
Stream Data Analysis and Processing Frameworks for Detecting

Outliers in Human Activities: A Review

MOHAMMED SABHA, BULENT TUGRUL*

Department of Computer Engineering,
Ankara University, Golbasi, Ankara,

TURKEY

*Corresponding Author

Abstract: - Every day, we generate enormous amounts of data from a wide range of personal devices. The
rapid increase in data amount and velocity is pushing our limits to process and analyze them. Traditional
machine learning and data analytics methods and algorithms use all historical data in the dataset to build their
analyses and models. This may lead to processing and analyzing large amounts of historical data being
computationally expensive and time-consuming, especially in real-time applications where speed is crucial.
Furthermore, using all historical data may not account for changes in the models and dynamics underlying the
data over time. This could lead to inaccurate forecasts or insights. Streaming analytics, on the other hand,
processes each point of continuous data as it is received. It is more efficient than batch processing in certain
cases. Real-time data processing using stream analytics allows organizations to make immediate and proactive
decisions based on up-to-date information. This can be especially beneficial in time-sensitive industries, such as
finance or logistics, where even a slight delay in data analysis can result in missed opportunities or costly errors.
Additionally, stream analytics enables businesses to detect and respond to anomalies in real time, leading to
enhanced operational efficiency and customer experiences. Statistically significant outliers are instances that don’t
follow the general trend of the data. Datasets may contain outliers for several reasons, such as mistakes made
during data collection or the presence of extremely high or low values. Because of the potential impact of outliers
on analysis, it is worthwhile to carefully consider whether or not they should be included. This is useful for
spotting inconsistencies or discrepancies, as well as determining which parts of the data need more in-depth
analysis. This study discusses topics related to stream data analysis. These topics include a variety of
frameworks for processing and analyzing streaming data, methods for detecting outliers, and human activity
detection.

Key-Words: - big data, human activity recognition, outlier detection, stream data.

Received: April 15, 2024. Revised: November 11, 2024. Accepted: December 13, 2024. Published: January 10, 2025.

1 Introduction
Remarkable developments all over the world have
led to rapid technological growth. Many exciting
concepts have emerged, such as the Internet of Things
(IoT), one of the technologies behind many big data
solutions, [1]. This has created new demands, such
as high efficiency and real-time data processing.
The challenges of processing and analyzing big data
have led researchers to develop advanced algorithms
and technologies that can handle large-scale and
heterogeneous data in real time, [2]. The challenges
of processing and analyzing big data include the
overwhelming volume of data but also the variety and
velocity at which it is generated. Traditional data
processing techniques and tools are often inadequate
to handle such massive and diverse datasets in real
time. As a result, researchers have been working

on developing parallel processing algorithms and
technologies that can effectively extract insights and
value from big data while maintaining high efficiency
and accuracy, [3].

There are times when anomalous samples are
more critical than normal ones, [4]. Detecting
fraud in credit card transactions, machine fault
diagnosis, and network intrusion detection are the
most common examples. There are a number of
factors that pose challenges for analysts to deal
with. First, outlier detection requires storing infinitely
massive amounts of data streams before processing,
which results in high memory usage. Second,
the curse of dimensionality results in data sets
having a high number of dimensions, making the
calculation of distance between points less effective
and meaningless, [5]. Thirdly, because there are no
labeled data in unsupervised learning, the model

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 104 Volume 22, 2025

must take into account hidden patterns from the
available data. Finally, most anomaly detection
algorithms have difficulty detecting anomalies in
unbalanced data. This is due to the fact that they are
based on an awareness of the behavior of more
common, normal samples.

Stream data processing, however, presents
challenges in terms of feature engineering and
delivery to the machine learning model, which
affects the model’s overall performance. The
complexity of the data itself presents a challenge for
processing stream data. The nature of data makes
it difficult to comprehend since it is constantly
changing and moving. The consequences of this are
significant for feeding data into a machine-learning

model, since each data point becomes less
useful with time, [6]. It is essential to process each
data point before the next one arrives to prevent
delays as illustrated in Appendix in Figure 1 and
Figure 2.

Considering the speed and volume of data,
low throughput, and high latency challenges affect
computation quality and data value. Low throughput
limits the amount of data the pipeline can receive,
while high latency restricts its ability to process it.
Further, when data messages are streamed, they may
encounter various scenarios. For example, messages
may be lost or sent more than once, with clients
having to read them again. To properly address these
scenarios, organizations must have a comprehensive
data latency and throughput strategy, including proper
data replication and caching techniques.

A real time streaming pipeline for
machine-learning models is challenging to set
up. First, the lack of fault tolerance makes data
delivery more likely to fail, which could cause
data loss and stop the whole streaming pipeline
process. Also, there is a lack of scalability, which
means that the streaming pipeline will have to be
redesigned every time there are more data producers
or consumers. There is a chance that this could pose
a burden and result in pipeline improvements being
halted. The most critical problem with not being
able to scale is not being able to decouple. This
affects how long the pipeline lasts and how data
flows between producers and consumers.

In this paper, we will discuss a few
interconnected areas: frameworks for processing
and analyzing streaming data, methods for
identifying anomalies, and human activity
recognition using only a smartphone. Figure 3
(Appendix) provides an overview of the system
implementation. This study is broken down into
three sections. The first section of the paper focuses
on the infrastructure and software for processing

streaming data. In the second section, we’ll look at
how various outlier detection algorithms deal with
huge, multidimensional, and potentially infinite data
streams. The final section of the study covers
research into recognizing human activity using
sensors embedded in mobile phones.

2 Big Data Stream Processing and

Analysis
There has been a huge increase in open-source
streaming framework availability recently. As
a result, deciding on the right framework for
streaming data use cases might be confusing.
Stream processing techniques offer distinct
advantages and disadvantages. For example,
window-based processing allows for efficient
time-based aggregation but does not support the
handling of out-of-order events. On the other hand,
event-oriented processing offers flexibility but may
require more complex logic for time-dependent
aggregation. It is, therefore, a necessity to decide
which method will be used depending on the specific
requirements of the particular use case before
choosing a stream processing technique.

A majority of studies evaluated Apache Spark
Streaming, Flink, and Storm, three of the most
well-known stream processing engines. [7],
developed a benchmarking application at Yahoo
to simulate a real-world stream processing use
case. Their study compares, evaluates, and analyzes
respective engines. Additionally, [8] conducted an
in-depth study to assess common stream processing
frameworks. Each framework is analyzed in terms of
performance, scalability, and resource utilization.

Alternatively, [9] compares Spark and Storm
frameworks to determine how they differ in latency.
He was interested in how well these frameworks
performed when executing a variety of tasks, such as
“Word Count”. Due to the aggregation required for
processing small logs, Storm can handle data much
faster than Spark Streaming. Storm’s performance
decreases linearly with increasing record sizes. In
contrast, Spark streaming performed very well in
this scenario. It was six times faster at processing
1,000-byte records than Storm.

A further discussion of Apache Flink is found in
[7]. They used streaming windows to ingest data
from Kafka, count and aggregate it for live analysis of
advertising campaigns. Flow motor performance was
evaluated for 30 minutes. Storm and Flink displayed
similar latency characteristics while Spark was faster
due to its micro-batching design. Spark Streaming
provides an advantage over other frameworks due

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 105 Volume 22, 2025

to its ability to change batch sizes on the fly.
Additionally, Storm failed to handle the data volume
when it reached 135,000 events per second, whereas
Spark did not experience any problems.

Similarly, [10] discussed novel ways to meet the
growing demand for non-batch processing needs and
Hadoop’s incapacity to handle them. They concluded
that Spark is a more efficient option for in-memory
computing among the frameworks examined. It
is also a suitable alternative for handling real-time
and streaming demands. Apache Spark was built
to address MapReduce’s constraints, [11]. Spark

[12] and Spark streaming [13] are key tools for
building large data applications. Several studies
have evaluated Spark’s performance across different
workloads and benchmarks, [14].

Spark streaming was introduced in [15] as a
dependable and high-throughput API for live data
streams. Spark focuses on making a single
pass over the data utilizing data stream clustering.

Further research into Spark’s potential to
challenge MapReduce and Flink has been
published. These works emphasize key points such
as effective memory management, [16], [17], [18].

According to research such as [19], no single
framework can handle all data kinds, sizes, and
business models. The study found that Spark
outperforms Flink in big graph processing by about
1.7 times. In contrast, Flink beats Spark by up
to 1.5 times in scenarios such as batch and small
graph workloads. As a result, it uses fewer resources
and is easier to set up. Other studies, such as
[20] and [21], revealed that Apache Spark’s Stream
outperformed Storm in terms of resource usage and
peak throughput. This was verified by [7] that Storm
struggled at high throughput. Storm, on the
otherhand, performed better in latency.

Standard data mining techniques and machine
learning models are challenging to apply to vast
amounts of data at varying speeds, [22]. To meet this
challenge, Apache Spark not only facilitates high-end
data analytics and efficient general processing tasks
but also allows machine learning algorithms. Spark
has been a point of interest for various types of
research where they use it as a large data stream
processing engine to stream data in real-time in
various fields. The results show that their system
achieved exemplary performance and robustness,
[23], [24], [25].

[26], proposed a study that divided the streaming
pipeline into two stages (Reading and Processing) to
analyze the impact of each stage on the end-to-end
delay. The proposed study uses interconnects, a
decoupling layer, to optimize the streaming pipeline
by implementing a message queueing mechanism

during the reading stage. Apache Kafka can
considerably increase the overall performance of the
streaming pipeline system. Furthermore, Apache
Kafka is the most appropriate choice for employing
Spark streaming as a data input phase. This is because
of its dependability and compliance with Apache
Spark streaming. Furthermore, it creates a separate
queue for message delivery and guarantees correct
sequencing.

Apache Kafka was utilized in many stream
processing applications as a message broker system.
For instance, [27] implemented a study to model
the design characteristics of distributed-based
frameworks such as Spark. Apache Spark processes
a tuple faster than Storm using an average flat
incremental clustering algorithm. This is because it
utilizes Kafka as a message broker, ensuring proper
order and delivery of messages.

Another study utilized Apache Kafka as a robust
messaging broker system, [28]. The researchers built a
real-time Twitter streaming and data analytics system.
The framework is divided into three primary parts.
Kafka is used as a data intake phase to extract data
from Twitter and provide quick access to Kafka
producers. The system analyzes and processes tweets
in real time as possible. In contrast, Spark streaming
was used as a stream processing engine throughout
the processing step. At the end of the process, the data
was visualized. Experiments have been conducted
to evaluate Kafka’s performance with traditional
message brokers, notably known as scalable and
efficient implementations of Advanced Message
Queuing Protocol (AMQP), such as RabbitMQ, [29].
According to the study’s findings, both systems
can process messages with low latency. The
Kafka protocol is better suited to applications that
handle huge volumes of messages. Increasing
Apache Kafka partitions can greatly boost throughput
and producer/channel count. Besides, it increases
RabbitMQ’s performance.

[30], conducted a comparison of five message
queueing techniques. The authors reported their
findings using a replicable experimental setup and a
defined comparison metric. The authors concluded
the experimental analysis by demonstrating that
RocketMQ has a shorter latency. Kafka has a higher
throughput. According to [31], integrating Spark and
Kafka can significantly reduce the time consumed and
increase performance within streaming data analysis
and processing applications. However, evaluating
and recommending stream processing engines for
streaming data with different use cases remains an
ongoing research field. They are considering the
massive demand for large data stream mining and
processing platforms that integrate and use distributed

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 106 Volume 22, 2025

stream processing in a single open source. In addition,
they want the ability to simultaneously apply machine
learning techniques to the stream. Flink and Spark are
cutting-edge distributed stream processing engines
that provide these capabilities. However, more
work is needed to integrate and extend analytical
libraries within the same processing platform. For
example, with all these huge advantages of Spark
and this enormous ability to process data in real
time, many machine learning algorithms still need to
be supported on the platform within the structured
streaming service.

3 Outlier Detection
In some contexts, outliers in data are more appealing
than expected ones, so it is vital to recognize
and identify them since they may contain critical
information. There is currently a lot of interest
in identifying outliers among researchers. By
understanding and addressing these outliers,
researchers can improve the accuracy and reliability
of their findings, leading to more robust and
meaningful conclusions.

Various studies provide a detailed analysis
of state-of-the-art strategies for discovering
outliers, dividing them into distinct approaches and
categories, [32]. They were divided into statistical,
distance, density, clustering, and ensemble methods.
Furthermore, the authors investigated their primary
strengths and limitations.

[33] highlighted the significance of detecting
outliers, especially in time series data. The authors
organized the topic around distinct data types and
provided multiple outlier definitions. They also
briefly defined the associated processes and reviewed
a variety of applications where these strategies
have been successfully used. The statistics-based
technique [34] creates conventional distribution
models by analyzing historical data. It looks for data
points that deviate from the distribution of other data
points. Later, these data points would be labeled
anomalies. Most models, however, are based on
a single variable. As a result, detecting anomalies
becomes difficult when monitoring parameters are
multi-dimensional. Furthermore, the original data,
which contains some noisy data that greatly affects
the distribution model building, is used to generate
these models, [35].

The distance-based technique [36] computes the
distance between two data sets. Two points are
deemed “neighbors” when their distance is less than
a threshold value. Suppose a group of data points are
less than a threshold value. In that situation, they will
be classified as abnormal. However, this strategy is

inappropriate for instances where the data distribution
is multi-cluster, [37]. When an anomaly occurs,
numerous continuous abnormal resource metric data
arise and are grouped together as neighbors. This
approach, however, needs help to identify them.

Similarly, other studies like [38] employ
windowing concepts and clustering algorithms
to identify temporal data anomalies. Furthermore, to
identify outliers in multivariate data, [39] applied an
alternative model of One-Class SVM. It is, however,
impossible to consider the method to be a practical
approach for large-scale data due to two critical
factors, space complexity and time complexity.

IoT sensors create large amounts of data that
must be processed. Due to the streaming nature of
this data, it is becoming increasingly important to
identify trends. [40], proposed an approach for
dealing with such data. The high computing cost of
this technique reveals opportunities to optimize the
process.

The majority of the previously outlined
techniques have two key limitations. They
demand a lot of computations during training or
are intended to detect/recognize typical system
characteristics. This may lead to the conclusion that
discovering outliers in these systems is just a result
of mismatched classification procedures. When such
factors are examined, more than the possible benefits
of current approaches may be necessary to overcome
their limits and application risks. This is because
their detection abilities are the consequence of an
algorithm devised and tailored for a purpose other
than detecting anomalies. These techniques could
have been developed for various uses, such as
clustering and classification challenges.

In light of the scenarios described above, an
algorithm not using the density or distance function
is needed to advance anomaly detection significantly.
In addition to offering reduced computation costs,
this technique should also be able to handle big
and multi-dimensional datasets and be less complex
in terms of time. The available offline anomaly
detection algorithms and techniques, such as density-
and distance-based, as well as statistical approaches,
may be inefficient at finding outliers due to memory
constraints that require a single pass through the
whole data. They are computationally demanding
and may encounter overfitting because they require
numerous passes through the data. They must also
evaluate the complete dataset to find anomalies, [41].
As a result, a cutting-edge method was developed
that does not assume prior knowledge of the system’s
underlying dynamics. It assumes that anomalous
cases are few and distinct from the rest of the data.
As a result, they are more susceptible to isolation

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 107 Volume 22, 2025

procedures. This limits the number of such instances
and brings them closer to the decision tree’s root.
In contrast, regular data items are more likely to be
buried significantly deeper in the decision tree.

[42] suggested a fundamentally revised anomaly
detection strategy prioritizing anomalous isolation
above regular instance identification. Isolation
forests (IF) are a highly successful solution to spot
abnormalities. Tree separates anomalies closer to the
tree’s root than normal points using the few different
characters of anomalies. IF have a low constant
time complexity and minimal memory consumption,
making them appropriate for large data sets. IF
usually outperforms distance-based techniques with
near-linear time complexity. Furthermore, it detects
anomalies efficiently since it converges rapidly with
a small ensemble size.

The IF technique has earned a reputation due
to its extraordinary effectiveness in a wide range
of high-dimensional, complex pattern identification
challenges. [43] conducted a comparative research
on outlier detection methods. Three different time
series models are tested on 14 synthetic and real data
sets. According to the paper, IF is better suited
than other methods since it is an effective approach
to efficiently detecting outliers while demonstrating
exceptional scalability. It is memory efficient
and can handle datasets of up to one million
samples. [44] adopted IF for unmanned aerial
vehicles. It was used in unsupervised learning. Using
the Aero-Propulsion System Simulation dataset,
the authors demonstrated the IF’s suitability for
various engineering applications. It outperforms
all other alternative unsupervised distance-based
algorithms considering their capacity to handle
massive datasets. In addition, it results in lower
linear time and total computing costs. [45]
conducted an actual industry case study with IF.
This was linked to one of the critical processes
in semiconductor manufacturing known as etching.
IF has been compared with univariate chart-based
and multi-dimensional angle-oriented approaches.
The results revealed that IF performed with higher
accuracy than other multi-dimensional techniques.

[46] proposed a technique to detect credit card
fraud with IF. They calculated various performance
metrics such as accuracy, F1-score, ROC-score, and
false positive rate of various approaches. During
the experiment, IF proved to be very effective in
detecting abnormalities in credit card transactions.

[47] used Spark streaming as a distributed
computing platform to create a streaming application
for time series data. Similarly, IF was tested on
additional high-dimensional data in the author’s
implementation, [48]. The experiment was

conducted using actual data acquired from eight
separate CFM56-7B aero engines. A comparison of
IF to other unsupervised anomaly detection
algorithms revealed its scalability to high-
dimensional data.

Another study [49] provided an anomaly
detection solution based on an IF for streaming
data, particularly time-series data. The study
used a sliding window approach to analyze four
real-world datasets from the UCI repository. In
streaming data applications, the proposed approach
successfully locates outliers with great scalability.
Several published studies, [50], [51], [52], [53] have
compared IF to other distance-based outlier detection
methods in terms of performance measures such as
precision, accuracy, and AUC. Performance findings
reveal that the isolation forest-based approach
outperforms other algorithms. Figure 4 (Appendix)
summarizes the most common anomaly detection
methods.

4 Human Activity Recognition
Health care and smart home applications can benefit
from solutions that recognize human activity.
Various sensors have been used to identify human
activity, including wearable LED lights, cameras,
and cell phones, [54]. Several Human Activity
Recognition (HAR) systems integrate accelerometers
to distinguish daily activities, including standing,
walking, sitting, jogging, and lying. [55], searched for
repeated behaviors using accelerometer data created
from recordings of 30 participants doing routine
activities daily. They tried to identify and prevent
older adults from falling into a smart environment.
Figure 5 (Appendix) depicts the components of a
typical HAR system.

Human activity recognition tasks using wearable
sensors have been examined in earlier studies. They
indicated that wearable sensors could remarkably
enhance human activity recognition accuracy,
[56]. Some previous research has been applied
to enhance recent wearable sensor-based HAR
investigations. [57] developed a customized human
activity recognition system. Using a multi-modal
sensing device, they collected data on a variety of
activities from a group of 28 volunteers ranging in
gender, age, weight, and height. The data was then
utilized to create a variety of hybrid activity models.

[58] utilized a wearable device to capture
acceleration data based on a data set consisting of 20
computationally efficient features for human activity
recognition. They achieved a 94% accuracy. In
addition, [59] used three wearable accelerometers
to gather data from 10 patients to track lower body

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 108 Volume 22, 2025

movements. A previous study, [60], presented eight
activities; running, walking, standing, sit-ups,
vacuuming, brushing teeth, stairs-down, and
stairs-up. Those activities were detected with
only one triaxial accelerometer worn near the pelvis.

Numerous studies have been conducted on
the ability to use cellphones instead of wearable
sensors to perform human activity identification
tasks due to their high computing capabilities.
Smartphones support several sensors, including
gyroscopes and accelerometers. Moreover, its
wireless connectivity capabilities make it valuable
for recognizing and detecting human activity. Mobile
devices incorporating built-in sensors have become
a natural part of everyday life. Consequently,
they can be considered a promising platform for
HAR applications, [61]. [62] presented an online
user-independent human activity classification
approach using statistical features that include global
and valuable properties of the time series. [63]
combined a smartwatch and a smartphone sensor to
identify 13 daily human activities.

Research shows that human activities can be
accurately detected with a single accelerometer, based
on earlier studies, [64]. A single accelerometer
worn on the right waist achieved the highest
recognition accuracy. [65] developed a sliding
window approach to recognize physical activity for
signal segmentation. A unified method is not
available for identifying activities from sensor
signals. Activity recognition can be achieved using
a variety of algorithmic strategies. We want to
examine and consider the processing power and
time available based on the number of activities.
Thus, depending on the approach used, the input to
the HAR system’s learning algorithms may alter.

Sensor signals are usually analyzed first to
extract features before being sent to a classifier.
These features are known as “handcrafted features”
and represent raw signal data. The derived features
from the original signal provide an appropriate
description of the user’s activity. Then, machine
learning algorithms are applied to them. The
“handcrafted features” technique is recommended in
many applications since it improves classification
accuracy. [66] analyzed many statistical parameters,
including standard deviation, binned distribution,
average, and duration between peaks. Furthermore,
several classifiers were built based on these collected
features to determine which behavior corresponds to
which features. [67] combined classifiers used by

[66] using similar features and ensemble
techniques to improve their findings.

Some studies extract features directly from the
time-varying acceleration signal, [68]. The authors

developed an independent human position activity
identification system by extracting time-domain
elements from raw data. [60] presented a study
on identifying time-domain attributes. The authors
then selected certain features, including standard
deviation, mean, and energy. To classify the
accelerometer signals, a classification algorithm
was used, with the selected features as input. [58]
suggested a method to identify human physical
activities using a time-domain-based feature
extraction methodology. The most acceptable
features were investigated, including the mean value
of min and max sums and root mean squared. With
random forest as a classifier, activities were classified
more accurately.

Several other researchers have worked on
obtaining frequency-domain features from frequency
analysis, [69], [70]. Moreover, [71] introduced an
ensemble empirical mode decomposition (EEMD)
based features extraction method to classify triaxial
accelerometer signals for activity recognition. The
Fast Fourier Transform (FFT) and Discrete Fourier
Transform (DCT) coefficients are also used in
various research studies, [64]. These methods can
be considered frequency-based features. In addition,
other features that have been utilized in experiments
and yielded successful results include Principal
Component Analysis (PCA) [72] and Haar filters
[73].

An overview of human activity recognition
research is shown in Figure 6 (Appendix). There
are several factors to consider when planning to
implement a project related to this area. A
general description of these criteria includes types
of recognition, approaches used, algorithms applied,
data sources, and application areas.

5 Conclusion
Stream data is constantly generated by thousands
of sources and sent simultaneously to the ingestion
system in small sizes. However, processing and
analyzing stream data poses several challenges due
to its high velocity and volume. Real-time
processing is required to handle the continuous flow
of data, and algorithms need to be efficient enough
to detect anomalies in real time without causing
delays or bottlenecks in the system. Additionally,
since stream data is constantly evolving,
maintaining anomaly detection models’ accuracy
and relevance becomes a continuous and dynamic
task. As a result, effective anomaly detection
systems are required for fraud and cyberattack
detection systems that need quick responses. For
effective anomaly detection, it is critical to apply

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 109 Volume 22, 2025

big data analysis techniques like map-reduce. In
contrast to previous review articles, we concentrated
on big data tools and frameworks for processing and
analyzing streaming data to recognize human
activities. Three different architectures can be used
for applications dealing with static, stream, or time-
series data. Nevertheless, since not all data can be
stored in memory, stream data analysis might pose
particular difficulties when finding outliers. Outlier
detection methods are appealing in stream data
because they allow anomalies to be discovered in
real time. This is especially useful for applications
that need to react quickly to changes in data or
find things that don’t make sense automatically.
Furthermore, the methods can be applied to large
datasets and scaled up. Therefore, they are ideal for
big data applications. They can also detect outliers
even when the data is noisy or partially complete.
Lastly, they can reveal patterns and trends in data
that might otherwise remain hidden. Stream data
can be analyzed and visualized with these methods,
as well as interpreted based on their results.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work the authors used
Wordtune for language editing. After using this
service, the authors reviewed and edited the content
as needed and take full responsibility for the content
of the publication.

References:
[1] Juarizo, Charles G and Rogelio, Jayson P

and Balbin, Jessie R and Dadios, Elmer P,
“IoT-based end-to-end monitoring of logistics
and tracking of truck vehicles using Arduino
microcontroller”, In Proceedings of The

World Congress on Engineering, pp. 3–5,
2019.

[2] Zhang, Huajie and Song, Lei and Zhang, Sen,
“Parallel Clustering Optimization Algorithm
Based on MapReduce in Big Data Mining”,
IAENG International Journal of Applied

Mathematics, vol. 53, no. 1, 2023.
[3] Gazder, Uneb, “Studying Patterns of Rainfall

and Topographical Clustering for Kingdom
of Bahrain: An Application of Big Data”,
Engineering World, vol. 6, pp. 29–34, 2024,
doi: 10.37394/232025.2024.6.5.

[4] Sathishkumar, E. N. and Thangavel, K., “A
Novel Approach for Outlier Detection Using
Rough Entropy”, WSEAS Transactions on

Computers, vol. 14, pp. 296–306, 2015.

[5] Aggarwal, Charu C. and Hinneburg,
Alexander and Keim, Daniel A., “On the
surprising behavior of distance metrics in
high dimensional space”, In Database

Theory—ICDT, pp. 420–434, 2001, doi:
10.1007/3-540-44503-X_27.

[6] Zaharia, Matei and Das, Tathagata and Li,
Haoyuan and Hunter, Timothy and Shenker,
Scott and Stoica, Ion, “Discretized streams:
Fault-tolerant streaming computation at
scale”, In Proceedings of the Twenty-fourth

ACM Symposium on Operating Systems

Principles, pp. 423–438, 2013, doi:
10.1145/2517349.2522737.

[7] Chintapalli, Sanket and Dagit, Derek and
Evans, Bobby and Farivar, Reza and Graves,
Thomas and Holderbaugh, Mark and Liu,
Zhuo and Nusbaum, Kyle and Patil,
Kishorkumar and Peng, Boyang Jerry and
others, “Benchmarking streaming computation
engines: Storm, flink and spark streaming”, In

IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW),
pp. 1789–1792, 2016, doi:
10.1109/ipdpsw.2016.138.

[8] Wissem Inoubli and Sabeur Aridhi and
Haithem Mezni and Alexander Jung, “Big
Data Frameworks: A Comparative Study”,
CoRR, vol. abs/1610.09962, 2016, doi:
10.48550/arXiv.1610.09962.

[9] Córdova, Patricio, “Analysis of real time
stream processing systems considering
latency”, University of Toronto patricio@
cs. toronto. edu, 2015, [Online].
https://www.datascienceassn.org/sites/defau
lt/files/Analysis%20of%20Real%20Time%
20Stream%20Processing%20Systems%20C
onsidering%20Latency.pdf (Accessed Date:
October 4, 2024).

[10] Shahrivari, Saeed, “Beyond batch
processing: towards real-time and streaming
big data”, Computers, vol. 3, no. 4, pp. 117–
129, 2014, doi:
10.3390/COMPUTERS3040117.

[11] Quinto, Butch, “Next-Generation Machine
Learning with Spark: Covers XGBoost,
LightGBM, Spark NLP, Distributed Deep
Learning with Keras, and More”, 2020,
Apress, doi: 10.1007/978-1-4842-5669-5_1.

[12] APACHE Spark, “Spark Research”,
[Online].
 https://spark.apache.org/research.html
(Accessed Date: October 10, 2024).

[13] Anonymous, “Spark Structured Streaming”,
[Online]. https://spark.apache.org/streaming/

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 110 Volume 22, 2025

https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
https://www.datascienceassn.org/sites/default/files/Analysis%20of%20Real%20Time%20Stream%20Processing%20Systems%20Considering%20Latency.pdf
file:///C:/Users/Bülent%20Tuğrul/Downloads/%09https:/spark.apache.org/research.html
https://spark.apache.org/streaming/

(Accessed Date: October 10, 2024).
[14] Xiao, Wen and Hu, Juan, “SWEclat: a

frequent itemset mining algorithm over
streaming data using Spark Streaming”,
The Journal of Supercomputing, vol.
76, no. 10, pp. 7619–7634, 2020, doi:
10.1007/s11227-020-03190-5.

[15] Ghesmoune, Mohammed and Lebbah,
Mustapha and Azzag, Hanene, “Micro-
batching growing neural gas for clustering
data streams using spark streaming”,
Procedia Computer Science, vol. 53, pp.
158–166, 2015, doi:
10.1016/j.procs.2015.07.290.

[16] Awan, Ahsan Javed and Brorsson, Mats and
Vlassov, Vladimir and Ayguade, Eduard,
“How data volume affects spark based data
analytics on a scale-up server”, In Big Data

Benchmarks, Performance Optimization,

and Emerging Hardware, pp. 81–92, 2015,
doi: 10.1007/978-3-319-29006-5_7.

[17] Veiga, Jorge and Expósito, Roberto R and
Pardo, Xoán C and Taboada, Guillermo L
and Tourifio, Juan, “Performance evaluation
of big data frameworks for large-scale data
analytics”, In IEEE International

Conference on Big Data, pp. 424–431,
2016, doi: 10.1109/BigData.2016.7840633.

[18] Shi, Juwei and Qiu, Yunjie and Minhas, Umar
Farooq and Jiao, Limei and Wang, Chen and
Reinwald, Berthold and Özcan, Fatma, “Clash
of the titans: Mapreduce vs. spark for large
scale data analytics”, Proceedings of the

VLDB Endowment, vol. 8, no. 13, pp.
2110–2121, 2015, doi:
10.14778/2831360.2831365.

[19] Marcu, Ovidiu-Cristian and Costan,
Alexandru and Antoniu, Gabriel and Pérez-
Hernández, María S, “Spark versus flink:
Understanding performance in big data
analytics frameworks”, In IEEE International

Conference on Cluster Computing

(CLUSTER), pp. 433–442, 2016, doi:
10.1109/CLUSTER.2016.22.

[20] Lu, Ruirui and Wu, Gang and Xie, Bin
and Hu, Jingtong, “Stream bench: Towards
benchmarking modern distributed stream
computing frameworks”, In IEEE/ACM 7th

International Conference on Utility and

Cloud Computing, pp. 69–78, 2014, doi:
10.1109/UCC.2014.15.

[21] Qian, Shilei and Wu, Gang and Huang,
Jie and Das, Tathagata, “Benchmarking
modern distributed streaming platforms”, In

IEEE International Conference on Industrial

Technology (ICIT), pp. 592–598, 2016, doi:
10.1109/ICIT.2016.7474816.

[22] Attigeri, Girija and Pai MM, Manohara and
Pai, Radhika M, “Supervised Models for
Loan Fraud Analysis using Big Data
Approach”, Engineering Letters, vol. 29, no.
4, 2021.

[23] Nair, Lekha R and Shetty, Sujala D and
Shetty, Siddhanth D, “Applying spark based
machine learning model on streaming big data
for health status prediction”, Computers &

Electrical Engineering, vol. 65, pp. 393–399,
2018, doi:
10.1016/j.compeleceng.2017.03.009.

[24] Ed-daoudy, Abderrahmane and Maalmi,
Khalil, “Application of machine learning
model on streaming health data event in
real-time to predict health status using
spark”, In International Symposium on

Advanced Electrical and Communication

Technologies (ISAECT), pp. 1–4, 2018, doi:
10.1109/ISAECT.2018.8618860.

[25] Alnafessah, Ahmad and Casale, Giuliano,
“Artificial neural networks based techniques
for anomaly detection in Apache Spark”,
Cluster Computing, vol. 23, no. 2, pp. 1345–
1360, 2020, doi: 10.1007/s10586-019-02998-
y.

[26] Javed, M Haseeb and Lu, Xiaoyi and Panda,
Dhabaleswar K, “Characterization of big
data stream processing pipeline: a case study
using Flink and Kafka”, In Proceedings of the

Fourth IEEE/ACM International Conference

on Big Data Computing, Applications

and Technologies, pp. 1–10, 2017, doi:
10.1145/3148055.3148068.

[27] Solaimani, Mohiuddin and Iftekhar,
Mohammed and Khan, Latifur and
Thuraisingham, Bhavani and Ingram, Joey
Burton, “Spark-based anomaly detection
over multi-source VMware performance
data in real-time”, In IEEE Symposium

on Computational Intelligence in Cyber

Security (CICS), pp. 1–8, 2014, doi:
10.1109/CICYBS.2014.7013369.

[28] Yadranjiaghdam, Babak and Yasrobi,
Seyedfaraz and Tabrizi, Nasseh,
“Developing a real-time data
analytics framework for twitter streaming
data”, In IEEE International Congress on

Big Data (BigData Congress), pp. 329–
336, 2017, doi:
10.1109/BigDataCongress.2017.49.

[29] Dobbelaere, Philippe and Esmaili, Kyumars
Sheykh, “Kafka versus RabbitMQ: A

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 111 Volume 22, 2025

comparative study of two industry reference
publish/subscribe implementations: Industry
Paper”, In Proceedings of the 11th ACM

International Conference on Distributed

and Event-based Systems, pp. 227–238,
2017, doi: 10.1145/3093742.3093908.

[30] Fu, Guo and Zhang, Yanfeng and Yu, Ge,
“A fair comparison of message queuing
systems”, IEEE Access, vol. 9, pp. 421–432,
2020, doi: 10.1109/ACCESS.2020.3046503.

[31] Tun, May Thet and Nyaung, Dim En and
Phyu, Myat Pwint, “Performance
evaluation of intrusion detection streaming
transactions using apache kafka and
spark streaming”, In International

Conference on Advanced Information

Technologies (ICAIT), pp. 25–30, 2019, doi:
10.1109/AITC.2019.8920960.

[32] Wang, Hongzhi and Bah, Mohamed Jaward
and Hammad, Mohamed, “Progress in
outlier detection techniques: A survey”,
IEEE Access, vol. 7, pp. 107964–108000,
2019, doi: 10.1109/ACCESS.2019.2932769.

[33] Gupta, Manish and Gao, Jing and Aggarwal,
Charu C and Han, Jiawei, “Outlier detection
for temporal data: A survey”, IEEE

Transactions on Knowledge and data

Engineering, vol. 26, no. 9, pp. 2250–
2267, 2013, doi: 10.1109/TKDE.2013.184.

[34] Chandola, Varun and Banerjee, Arindam
and Kumar, Vipin, “Anomaly
detection: A survey”, ACM Computing

Surveys (CSUR), vol. 41, no. 3, pp. 1–
58, 2009, doi: 10.1145/1541880.1541882.

[35] Khoa, Nguyen Lu Dang and Chawla, Sanjay,
“Robust outlier detection using commute time
and eigenspace embedding”, In Pacific-Asia

Conference on Knowledge Discovery and

Data Mining, pp. 422–434, 2010, doi:
10.1007/978-3-642-13672-6_41.

[36] Ramaswamy, Sridhar and Rastogi, Rajeev
and Shim, Kyuseok, “Efficient algorithms
for mining outliers from large data
sets”, In Proceedings of the 2000 ACM

SIGMOD International Conference on

Management of Data, pp. 427–438, 2000,
doi: 10.1145/342009.335437.

[37] Angiulli, Fabrizio and Basta, Stefano and
Pizzuti, Clara, “Distance-based detection and
prediction of outliers”, IEEE Transactions

on Knowledge and Data Engineering,
vol. 18, no. 2, pp. 145–160, 2005, doi:
10.1109/TKDE.2006.29.

[38] Khaleghi, Azedeh and Ryabko, Daniil and
Mari, Jeremie and Preux, Philippe,

“Consistent algorithms for clustering time
series”, Journal of Machine Learning

Research, vol. 17, no. 3, pp. 1–32, 2016.
[39] Khan, Muhammad Aamir and Khan, Aunsia

and Khan, Muhammad Nasir and Anwar,
Sajid, “A novel learning method to classify
data streams in the internet of things”, In

National Software Engineering Conference,
pp. 61–66, 2014, doi:
10.1109/NSEC.2014.6998242.

[40] Giannoni, Federico and Mancini, Marco and
Marinelli, Federico, “Anomaly detection
models for IoT time series data”, arXiv

preprint arXiv:1812.00890, 2018, doi:
10.48550/arXiv.1812.00890.

[41] Aggarwal, Charu C, “An introduction to
outlier analysis”, In Outlier Analysis, pp. 1–
34, 2017, Springer, doi: 10.1007/978-3-319-
47578-3_1.

[42] Liu, Fei Tony and Ting, Kai Ming and Zhou,
Zhi-Hua, “Isolation forest”, In Eighth IEEE

International Conference on Data Mining,
pp. 413–422, 2008, doi:
10.1109/ICDM.2008.17.

[43] Domingues, Rémi and Filippone, Maurizio
and Michiardi, Pietro and Zouaoui, Jihane,
“A comparative evaluation of outlier
detection algorithms: Experiments and
analyses”, Pattern Recognition, vol. 74, pp.
406–421, 2018, doi:
10.1016/j.patcog.2017.09.037.

[44] Khan, Samir and Liew, Chun Fui and
Yairi, Takehisa and McWilliam, Richard,
“Unsupervised anomaly detection in
unmanned aerial vehicles”, Applied Soft

Computing, vol. 83, pp. 105650, 2019, doi:
10.1016/j.asoc.2019.105650.

[45] Susto, Gian Antonio and Beghi, Alessandro
and McLoone, Seán, “Anomaly detection
through on-line isolation forest: An
application to plasma etching”, In 28th

Annual SEMI Advanced Semiconductor

Manufacturing Conference (ASMC), pp.
89–94, 2017, doi:
10.1109/ASMC.2017.7969205.

[46] Ounacer, Soumaya and El Bour, Hicham
Ait and Oubrahim, Younes and Ghoumari,
Mohamed Yassine and Azzouazi,
Mohamed, “Using Isolation Forest in
anomaly detection: the case of credit card
transactions”, Periodicals of Engineering

and Natural Sciences (PEN), vol. 6, no. 2,
pp. 394–400, 2018.

[47] Weng, Yu and Liu, Lei, “A collective
anomaly detection approach for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 112 Volume 22, 2025

multidimensional streams in mobile service
security”, IEEE Access, vol. 7, pp. 49157–
49168, 2019, doi:
10.1109/ACCESS.2019.2909750.

[48] Zhong, Shisheng and Fu, Song and Lin, Lin
and Fu, Xuyun and Cui, Zhiquan and Wang,
Rui, “A novel unsupervised anomaly
detection for gas turbine using isolation
forest”, In IEEE International Conference

on Prognostics and Health Management

(ICPHM), pp. 1–6, 2019, doi:
10.1109/ICPHM.2019.8819409.

[49] Ding, Zhiguo and Fei, Minrui, “An anomaly
detection approach based on isolation forest
algorithm for streaming data using sliding
window”, IFAC Proceedings Volumes,
vol. 46, no. 20, pp. 12–17, 2013, doi:
10.3182/20130902-3-CN-3020.00044.

[50] Jain, Prarthi and Jain, Seemandhar and
Zaïane, Osmar R and Srivastava, Abhishek,
“Anomaly detection in resource constrained
environments with streaming data”, IEEE

Transactions on Emerging Topics in

Computational Intelligence, vol. 6, no. 3, pp.
649–659, 2021, doi:
10.1109/TETCI.2021.3070660.

[51] Fan, Linchang and Ma, Jinqiang and Tian,
Junjing and Li, Tonghan and Wang, Hao,
“Comparative Study of Isolation Forest and
LOF algorithm in anomaly detection of data
mining”, In International Conference on

Big Data, Artificial Intelligence and Risk

Management (ICBAR), pp. 1–5, 2021, doi:
10.1109/ICSSIT53264.2022.9716541.

[52] Zadafiya, Narendra and Karasariya, Jenish
and Kanani, Parthkumar and Nayak, Amit,
“Detecting Credit Card Frauds Using
Isolation Forest And Local Outlier Factor-
Analytical Insights”, In 4th International

Conference on Smart Systems and Inventive

Technology (ICSSIT), pp. 1588–1594, 2022.
[53] Vamsi, P Raghu and Chahuan, Anjali,

“Machine learning based hybrid model for
fault detection in wireless sensors data”, EAI

Endorsed Transactions on Scalable

Information Systems, vol. 7, no. 24, pp. e6–e6,
2020, doi: 10.4108/eai.13-7-2018.161368.

[54] Shahrim, Khairunnisa Ahmad and Abd
Rahman, Abdul Hadi and Goudarzi,
Shidrokh, “Hazardous Human Activity
Recognition in Hospital Environment Using
Deep Learning”, IAENG International

Journal of Applied Mathematics, vol. 52, no.
3, 2022.

[55] Anguita, Davide and Ghio, Alessandro and

Oneto, Luca and Parra Perez, Xavier and
Reyes Ortiz, Jorge Luis, “A public domain
dataset for human activity recognition using
smartphones”, In Proceedings of the 21th

International European Symposium on

Artificial Neural Networks, Computational

Intelligence and Machine Learning, pp. 437–
442, 2013.

[56] Gyllensten, Illapha Cuba and Bonomi,
Alberto G, “Identifying types of physical
activity with a single accelerometer:
evaluating laboratory-trained algorithms in
daily life”, IEEE Transactions on Biomedical

Engineering, vol. 58, no. 9, pp. 2656–2663,
2011, doi: 10.1109/TBME.2011.2160723.

[57] Hong, Jin-Hyuk and Ramos, Julian and
Dey, Anind K, “Toward personalized
activity recognition systems
with a semipopulation approach”, IEEE

Transactions on Human-Machine Systems,
vol. 46, no. 1, pp. 101–112, 2015, doi:
10.1109/THMS.2015.2489688.

[58] Casale, Pierluigi and Pujol, Oriol and Radeva,
Petia, “Human activity recognition from
accelerometer data using a wearable device”,
In Iberian Conference on Pattern Recognition

and Image Analysis, pp. 289–296, 2011, doi:
10.1007/978-3-642-21257-4_36.

[59] Krishnan, Narayanan C and Colbry, Dirk and
Juillard, Colin and Panchanathan,
Sethuraman, “Real time human activity
recognition using tri-axial accelerometers”,
In Sensors, Signals and Information

Processig Workshop, vol. 2008, pp. 3337–
3340, 2008.

[60] Ravi, Nishkam and Dandekar, Nikhil and
Mysore, Preetham and Littman, Michael L,
“Activity recognition from accelerometer
data”, In Proceedings of the 17th

Conference on Innovative Applications of

Artificial Intelligence, pp. 1541–1546, 2005.
[61] bin Abdullah, Mohd Fikri Azli and Negara,

Ali Fahmi Perwira and Sayeed, Md Shohel
and Choi, Deok-Jai and Muthu, Kalaiarasi
Sonai, “Classification algorithms in human
activity recognition using smartphones”,
International Journal of Biomedical and

Biological Engineering, vol. 6, no. 8, pp.
362–369, 2012.

[62] Ignatov, Andrey, “Real-time human activity
recognition from accelerometer data using
Convolutional Neural Networks”, Applied

Soft Computing, vol. 62, pp. 915–922, 2018,
doi: 10.1016/j.asoc.2017.09.027.

[63] Shoaib, Muhammad and Bosch, Stephan

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 113 Volume 22, 2025

and Scholten, Hans and Havinga, Paul JM
and Incel, Ozlem Durmaz, “Towards
detection of bad habits by fusing
smartphone and smartwatch sensors”, In

IEEE International Conference on

Pervasive Computing and Communication

Workshops (PerCom Workshops), pp. 591–
596, 2015, doi:
10.1109/PERCOMW.2015.7134104.

[64] Xue, Yang and Jin, Lianwen, “A naturalistic
3D acceleration-based activity dataset
& benchmark evaluations”, In IEEE

International Conference on Systems, Man

and Cybernetics, pp. 4081–4085, 2010, doi:
10.1109/ICSMC.2010.5641790.

[65] Noor, Mohd Halim Mohd and Salcic, Zoran
and Kevin, I and Wang, Kai, “Adaptive
sliding window segmentation for physical
activity recognition using a single tri-axial
accelerometer”, Pervasive and Mobile

Computing, vol. 38, pp. 41–59, 2017, doi:
10.1016/j.pmcj.2016.09.009.

[66] Kwapisz, Jennifer R and Weiss, Gary M and
Moore, Samuel A, “Activity recognition
using cell phone accelerometers”, ACM

SigKDD Explorations Newsletter, vol. 12,
no. 2, pp. 74–82, 2011, doi:
10.1145/1964897.1964918.

[67] Catal, Cagatay and Tufekci, Selin and Pirmit,
Elif and Kocabag, Guner, “On the use of
ensemble of classifiers for accelerometer-
based activity recognition”, Applied Soft

Computing, vol. 37, pp. 1018–1022, 2015,
doi: 10.1016/j.asoc.2015.01.025.

[68] Torres-Huitzil, Cesar and Nuno-Maganda,
Marco, “Robust smartphone-based human
activity recognition using a tri-axial
accelerometer”, In IEEE 6th Latin

American Symposium on Circuits &

Systems (Lascas), pp. 1–4, 2015, doi:
10.1109/LASCAS.2015.7250435.

[69] Wang, Changhai and Zhang, JianZhong
and Wang, Zhicheng and Wang, Jian,
“Position-independent activity recognition
model for smartphone based on frequency
domain algorithm”, In Proceedings of 3rd

International Conference on Computer

Science and Network Technology, pp. 396–
399, 2013, doi:
10.1109/ICCSNT.2013.6967138.

[70] Sun, Lin and Zhang, Daqing and Li, Bin and
Guo, Bin and Li, Shijian, “Activity
recognition on an accelerometer embedded
mobile phone with varying positions and
orientations”, In International Conference

on Ubiquitous Intelligence and Computing,
pp. 548–562, 2010, doi: 0.1007/978-3-642-
16355-5_42.

[71] Wang, Zhelong and Wu, Donghui and
Chen, Jianming and Ghoneim, Ahmed
and Hossain, Mohammad Anwar, “A
triaxial accelerometer-based human activity
recognition via EEMD-based features and
game-theory-based feature selection”, IEEE

Sensors Journal, vol. 16, no. 9, pp. 3198–
3207, 2016, doi: 10.1109/JSEN.2016.2519679.

[72] Fu, Zhongzheng and He, Xinrun and Wang,
Enkai and Huo, Jun and Huang, Jian and
Wu, Dongrui, “Personalized human activity
recognition based on integrated wearable
sensor and transfer learning”, Sensors, vol. 21,
no. 3, pp. 885, 2021, doi: 10.3390/s21030885.

[73] Hanai, Yuya and Nishimura, Jun and
Kuroda, Tadahiro, “Haar-Like Filtering
for Human Activity Recognition Using
3D Accelerometer”, In 13th Digital Signal

Processing Workshop and 5th IEEE Signal

Processing Education Workshop, pp. 675-
678, 2009, doi:
10.1109/DSP.2009.4786008.

Contribution of individual authors to the

creation of a scientific article (ghostwriting

policy)

In this study, all authors contributed equally, from
formulation of the problem to solution and analysis.
Follow: www.wseas.org/multimedia/contributor-
role- instruction.pdf

Sources of funding for research presented in a

scientific article or scientific article itself

The authors did not receive support from any
organization for the submitted work.

Conflict of Interest

The authors have no conflicts of interest to declare
that are relevant to the content of this article

Creative Commons Attribution License 4.0

(Attribution 4.0 International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_
US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 114 Volume 22, 2025

http://www.wseas.org/multimedia/contributor-role-
http://www.wseas.org/multimedia/contributor-role-
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

APPENDIX

Fig. 1: Stream processing

Fig. 2: Data transformation and feature engineering

Fig. 3: An overview of the system implementation

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 115 Volume 22, 2025

Fig. 4: A comparison of the most common anomaly detection methods

Fig. 5: Human activity recognition framework design

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 116 Volume 22, 2025

Fig. 6: Human activity recognition framework design

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.11 Mohammed Sabha, Bulent Tugrul

E-ISSN: 2224-3402 117 Volume 22, 2025

