
Comments on School Education in Mathematics and Computer Science 
 

KLAUS BENECKE 
beneckeSysteme 

Schröders Garten 5, 
39175 Gerwisch, 

GERMANY 
 
Abstract: - This work aims to improve problem-solving skills even for students and adults, who are not so 
interested in mathematics. This requires simple algorithms. The efficiency of these is not the focus of this work, 
as we assume that computers will continue to take over this computational work. We concentrate on important, 
flexible operations that are as universal as possible. In doing so, we rely on the object of the structured table. A 
structured table can represent a number of any type, but also texts and structured collections of text and 
numbers. This means that the focus is no longer only on individual data operations such as addition, 
multiplication, sine, root, etc., but also on mass data operations such as selecting (choosing), sorting, 
aggregating, restructuring, joining (merging tables), etc. The work clearly shows that these operations can also 
be used to develop new, simpler solutions for the problems now being dealt with at school. Simpler, more 
universal algorithms that can be programmed by anyone should be taught at school. The work on the data 
model o++o was strongly motivated by the Relational data model with its language SQL and the language 
CONVERT, which tried to extend the flat table model to hierarchical data structures.    
 
Key-Words: - data model, structured tables, math lessons, simple, easy-to-understand and easy-to-program 

algorithms, tabment, o++o, end-user language, algebraic mass-data operations, school.  
 
Received: April 22, 2024. Revised: November 16, 2024. Accepted: December 18, 2024. Published: January 14, 2025.    
 
 
1  Introduction 
This paper attempts to show that students' problem-
solving skills could be improved by using the data 
model o++o for tabments (structured TABles + 
structured docuMENTs) in school. Since computers 
exist today, it is no longer necessary to teach the 
most efficient algorithms. Simple algorithms are 
often easier to understand, but often more 
inefficient. However, this is no longer a 
disadvantage in the age of digitalization. Simple 
algorithms are of course also easier to program. 
Anyone who can convert a problem into computer 
code or understand a code can also better understand 
and interpret the computer results and verify the 
correctness of the result. If necessary, they can 
improve an incorrect or undesirable result by 
modifying the corresponding computer program. If 
this is possible without additional programmers, 
programming efficiency increases considerably. We 
put forward the following hypotheses: 

1. Understanding basic arithmetic operations is 
very important for people's ability to think 
logically. 

2. Today, we believe that less than one percent 
of people are able to program the decimal 

number algorithms of basic arithmetic 
operations. 

3. Anyone who can program an algorithm in a 
computer language has a better 
understanding of it. 

4. The decimal number algorithms for 
multiplication and division are too 
complicated. If you don't perform them for 
several decades, you often forget them.  

5. The (p,q) formulas taught at school for 
determining the zeros of second-degree 
polynomials are too specific and should be 
replaced by more universal, simpler 
algorithms for determining the zeros of 
more general functions.  

6. Teachers and students can manage the 
marks themselves.  

7. Selection is a very important operation that 
is not yet given enough attention in school 
mathematics. It is also used sensibly in 
number theory below.   

Conclusion: Simpler, more universal algorithms 
that can be programmed by anyone must be taught 
at school.  The theoretical foundation for o++o is the 
algebraic specification language published in [1], 
[2]. With o++o an attempt was made to generalize 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 134 Volume 22, 2025



the Relational data model [3], [4] and SQL [5], [6]. 
o++o uses structured tables, which were called in 
CONVERT [7] hierarchical. By this data model, the 
development of o++o was motivated, too. One of 
the most important operations of the data model 
o++o, the stroke-list-operation stands behind the 
gib-statement. A formal specification of it is 
published for example in [8]. The restruct-operation 
of [9] had similar goals, but restruct is not so 
expressive as the gib-statement. By gib additionally 
for example aggregations can be realized. The 
approach on o++o was generalized to documents 
with the dawn of XML and XQuery, [10]. Problems 
mentioned in [11] like “false drop” were important 
for our development.  The ideas of formalization of 
[12] influenced also our early motivation.  
  
 

2  Counting, a Basic Skill 
Counting is the simplest operation considered here, 
so we do not need to go into it in detail. Counting 
means adding one for each new sub-object, hence 
the notation ++1. ++ (sum) stands for many plus 
signs. 
  

count.otto: Count some names 
Thor Jens Peter Nikolaus Bernd Gerd Siegfried 
++1 
Result (tab) 
ZAHL 
7 

 
 

3  Addition 
The addition can be carried out in o++o in the same 
way as with any calculator. However, in order to 
better understand the operation, further algorithms 
and operations will be presented. 
 

add_term.otto: seven plus eight 
7+8 
Result (tab) 
ZAHL 
15 

  
Column names are assigned using assignments 

(:=). They can make comments superfluous. You 
cannot do without them for more complex problems. 

 
add_tags.otto: seven plus eight 
BOYS:=7 
GIRLS:=8 
PEOPLE:=BOYS+GIRLS 
Result (tab) 
BOYS,GIRLS,PEOPLE 
7    8     15 

In the following, pred denotes the predecessor, l 
stands for list, and x .. y generates all numbers from 
x to y. By the first line, each of the numbers 1 to 8 is 
tagged by SU1. next can be considered as a binary 
operation. Binary operations are always written 
infix. 

 
add_next.otto: seven plus eight 
SU1l:= 1 ..8  
SU  := 7+1 next SU pred +1 at SU1 
Result (tab) 
SU1,SU l 
1    8 
2    9 
3   10 
4   11 
5   12 
6   13 
7   14 
8   15 

 
The while loop in o++o has been somewhat 

syntactically sugar-coated. The first column does 
not need to be programmed. It always contains the 
values 1 2 3 ... . while is a ternary operation. The 
second and third argument are separated by !. If a 
program-line starts with more than 3 blanks, then it 
is a logical part of the preceding line.  

 
add_while.otto: seven plus eight 
SU1,SU l:= 7+1 while SU1 <=8 !  
           SU pred +1 
Result (tab) 
SU1, SU l 
1     8 
2     9 
3    10 
4    11 
5    12 
6    13 
7    14 
8    15 

 
The +coll operation is a "union operation". It is 

simpler than addition. It is applied here to the two 
lists below. These two lists are simply merged. No 
duplicates are removed, as with the set-theoretical 
union.  

 
add_union.otto: seven plus eight 
Thor Jens Peter Nikolaus Bernd Gerd Siegfried 
+coll Freya Lynn Gisela Marie Clara Sieglinde  
      Sophia Brunhilde  
++1 
Result (tab) 
ZAHL 
15 

 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 135 Volume 22, 2025



4  Multiplication 
mult_term.otto: seven times eight 
7*8 
Result (tab) 
ZAHL 
56 

 
The list of boys is assigned the name BOYl (l 

abbreviated list) below. This assigns the name (tag) 
BOY to each boy. The most important part of the 
following program is the keyword at. This appends 
the list of girls to each boy. This means that each 
girl appears seven times. By gib GIRLl, these seven 
lists are combined into one list with duplicates and 
can then be counted without any problems.  

 
mult_simple.otto: seven times eight 
(names) 
BOYl:=  Thor Jens Peter Nikolaus Bernd 
Gerd 
        Siegfried 
GIRLl:= Freya Lynn Gisela Marie Clara 
Sieglinde  
        Sophia Brunhilde at BOY 
gib GIRLl 
++1 
Result (tab) 
ZAHL 
56 

The intermediate result after the first two program lines 
(tabh). 
BOY,      GIRLl l  
Thor      Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Jens      Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Peter     Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Nikolaus  Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Bernd     Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Gerd      Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 
Siegfried Freya Lynn Gisela Marie Clara 
Sieglinde Sophia Brunhilde 

 
The third multiplication program presents a 

simplified gib-instruction. Below, only the count 
aggregation is executed. The corresponding 
elements are counted for one column of each 
hierarchy level.  

 
 
 
 

mult_simple_gibagg.otto: seven times 
eight 
BOYl := Thor Jens Peter Nikolaus Bernd  
        Gerd Siegfried 
GIRLl:= Freya Lynn Gisela Marie Clara 
        Sieglinde Sophia Brunhilde  
        at BOY 
gibagg ++1 
Result (tab) 
BOYCNT,GIRLCNT  
7      56 

 
The operation *coll is rarely used in o++o. 

However, this "cross product" (Cartesian product) is 
presented here for the sake of completeness.  

 
mult_cart_prod.otto: seven times eight 
Thor Jens Peter Nikolaus Bernd  
     Gerd Siegfried 
*coll Freya Lynn Gisela Marie Clara  
      Sieglinde Sophia Brunhilde 
++1 
Result (tab) 
ZAHL 
56 

Intermediate result after the second line (tab) (excerpt)  
WORT,     WORT l 
Thor      Freya 
Thor      Lynn 
Thor      Gisela 
Thor      Marie 
Thor      Clara 
Thor      Sieglinde 
Thor      Sophia 
Thor      Brunhilde 
Jens      Freya 
Jens      Lynn 
. . . 
Gerd      Brunhilde 
Siegfried Freya 
Siegfried Lynn 
Siegfried Gisela 
Siegfried Marie 
Siegfried Clara 
Siegfried Sieglinde 
Siegfried Sophia 
Siegfried Brunhilde 

 

x *l y turns x into a list of y x-objects. In many 
programming languages, the operation is called 
make.   

 
 
 
 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 136 Volume 22, 2025



mult_mal_l_cnt.otto: seven times eight 
BOYl:=Thor Jens Peter Nikolaus  
      Bernd Gerd Siegfried 
*l 8 
gib BOYl 
++1 
Result (tab) 
ZAHL 
56 

The intermediate result after the second line (tabh) 
BOYl l 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 
Thor Jens Peter Nikolaus Bernd Gerd 
Siegfried 

 
mult_mal_l.otto: seven times eight 
7 *l 8 
++ 
Result (tab) 
ZAHL 
56 

The intermediate result after the first program line 
(tabh) 
ZAHLl 
7 7 7 7 7 7 7 7 

 
In the following, the first level of the BOYl l 

table does not contain a column name, which is why 
only one column appears in the overall result.   

 
mult_mal_l_gibagg.otto: seven times 
eight 
BOYl:= Thor Jens Peter Nikolaus Bernd  
       Gerd Siegfried 
*l 8 
gibagg ++1 
Result (tab) 
BOYCNT 
56 

 
In ancient Egypt and Babylon, multiplication 

was reduced to addition, using an efficient doubling 
algorithm. 

 

mult_babylon.otto: 18 * 117  
NR,F1,POT2 l:=18,1 while POT2 <= 117 !  
              preds+preds  
gib F1,POT2 l- 
POT2SUM,F1SUM:=(POT2,F1) next  
          (preds + (POT2,F1)) 
          if POT2SUM pred +POT2<=117! 
          preds at POT2 
Result (tab) 
F1 , POT2 ,POT2SUM,F1SUM l- 
1152 64     64     1152 
 576 32     96     1728 
 288 16    112     2016 
 144  8    112     2016 
  72  4    116     2088 
  36  2    116     2088 
  18  1    117     2106 

 
The number in the last column and last row 

represents the final result. preds abbreviates the 
tuple of the predecessor. In the above while-
statement, it stands for (F1 pred, POT2 pred) and in 
the last line it abbreviates (POT2SUM pred, F1SUM 

pred) 
Now follows the multiplication program that 

comes closest to written multiplication. However, 
the operations used (*mat and cross) have probably 
a broader application in mathematics and IT 
practice.  

 
mult_mat_cross.otto: 117 *18 
100 10 7 *mat (10,8) 
cross ++ 
Result (tab) 
ZAHL ,ZAHL ,SUM? l 
1000  800   1800 
 100   80    180 
  70   56    126 
1170  936   2106 

 
It should be noted that the list 100 10 7 can be 
generated from 117: 
117 cut 1 zahl * (100 10 1)  
1 10 100 is obtained as follows: 
Xl:= 0 ..2  
XPOT:=10 ^ X  
and (10,8) results from  
10 8 transpose 
Finally, we remark that the operation cross can be 
omitted:  
100 10 7 *mat (10,8) ++ 

gives also the product. 
 

The following program is also important, as a 
broadly usable concept is also applied here. The 
next-operation below adds a new column GIRLS to 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 137 Volume 22, 2025



the BOY column. The first value is determined by 
the first expression (8) and all others result from the 
predecessor (pred) by adding 8 in each case. The 
last row is not selected here.  

 
mult_next.otto: seven times eight 
BOYl:= Thor Jens Peter Nikolaus Bernd  
       Gerd Siegfried 

GIRLS := 8 next GIRLS pred + 8 at BOY   
Result (tab) 
BOY,      GIRLS l 
Thor       8 
Jens      16 
Peter     24 
Nikolaus  32 
Bernd     40 
Gerd      48 
Siegfried 56 

 
The following while-loop allows a compact 

formulation of multiplication. Two columns are 
introduced here at the same time. The first column 
BOY takes the values 1, 2, 3, ... etc. This has been 
set by default. This "syntactic sugar" means that the 
calculations for the first column no longer need to 
be specified. The first value of the GIRLS column is 
again derived from 8 and all other values are 
determined using the expression GIRLS pred +8. 
The calculation takes as long as the while condition 
BOYS <= 7 is fulfilled.  

The notion “syntactic sugar“ describes not an 
essential new concept. It is introduced to simplify 
the application of the concept.  

 
mult_while.otto: seven times eight 

BOYS,GIRLS l := 8 while BOYS <= 7 ! preds +8 
Result (tab) 
BOYS,GIRLS l 
1     8 
2    16 
3    24 
4    32 
5    40 
6    48 
7    56 

 
 
5  Division 
The following program for a division is essentially 
the same as the program above. Only the while 
conditions are different and the result is in the first 
column. 
 
 

int_div.otto: fifty-six divided by eight  
BOYS,GIRLS l := 8 while GIRLS <= 56 ! 
                preds +8 
Result (tab) 
BOYS,GIRLS l 
1     8 
2    16 
3    24 
4    32 
5    40 
6    48 
7    56 

 
 

6  Extrema  
The following are simple examples of maximum 
aggregation. 
  
maximum1.otto 

1 3 7 3 5 max 
Result (tab) 
ZAHL 
7 

 
maximum2.otto: Calculate the maximum of 
three numbers of different types. 

4/7 0.53 0.54 max 
Result (tab) 
RATIO 
4/7 

  
In the following, maxima are formed not only 

from lists of numbers, but also from tuples of 
expressions. Since the comma is a "normal" 
operation that is calculated from "left to right", you 
have to be careful. The last addition of 0.11 is 
applied to each component of the triple 1.2,1.,1.1. 
This results in the triple 1.31,1.11,1.21. The first 
component is then the maximum. 

 
maximum3.otto: Maximum of comma-
separated expressions 

1+0.2, 1st, 1.1+0.11 max 
Result (tab) 
PZAHL 
1.31 

 
The semicolon is also used to form pairs. 

However, it separates more sharply, which is why 
the last addition is only applied to the third 
component.  

 
 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 138 Volume 22, 2025



maximum4.otto: Maximum of expressions 
when a semicolon is used 

1+0.2, 1.; 1.1+0.11  
max 
Result (tab) 
PZAHL 
1.21 

 
By 1 .. 10 the numbers 1 2 3 4 5 6 7 8 9 10 are 

generated. The sin-function is applied to each of the 
numbers. The maximum of these 10 function values 
is then output.   

 
maximum5.otto: Maximum of ten function 
values 

MAX10SINE:=1 .. 10 sin max 
Result (tab) 
MAX10SINE 

0.989358246623 

 
In contrast to “..” , “...” is a ternary function. 

Below, “...” has the input values “1” (start value), 
“2” (end value) and “0.000’1” (increment). The sin-
function is applied to each of the 10’000 numbers 
generated and the largest is then output. It represents 
an approximation for the local maximum of the sin- 
function in the interval [1;2]. The apostrophe is used 
to make numbers easier to read. It is an idea of 
Switzerland.  

 
maximum6.otto: Approximation of a local 
maximum 

LOCAL_MAX_SINE:=1 ... 2! 0.000’1 sin max 
Result (tab) 
LOCAL_MAX_SINE 

0.999999999993 
 

Now the same program is applied to the 
parabola "-X2 + X" in the interval [-1;3]. The 
coefficients -1 1 0 could also have been written in 
brackets [-1 1 0].  

 
maximum7.otto: Local maximum of the 
parabola "-X^2 + X" opened downwards 

LOCAL_MAX_PARABOLA := -1 ... 3!0.0001  
                                                  poly -1 1 0 max 
Result (tab) 
LOCAL_MAX_PARABOLA 

0.25 

 
 
 
 
 

maximum8.otto: Maximum of the third-
degree polynomial "-X^3 + X^2" in the 
interval [0;3] 

LOCAL_MAX_POLYNOMIAL_GRADE3:=0 ... 3!0.1 
             poly [-1 1 0 0] max   
Result (tab) 
LOCAL_MAX_POLYNOMIAL_GRADE3 

0.147 

 
We recognize that we can determine local 

extreme values without understanding differential 
calculus. 
 
 
7 Area and Perimeter Calculations 
circle.otto: Area and circumference of a 
circle with radius 2.34 

AREA:= 2.34 ^ 2 * pi 
PERIMETER:= 2.34 * 2 * pi 
Result (tab) 
AREA ,       PERIMETER     
17.202104734 14.7026536188 

 
circles.otto: Area and circumference of 
3 circles 

RADIUSl := 2.34  3.456  44.999 
AREA:=RADIUS ^ 2 * pi 
PERIMETER:=RADIUS * 2 *pi   
rnd 3 
Result (tab) 
RADIUS, AREA,    PERIMETER l 
 2.340    17.202  14.703 
 3.456    37.523  21.715 
44.999  6361.442 282.737 

 
 rectangle.otto: Area and perimeter of a 
rectangle 

AREA:=2.34 *5.67 
PERIMETER:=2.34 + 5.67 * 2 
Result (tab) 
AREA,   PERIMETER 
13.2678 16.02 

 
Note in the above PERIMETER formula that no 

brackets are required, as the calculation is simply 
from left to right.  

 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 139 Volume 22, 2025



rectangles1.otto: Area and perimeter of 
four rectangles with given edge lengths 

<TAB! 
A,   B  l 
2.34 5.50  
3.45 6.60  
6.78 7.70  
9.99 8.80  
!TAB> 
AREA := A * B 
PERIMETER := A + B * 2  
rnd 2  
Result (tab) 
A ,  B ,  AREA ,PERIMETER l 
2.34 5.50 12.87 15.68 
3.45 6.60 22.77 20.10 
6.78 7.70 52.21 28.96 
9.99 8.80 87.91 37.58 

 
rectangles2.otto: Rectangle 
calculations, where the edges are given 
in separate lists. Both four-element 
lists are connected by a unary position 
join. 

Al:= 2.34 3.45 6.78 9.99 
Bl:= 5.5    6.6   7.7   8.8 
posjoin2  
AREA := A * B 
PERIMETER := A + B * 2  
rnd 2  
Result (tab) 
A,   B,   AREA, PERIMETER l 
2.34 5.50 12.87 15.68 
3.45 6.60 22.77 20.10 
6.78 7.70 52.21 28.96 
9.99 8.80 87.91 37.58 

 
After posjoin2, the sub-table is created with the 

header A,B l of the final result. posjoin2 is an 
abbreviation for posjoinposjoin (analogous to + and 
++). 

In the following program, the three side lengths 
of a triangle are given. 

 
triangle.otto: Calculation of the area 
of a triangle with 3 given side lengths  

AREA := 2.34 3.45 4.56 areatriangle rnd 2 
Result (tab) 
AREA 

3.95 

 
triangles.otto: Calculation of two 
triangular areas given the corner 
coordinates  
<TAB! 
AX, AY, BX, BY, CX, CY l 
1   2   3   5   5   6 

2   3   4   5   2   7 
!TAB> 
C := AX - BX ^ 2 + (AY - BY ^ 2) sqrt 
B := AX - CX ^ 2 + (AY - CY ^ 2) sqrt 
A := BX - CX ^ 2 + (AY - CY ^ 2) sqrt 
AREA:= A,B,C transpose areatriangle 
rnd 2 
Result (tab) 
AX ,AY ,BX ,BY ,CX ,CY ,C,   B ,  A ,  
AREA l 
1   2   3   5   5   6   3.61 5.66 4.47 
8.06 
2   3   4   5   2   7   2.83 4.00 4.47 
5.57 

 
Area_and_perimeter_circle.otto: 
Approximation of half the area and half the 
circumference of a circle with a radius of 1 
Xl:= 0 ...1!0.000'001 
Y:= X poly [-1 0 1] sqrt  
RECTANGLE:= Y *0.000'001  
SECANT := Y - Y succ ^ 2 +  
          (0.000'001 ^ 2) sqrt 
gib AREA,PERIMETER  
    AREA:=RECTANGLE!++  
    PERIMETER:=SECANT!++ 
*2 
Result (tab) 
AREA,         PERIMETER 
1.57079732621 3.1415926533 

 
The above calculation requires relatively large 

amounts of resources as it has not been optimized, 
contrary to examples maximum5 – maximum8. 
Here, we rely on fast computers. (Sub-) Terms are 
optimized, if they start with “..” or “…” and end 
with an aggregation like max, min, ++, ** etc.. In 
this case classical loops are used, internally.  

 
area_and_length_of_rope.otto: Length of 
a hanging rope and area under the rope.  
Xl:= -2 ...2!0.000'1 
Y:= e ^ X + (e ^ (X* -1)) * 0.5  
RECTANGLE:= Y *0.000'1  
SECANT := Y - Y succ ^ 2 +  
          (0.000'1 ^ 2) sqrt 
gib AREA,LENGTH  
    AREA:=RECTANGLE!++  
    LENGTH:=SECANT!++ 
Result (tab) 
AREA,         LENGTH 
7.25409704131 7.25372081461 

Result of the following “subprogram” (strucdiagram 
bar)  
Xl:= -2 ...2!0.01 
Y:= Y:= e ^ X + (e ^ (X* -1)) * 0.5   
X::=X text  

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 140 Volume 22, 2025



 

 
Fig. 1: Bar diagramm of a hangig rope 
 

The X values had to be converted into text so 
that they are not interpreted as additional columns 
but as signatures. This diagram shows a large 
number of rectangular columns. They illustrate that 
the blue area is approximately filled by the 
rectangles. The cosh-function can be interpreted as a 
sagging rope. 7.25 is then the length of the rope.  
 
 
8  Zero Determination 
integer_zero.otto: Find the integer 
zeros of the parabola "X^2-9X+20" in the 
interval [-100;100] 

Xl:= -100 .. 100 
Y:=X poly [1 -9 20] 
sel Y=0 
Result (tab) 
X ,Y l 

4  0 
5  0 

 
This program is probably methodologically 

valuable as it directly implements the definition of 
the zero. The fact that not every zero can be 
determined in this way due to the limitations of the 
number ranges in the computer must be explained to 
the pupils. We consider the determination of zeros 
for parabolas according to the formulas:  
X1 = p:2 ^ 2 - q sqrt - (p:2) 

X2 = p:2 ^2 - q sqrt * -1 - (p:2)  
are not universal enough and too complicated, so 
that they could possibly be removed from some of 
the school curriculums. In the following, we will not 
give the programs for the zeros according to the 
regula falsi, the Newton method and the bisection 
method, although they can be used relatively 
universally and are also efficient. On the other hand, 
we want to give even simpler algorithms. They have 
never been mentioned in the past due to their 
inefficiency.  
 
zeropoint.otto: Determine the zero of 
the sine function in the interval [3;4] 
Xl:= 3 ...4 !0.000'001 
Y:=X sin 
sel Y >0 
last 
Result (tab) 
X ,      Y l 
3.141592 6.53589793076e-007 

 
zero.otto: Determine the zeros of the 
sine function in the interval [3,10] 
Xl:= 3 ...10 !0.000'01 
Y := X sin 
sel Y succ * Y <=0 
Result (tab) 
X ,     Y l 
3.14159  2.65358979335e-006 
6.28318 -5.30717958669e-006 
9.42477  7.9607693791e-006 

 
If, for example, the first zero point is to be 

determined even more precisely, you can enter a 
very small interval around this approximation and 
reduce the step size accordingly: 

 
zero_more_excact.otto: Improve the 
accuracy of the first zero digit 

Xl:= 3.14159 ...3.1416 ! 
     0.000'000'001 
Y := X sin 
sel Y succ * Y <=0 
Result (tab) 
X ,         Y l 
3.141592653 5.89793225706e-010 

 
It is obvious that the above two programs can 

also be applied to polynomials of third and higher 
degree and are therefore more universally applicable 
than the (p,q)-formula.   

 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 141 Volume 22, 2025



 
pythagoras_hypo.otto: Compute the 
hypothenuse with the formula a2 + b2 = c2 

A:=  3 
B:=  5 
Cl:= 3 ...7!0.000'01 
PYTHAGORAS:= C,A,B ^2 -- 
sel PYTHAGORAS succ *PYTHAGORAS <=0 
Result (tab) 
A ,B ,(C      ,PYTHAGORAS  l) 
3  5   5.83095 -2.20975000076e-005 

 
The hypothenuse has approximately a length of 

5.83095. In the computation, we do not need a 
square root.  -- subtracts all components from the 
first one.  

 
pythagoras_kathe.otto: Compute the Kathe 
with the formula a2 + b2 = c2 

A := 3 
Bl:= 3 ...7!0.000'01 
C := 6 
PYTHAGORAS:= C,A,B ^2 -- 
sel PYTHAGORAS succ *PYTHAGORAS <=0 
Result (tab) 
A ,(B      ,PYTHAGORAS l),     C 
3   5.19615 2.51774999924e-005 6 

 
percentage_calculation.otto: o++o offers 
four percent operations: % +% -% and net 

GROSS:=200 
NETl:= 150 ...200!0.000'1 
F:=NET +% 19 - 200 
sel F succ * F <0 
OTTONET:=GROSS net 19  
GROSS2:=OTTONET +% 19 at GROSS 
MINUS19PROZ:=GROSS -% 19 
Result (tab) 
GROSS ,GROSS2 ,OTTONET      ,MINUS19PROZ  
         ,(NET     ,F      l) 
200    200.    168.067226891 162.  
           168.0672 -3.20000000045e-005 

 
We believe that it is not sufficient to provide 

only the simple functions +% and -%. Often the 
question arises to compute the net value, if the gross 
value and the tax are given. o++o offers here the 
operation net, such that the user does not need to 
compute zeros or other more complicated formulas.  
 
 
9  Number Theory  
In this very short section, we will also restrict 
ourselves to particularly simple algorithms. 
 
 

 
lcm.otto: The least common multiple of 
12 and 8 
Xl:= 1 .. 12 *8 
sel X rest 12 = 0 
min 
Result (tab) 
ZAHL 
24 

 
gcd.otto: The greatest common divisor of 
14 and 21 
Xl:= 1 .. 14  
sel 21 rest X = 0 & 14 rest X = 0 
max 
Result (tab) 
ZAHL 
7 

 

x rest y is an abbreviation for x divrest y nth 2. 
 
sieve_eratosthenes.otto: Find all prime 
numbers under one hundred. 
Xl:=2 .. 50 
Yl:=2 .. 10 at X 
PROD:=X*Y 
gib PRODm #set of all products  
PRIMl:= 2 ..100 
sel- PRIM in PRODm  
proj- PROD 
Result (tabh) 
PRIMl 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 
53 59 61 67 71 73 79 83 89 97 

 
 
10    o++o-Proofs 
Mathematical proofs play a minor role in today's 
school and outside the world of mathematicians. 
Nevertheless, everyone needs confidence in the 
results of the calculator or pocket calculator. When 
someone is confronted with a new calculator or 
system, the first thing they do, is set problems, 
whose solution they already know, e.g. 2 times 3. 

 
commutativity.otto: "Prove" the com-
mutative law of multiplication for 
natural numbers. 
Xl:= 1 .. 1'000  
Yl:= 1 .. 1'000 at X 
sel- X*Y=Y*X 
Result (tab) 
X ,Yl l 
 

 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 142 Volume 22, 2025



Obviously not all the numbers have been 
calculated here. For a third class, however, this 
could be satisfactory. 

 
avg_proof.otto: "Proof" that ++: can 
simply be traced back to ++ and ++1. 
RANDOMNRl:=1 ..x 10!10 
Xl:=1 ..x RANDOMNR!RANDOMNR 
SUM:=Xl ++ 
CNT:=Xl ++1 
OTTOAVG:=Xl ++: 
MYAVG:=SUM:CNT 
#sel- MYAVG=OTTOAVG 
Result (tab) 
RANDOMNR ,SUM ,CNT ,OTTOAVG,      
    MYAVG,        Xl l 
 4        10    4   2.5            
    2.5           3 2 2 3 
10        56   10   5.6            
    5.6           2 5 5 4 6 8 10 8 2 6 
 9        52    9   5.77777777778 
    5.7777777777  8 9 2 3 7 2 6 5 9 9 
 2         2    2   1.            
    1.           1 1 
 6        20    6   3.33333333333 
    3.33333333333  1 5 4 4 4 2 
 1         1    1   1.      
    1.           1 
 2         4    2   2.          
    2.            2 2 
 3         4    3   1.33333333333 
    1.33333333333 2 1 1 
 6        21    6   3.5        
    3.5             3 3 6 1 5 3 
 7        27    7   3.85714285714 
    3.85714285714   1 1 3 7 4 5 6 

 
If the selection (last line) is activated, the first 

line could be improved: 
RANDOMNRl:=1 ..x 1000!1000 
and receives the empty list of the above type. 
 
 
11    Marks Management 
As is well known, the average of numbers is 
calculated as the quotient of the sum of the numbers 
and the number of numbers.  ++: is therefore an 
abbreviation for ++:++1. 
 
avg.otto: average of several marks. 

AVERAGE := 1 2 3 2 1 ++: 
Result (tab) 
AVERAGE 

1.8 

 
 
 

Table 1. marks1.tabh is a tabment in “horizontal 
tab” format 

marks1.tabh 
SUBJECT, MARKl l 
Math     1 2 3 2 
Phy      1 3 5 3 1 
Eng      5 4 3 1 2 

 
The following four programs use Table 1.  
avg_all.otto: Average of all numbers in 
a table 

marks1.tabh ++: 
Result (tab) 
PZAHL 

2.57142857143 

 
avg_avg.otto: Averages for all subjects 
and the average of these averages. 

marks1.tabh 
AVGSUBJECT:=MARKl ++: 
AVGTOTAL:= AVGSUBJECTl ++: 
rnd 1 
Result (tabh) 
AVGTOTAL ,(SUBJECT ,AVGSUBJECT ,MARKl l) 
2.5        Math     2.0         1 2 3 2 
           Phy      2.6         1 3 5 3 
1 
           Eng      3.0         5 4 3 1 
2 

 
total.otto: Set the average and the mean 
absolute deviation from the average 
"below" each collection. 

marks1.tabh  
total ++:,mad 
rnd 1 
Result (tabh) 
SUBJECT ,MARKl l 
Math     1 2 3 2 2.0 0.5 
Phy      1 3 5 3 1 2.6 1.3 
Eng      5 4 3 1 2 3.0 1.2 
avg      2.6 
mad      1.1 

 
totalhierar.otto: Calculate two 
aggregation types of the marks in both 
parent hierarchies. MARK is the only 
numeric column in the given table, so 
only MARK aggregations are calculated.   

marks1.tabh  
totalhierar ++:,mad 
rnd 1 
Result (tabh) 
MARKAVG ,MARKMAD ,(SUBJECT ,MARKAVG2 
,MARKMAD2 ,MARKl l) 
2.6      1.1       Math     2.0       

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 143 Volume 22, 2025



0.5       1 2 3 2 
                   Phy      2.6       
1.3       1 3 5 3 1 
                   Eng      3.0       
1.2       5 4 3 1 2 

 
cross.otto: Calculate the grade averages 
horizontally and vertically.  
<TABH! 
SUBJECT,ERNSTl,CLARAl,SOPHIAl,ULRIKEl,KAETHEl,CLAUDIAl l 
Math    2 3 2  1 1 2  1 3 2   1 2 3 3 1 2     1 1 
Physics 2 3    4 2    1 2     2 5     1 1     2 3         
German  1 1           3 5     4  
!TABH> 
cross ++: 
rnd 1 
Result (tabh) 
SUBJECT,ERNSTl ,CLARAl ,SOPHIAl ,ULRIKEl ,KAETHEl ,CLAUDIAl ,AVG? l 

Math     2.3     1.3     2.0      2.3      1.5      1.0       1.8 
Physics  2.5     3.0     1.5      3.5      1.0      2.5       2.3 
German   1.0             4.0      4.0                         2.8 
avg      2.0     2.0     2.4      2.9      1.3      1.8       2.1 

Result if cross is replaced by cross+ (tabh) 
SUBJECT ,ERNSTl ,  CLARAl ,  SOPHIAl , ULRIKEl ,   KAETHEl ,CLAUDIAl ,AVG? l 

Math     2 3 2 2.3 1 1 2 1.3 1 3 2 2.0 1 2 3 3 2.3 1 2 1.5  1 1 1.0   1.8 
Physics  2 3 2.5   4 2 3.0   1 2 1.5   2 5 3.5     1 1 1.0  2 3 2.5   2.3 
German   1 1 1.0             3 5 4.0   4 4.0                          2.8 
avg      2.0       2.0       2.4       2.9         1.3      1.8       2.1 

 
The given table seems to represent the grades of 

a gradebook in a compact way. If all subjects and 
names already exist in this table, no new subject and 
no new name need to be inserted when inserting a 
grade, even if the corresponding grade list is still 
empty. A hierarchical table of the type 
SUBJECT,(NAME,MARKl m)m contains each sub-
ject only once, but the names must be inserted 
several times. If this amount of data is stored in a 
flat table SUBJECT,NAME,MARK l, even more 
redundancy is created and even more memory space 
is wasted. In a flat set (relation of the relational data 
model), a time or position column would also have 
to be introduced, which makes the whole thing even 
more unwieldy and inefficient.   

The columns and rows in the table above could 
also be swapped. 
 
 
12    Conclusions and Future Work 
We tested o++o already 10 years ago successfully in 
a seventh class of a Gymnasium. But, in the last 
years, we improved and added many operations and 
concepts, such that we hopefully will have yet 
greater success in teaching and applying o++o.  

Then Chi-square test has to be included, for 
example. Although o++o algorithms seem to be 
simpler than the algorithms taught in school now, it 
will probably take many years until o++o-
algorithms will be a part of the curricula of schools. 
So, o++o has to be taught in schools, probably it can 
influence and improve the lessons of all classes 
from 1 to 12.   

Nevertheless, there remains also a lot of 
implementational work. First of all, o++o has to be 
put on top of Relational and NoSQL database 
systems. Here, some optimization techniques are 
needed. This requires for example a good 
understanding of selection- and join- operations. In 
the Relational data model, it is possible to commute 
content-oriented conditions always. This does not 
hold for selections in structured tables, such that 
more sophisticated rules have to be applied.  

o++o-programs for extrema of or areas under 
functions seem to be very inefficient, because of 
large amounts of storage area, which is needed for a 
statement like 0 … 10!0.000’001. This storage 
area is not needed, if the statement ends with an 
aggregation like ++ or max, for example. We 
optimized such subexpressions already by loops.  

In which age groups of pupils o++o algorithms 
are useful? 

Examples of stroke-list-operation (gib) can be 
taught on paper already for preschool children. 
Table loops probably in lower school and the 
application of integral and differential calculus in 9 
class, because you don’t have to understand these 
complicated theories.  

 
 

Acknowledgment: 

I thank Heinz Kaphengst and Horst Reichel for the 
development of the algebraic specification language 
for partial operations and Rüdiger Achilles for 
valuable remarks to this paper. Further, thanks are 
directed to the following computer experts for their 
valuable contributions to the older implementations 
of the o++o system: Wolfgang Reichstein, Dmitri 
Schamschurko, Martin Schnabel, Andreas 
Hauptmann. Stephan Schenkl and Eicke Redweik 
worked for the project from 2019-2021 “Intelligent 
Analysis and Visualization of German Wikipedia”, 
which was funded by EFRE EU and IB Sachsen-
Anhalt. 
 

 

References: 
[1] H. Kaphengst, H. Reichel, "Algebraische 

Algorithmentheorie", VEB Robotron, Wiss. 
Informationen und Berichte, Nr. 1/71 Reihe 
A, Sommer 1971. 

[2] H. Reichel "Initial Computability, Algebraic 

Specifications, and Partial Algebras", 
Claredon Press, Oxford, UK, 1987. 

[3] E.F.Codd, „A Relational Model of Data for 
Large Shared Data Banks“, Communications 

of the ACM, Vol. 13, No. 6 June 1970, S. 
377-387. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 144 Volume 22, 2025



[4] E.F. Codd, „Extending the Database 
Relational Model to capture more Meaning“, 
ACM Transactions on Database Systems, 
Vol. 4 , No 4, Dec. 1979, S. 379-434. 

[5] Donald D. Chamberlin, Morton M. Astrahan, 
Kapali P. Eswaran, Patricia P. Griffiths, 
Raymond A. Lorie, James W. Mehl, Phyllis 
Reisner, Bradford W. Wade, "SEQUEL 2: A 
unified approach to data definition, 
manipulation and control" IBM Journal of 

Research of Development, 20(6): pp. 560 - 
575, 1976. 

[6] M. M. Astrahan, D. D. Chamberlain, 
"Implementation of a Structured English 
Query Language", Communications of the 
ACM, 18 10, Oct. 1975 pp. 580-587. 

[7] N. C. Shu, B. C. Housel, V. Y. Lum, 
„CONVERT- A High Level Translation 
Definition Language for Data Conversion“, 
Communications of the ACM, Vol.18, 
Nr.10,Oct., 1975, pp.. 557-567. 

[8] K. Benecke, "A powerful Tool for Object-

Oriented Manipulation", in "Object-Oriented 
Databases: Analysis, Design & Construction 
(DS-4) R.A. Meersmann, W. Kent, S. Khosla 
(editors), Elsevier Science Publisher B.V. 
(North Holland) 1991, pp. 95-121. 

[9] S. Abiteboul, N. Bidot, „Non First Normal 

Form Relations: An Algebra Allowing Data 

Restructuring“, Rapports de Recherche 
No347, Institute de  Recherce en 
Informatique et en Automatique, 
Rocquencourt, France, Nov. 1984. 

[10] W3C,“XQuery 3.1: An XML Query 
Language”, W3C Recommendation 21 
March 2017, Status Update (6 April 2021), 
[Online]. https://www.w3.org/TR/xquery-31/ 
(Accessed Date: December 9, 2024). 

[11] J. D. Ullman, "Principles of Database 

Systems", Computer Science Press, 
Rockville, Maryland 1982. 

[12] H. Zemanek, "Formal Definition the Hard 

Way", Proc. IFIP TC2 Working Conference, 
Vienna 1985; North Holland, pp. 411-417. 

 

 

 
 
 
 
 
 
 
 
 

Copyright Note: 

A commercial use of the paper and its ideas is not 
allowed.  
 
 
Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 
 
Conflict of Interest 
The authors have no conflicts of interest to declare. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2025.22.13 Klaus Benecke

E-ISSN: 2224-3402 145 Volume 22, 2025

https://www.w3.org/TR/xquery-31/
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



