 2025



multidimensional streams in mobile service 
security”, IEEE Access, vol. 7, pp. 49157–
49168, 2019, doi: 
10.1109/ACCESS.2019.2909750. 

[48] Zhong, Shisheng and Fu, Song and Lin, Lin 
and Fu, Xuyun and Cui, Zhiquan and Wang, 
Rui, “A novel unsupervised anomaly 
detection for gas turbine using isolation 
forest”, In IEEE International Conference 

on Prognostics and Health Management 

(ICPHM), pp. 1–6, 2019, doi: 
10.1109/ICPHM.2019.8819409. 

[49] Ding, Zhiguo and Fei, Minrui, “An anomaly 
detection approach based on isolation forest 
algorithm for streaming data using sliding 
window”,  IFAC Proceedings Volumes, 
vol. 46, no. 20, pp. 12–17, 2013, doi: 
10.3182/20130902-3-CN-3020.00044. 

[50] Jain, Prarthi and Jain, Seemandhar and 
Zaïane, Osmar R and Srivastava, Abhishek, 
“Anomaly detection in resource constrained 
environments with streaming data”, IEEE 

Transactions on Emerging Topics in 

Computational Intelligence, vol. 6, no. 3, pp. 
649–659, 2021, doi: 
10.1109/TETCI.2021.3070660. 

[51] Fan, Linchang and Ma, Jinqiang and Tian, 
Junjing and Li, Tonghan and Wang, Hao, 
“Comparative Study of Isolation Forest and 
LOF algorithm in anomaly detection of data 
mining”, In International Conference on 

Big Data, Artificial Intelligence and Risk 

Management (ICBAR), pp. 1–5, 2021, doi: 
10.1109/ICSSIT53264.2022.9716541. 

[52] Zadafiya, Narendra and Karasariya, Jenish 
and Kanani, Parthkumar and Nayak, Amit, 
“Detecting Credit Card Frauds Using 
Isolation Forest And Local Outlier Factor-
Analytical Insights”, In 4th International 

Conference on Smart Systems and Inventive 

Technology (ICSSIT), pp. 1588–1594, 2022. 
[53] Vamsi, P Raghu and Chahuan, Anjali, 

“Machine learning based hybrid model for 
fault detection in wireless sensors data”, EAI 

Endorsed Transactions on Scalable 

Information Systems, vol. 7, no. 24, pp. e6–e6, 
2020, doi: 10.4108/eai.13-7-2018.161368. 

[54] Shahrim, Khairunnisa Ahmad and Abd 
Rahman, Abdul Hadi and Goudarzi, 
Shidrokh, “Hazardous Human Activity 
Recognition in Hospital Environment Using 
Deep Learning”, IAENG International 

Journal of Applied Mathematics, vol. 52, no. 
3, 2022. 

[55] Anguita, Davide and Ghio, Alessandro and 

Oneto, Luca and Parra Perez, Xavier and 
Reyes Ortiz, Jorge Luis, “A public domain 
dataset for human activity recognition using 
smartphones”, In Proceedings of the 21th 

International European Symposium on 

Artificial Neural Networks, Computational 

Intelligence and Machine Learning, pp. 437–
442, 2013. 

[56] Gyllensten, Illapha Cuba and Bonomi, 
Alberto G, “Identifying types of physical 
activity with a single accelerometer: 
evaluating laboratory-trained algorithms in 
daily life”, IEEE Transactions on Biomedical 

Engineering, vol. 58, no. 9, pp. 2656–2663, 
2011, doi: 10.1109/TBME.2011.2160723. 

[57] Hong, Jin-Hyuk and Ramos, Julian and 
Dey, Anind K, “Toward personalized 
activity   recognition   systems   
with a semipopulation approach”, IEEE 

Transactions on Human-Machine Systems, 
vol. 46, no. 1, pp. 101–112, 2015, doi: 
10.1109/THMS.2015.2489688. 

[58] Casale, Pierluigi and Pujol, Oriol and Radeva, 
Petia, “Human activity recognition from 
accelerometer data using a wearable device”, 
In Iberian Conference on Pattern Recognition 

and Image Analysis, pp. 289–296, 2011, doi: 
10.1007/978-3-642-21257-4_36. 

[59] Krishnan, Narayanan C and Colbry, Dirk and 
Juillard, Colin and Panchanathan, 
Sethuraman, “Real time human activity 
recognition using tri-axial accelerometers”, 
In Sensors, Signals and Information 

Processig Workshop, vol. 2008, pp. 3337–
3340, 2008. 

[60] Ravi, Nishkam and Dandekar, Nikhil and 
Mysore, Preetham and Littman, Michael L, 
“Activity recognition from accelerometer 
data”, In Proceedings of the 17th 

Conference on Innovative Applications of 

Artificial Intelligence, pp. 1541–1546, 2005. 
[61] bin Abdullah, Mohd Fikri Azli and Negara, 

Ali Fahmi Perwira and Sayeed, Md Shohel 
and Choi, Deok-Jai and Muthu, Kalaiarasi 
Sonai, “Classification algorithms in human 
activity recognition using smartphones”, 
International Journal of Biomedical and 

Biological Engineering, vol. 6, no. 8, pp. 
362–369, 2012. 

[62] Ignatov, Andrey, “Real-time human activity 
recognition from accelerometer data using 
Convolutional Neural Networks”, Applied 

Soft Computing, vol. 62, pp. 915–922, 2018, 
doi: 10.1016/j.asoc.2017.09.027. 

[63] Shoaib, Muhammad and Bosch, Stephan 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 113 Volume 22, 2025



and Scholten, Hans and Havinga, Paul JM 
and Incel, Ozlem Durmaz, “Towards 
detection of bad habits by fusing 
smartphone and smartwatch sensors”, In 

IEEE International Conference on 

Pervasive Computing and Communication 

Workshops (PerCom Workshops), pp. 591–
596, 2015, doi: 
10.1109/PERCOMW.2015.7134104. 

[64] Xue, Yang and Jin, Lianwen, “A naturalistic 
3D acceleration-based  activity  dataset 
& benchmark evaluations”, In IEEE 

International Conference on Systems, Man 

and Cybernetics, pp. 4081–4085, 2010, doi: 
10.1109/ICSMC.2010.5641790. 

[65] Noor, Mohd Halim Mohd and Salcic, Zoran 
and Kevin, I and Wang, Kai, “Adaptive 
sliding window segmentation for physical 
activity recognition using a single tri-axial 
accelerometer”, Pervasive and Mobile 

Computing, vol. 38, pp. 41–59, 2017, doi: 
10.1016/j.pmcj.2016.09.009. 

[66] Kwapisz, Jennifer R and Weiss, Gary M and 
Moore, Samuel A, “Activity recognition 
using cell phone accelerometers”, ACM 

SigKDD Explorations Newsletter, vol. 12, 
no. 2, pp. 74–82, 2011, doi: 
10.1145/1964897.1964918. 

[67] Catal, Cagatay and Tufekci, Selin and Pirmit, 
Elif and Kocabag, Guner, “On the use of 
ensemble of classifiers for accelerometer-
based activity recognition”, Applied Soft 

Computing, vol. 37, pp. 1018–1022, 2015, 
doi: 10.1016/j.asoc.2015.01.025. 

[68] Torres-Huitzil, Cesar and Nuno-Maganda, 
Marco, “Robust smartphone-based human 
activity recognition using a tri-axial 
accelerometer”, In IEEE 6th Latin 

American Symposium on Circuits & 

Systems (Lascas), pp. 1–4, 2015, doi: 
10.1109/LASCAS.2015.7250435. 

[69] Wang, Changhai and Zhang, JianZhong 
and Wang, Zhicheng and Wang, Jian, 
“Position-independent activity recognition 
model for smartphone based on frequency 
domain algorithm”, In Proceedings of 3rd 

International Conference on Computer 

Science and Network Technology, pp. 396–
399, 2013, doi: 
10.1109/ICCSNT.2013.6967138. 

[70] Sun, Lin and Zhang, Daqing and Li, Bin and 
Guo, Bin and Li, Shijian, “Activity 
recognition on an accelerometer embedded 
mobile phone with varying positions and 
orientations”, In International Conference 

on Ubiquitous Intelligence and Computing, 
pp. 548–562, 2010, doi: 0.1007/978-3-642-
16355-5_42. 

[71] Wang, Zhelong and Wu, Donghui and 
Chen, Jianming and Ghoneim, Ahmed 
and Hossain, Mohammad Anwar, “A 
triaxial accelerometer-based human activity 
recognition via EEMD-based features and 
game-theory-based feature selection”, IEEE 

Sensors Journal, vol. 16, no. 9, pp. 3198–
3207, 2016, doi: 10.1109/JSEN.2016.2519679. 

[72] Fu, Zhongzheng and He, Xinrun and Wang, 
Enkai and Huo, Jun and Huang, Jian and 
Wu, Dongrui, “Personalized human activity 
recognition based on integrated wearable 
sensor and transfer learning”, Sensors, vol. 21, 
no. 3, pp. 885, 2021, doi: 10.3390/s21030885. 

[73] Hanai, Yuya and Nishimura, Jun and 
Kuroda,  Tadahiro,  “Haar-Like Filtering 
for Human Activity Recognition Using 
3D Accelerometer”, In 13th Digital Signal 

Processing Workshop and 5th IEEE Signal 

Processing Education Workshop, pp. 675-
678, 2009, doi: 
10.1109/DSP.2009.4786008. 

 
 
 

Contribution of individual authors to the 

creation of a scientific article (ghostwriting 

policy) 

In this study, all authors contributed equally, from 
formulation of the problem to solution and analysis. 
Follow: www.wseas.org/multimedia/contributor-
role- instruction.pdf 
 
Sources of funding for research presented in a 

scientific article or scientific article itself 

The authors did not receive support from any 
organization for the submitted work. 
 
Conflict of Interest 

The authors have no conflicts of interest to declare 
that are relevant to the content of this article 
 
Creative Commons Attribution License 4.0 

(Attribution 4.0 International , CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en_
US 
 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 114 Volume 22, 2025

http://www.wseas.org/multimedia/contributor-role-
http://www.wseas.org/multimedia/contributor-role-
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US


APPENDIX 

 

 
Fig. 1: Stream processing 

 
 

 
Fig. 2: Data transformation and feature engineering 

 
 

 
Fig. 3: An overview of the system implementation 
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Fig. 4: A comparison of the most common anomaly detection methods 

 
 

 
Fig. 5: Human activity recognition framework design 
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Fig. 6: Human activity recognition framework design 
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