Comments on School Education in Mathematics and Computer Science

KLAUS BENECKE beneckeSysteme Schröders Garten 5, 39175 Gerwisch, GERMANY

Abstract: - This work aims to improve problem-solving skills even for students and adults, who are not so interested in mathematics. This requires simple algorithms. The efficiency of these is not the focus of this work, as we assume that computers will continue to take over this computational work. We concentrate on important, flexible operations that are as universal as possible. In doing so, we rely on the object of the structured table. A structured table can represent a number of any type, but also texts and structured collections of text and numbers. This means that the focus is no longer only on individual data operations such as addition, multiplication, sine, root, etc., but also on mass data operations such as selecting (choosing), sorting, aggregating, restructuring, joining (merging tables), etc. The work clearly shows that these operations can also be used to develop new, simpler solutions for the problems now being dealt with at school. Simpler, more universal algorithms that can be programmed by anyone should be taught at school. The work on the data model o++o was strongly motivated by the Relational data model with its language SQL and the language CONVERT, which tried to extend the flat table model to hierarchical data structures.

Key-Words: - data model, structured tables, math lessons, simple, easy-to-understand and easy-to-program algorithms, tabment, o++o, end-user language, algebraic mass-data operations, school.

Received: April 22, 2024. Revised: November 16, 2024. Accepted: December 18, 2024. Published: January 14, 2025.

1 Introduction

This paper attempts to show that students' problemsolving skills could be improved by using the data model o++o for tabments (structured TABles + structured docuMENTs) in school. Since computers exist today, it is no longer necessary to teach the most efficient algorithms. Simple algorithms are often easier to understand, but often more inefficient. However, this is no longer а disadvantage in the age of digitalization. Simple algorithms are of course also easier to program. Anyone who can convert a problem into computer code or understand a code can also better understand and interpret the computer results and verify the correctness of the result. If necessary, they can improve an incorrect or undesirable result by modifying the corresponding computer program. If this is possible without additional programmers, programming efficiency increases considerably. We put forward the following hypotheses:

- 1. Understanding basic arithmetic operations is very important for people's ability to think logically.
- 2. Today, we believe that less than one percent of people are able to program the decimal

number algorithms of basic arithmetic operations.

- 3. Anyone who can program an algorithm in a computer language has a better understanding of it.
- 4. The decimal number algorithms for multiplication and division are too complicated. If you don't perform them for several decades, you often forget them.
- 5. The (p,q) formulas taught at school for determining the zeros of second-degree polynomials are too specific and should be replaced by more universal, simpler algorithms for determining the zeros of more general functions.
- 6. Teachers and students can manage the marks themselves.
- 7. Selection is a very important operation that is not yet given enough attention in school mathematics. It is also used sensibly in number theory below.

Conclusion: Simpler, more universal algorithms that can be programmed by anyone must be taught at school. The theoretical foundation for $o^{++}o$ is the algebraic specification language published in [1], [2]. With $o^{++}o$ an attempt was made to generalize

the Relational data model [3], [4] and SQL [5], [6]. o++o uses structured tables, which were called in CONVERT [7] hierarchical. By this data model, the development of o++o was motivated, too. One of the most important operations of the data model o++o, the stroke-list-operation stands behind the gib-statement. A formal specification of it is published for example in [8]. The restruct-operation of [9] had similar goals, but restruct is not so expressive as the gib-statement. By gib additionally for example aggregations can be realized. The approach on o++o was generalized to documents with the dawn of XML and XQuery, [10]. Problems mentioned in [11] like "false drop" were important for our development. The ideas of formalization of [12] influenced also our early motivation.

2 Counting, a Basic Skill

Counting is the simplest operation considered here, so we do not need to go into it in detail. Counting means adding one for each new sub-object, hence the notation ++1. ++ (sum) stands for many plus signs.

count.otto: C	Count so	me names			
Thor Jens	Peter	Nikolaus	Bernd	Gerd	Siegfried
++1					
Result (tab)					
ZAHL					
7					

3 Addition

The addition can be carried out in o++o in the same way as with any calculator. However, in order to better understand the operation, further algorithms and operations will be presented.

add_term.otto: seven plus eight
7+8
Result (tab)
ZAHL
15

Column names are assigned using assignments (:=). They can make comments superfluous. You cannot do without them for more complex problems.

add_tags.otto: seven plus eight		
BOYS:=7		
GIRLS:=8		
PEOPLE:=BOYS+GIRLS		
Result (tab)		
BOYS,GIRLS,PEOPLE		
7 8 15		

In the following, *pred* denotes the predecessor, l stands for list, and x ... y generates all numbers from x to y. By the first line, each of the numbers 1 to 8 is tagged by SU1. *next* can be considered as a binary operation. Binary operations are always written infix.

add_next.otto: seven plus eight
SU11:= 18
SU := 7+1 next SU pred +1 at SU1
Result (tab)
SU1,SU l
1 8
2 9
3 10
4 11
5 12
6 13
7 14
8 15

The while loop in 0++0 has been somewhat syntactically sugar-coated. The first column does not need to be programmed. It always contains the values 1 2 3 *while* is a ternary operation. The second and third argument are separated by *!*. If a program-line starts with more than 3 blanks, then it is a logical part of the preceding line.

add_while.otto: seven plus eight
SU1,SU l:= 7+1 while SU1 <=8 !
SU pred +1
Result (tab)
SU1, SU l
1 8
2 9
3 10
4 11
5 12
6 13
7 14
8 15

The +coll operation is a "union operation". It is simpler than addition. It is applied here to the two lists below. These two lists are simply merged. No duplicates are removed, as with the set-theoretical union.

add_union.otto: seven plus eight
Thor Jens Peter Nikolaus Bernd Gerd Siegfried
+coll Freya Lynn Gisela Marie Clara Sieglinde
Sophia Brunhilde
++1
Result (tab)
ZAHL
15

4 Multiplication

<pre>mult_term.otto:</pre>	seven	times	eight	
7*8				
Result (tab)				
ZAHL				
56				

The list of boys is assigned the name *BOYl* (l abbreviated list) below. This assigns the name (tag) *BOY* to each boy. The most important part of the following program is the keyword *at*. This appends the list of girls to each boy. This means that each girl appears seven times. By *gib GIRLl*, these seven lists are combined into one list with duplicates and can then be counted without any problems.

<pre>mult_simpl</pre>	le.otto:	: se	even	times	eight
(names)					
BOY1:= T	hor Je	ns Pe	ter Na	ikolaus	Bernd
Gerd					
Si	legfried	t			
GIRL1:= F	reya L	ynn (Gisela	Marie	Clara
Sieglinde					
Sc	ophia Br	runhil	lde at	BOY	
gib GIRLl					
++1					
Result (tab)					
ZAHL					
56					
The intermed	iate resul	t after t	the first	two progra	am lines
(tabh).					
BOY,	GIRL1]	1			
Thor	Freya	Lynn	Gisel	a Marie	Clara
Sieglinde	Sophia	Brunh	nilde		
Jens	Freya	Lynn	Gisela	a Marie	Clara
Sieglinde	Sophia	Brunł	nilde		
Peter	Freya	Lynn	Gisela	a Marie	Clara
Sieglinde	Sophia	Brunh	nilde		
Nikolaus	Freya	Lynn	Gisela	a Marie	Clara
Sieglinde	Sophia	Brunh	nilde		
Bernd	Freya	Lynn	Gisela	a Marie	Clara
Sieglinde	Sophia	Brunh	nilde		
Gerd	Freya	Lynn	Gisel	a Marie	Clara
Sieglinde	Sophia	Brunk	nilde		
Siegfried	Freya	Lynn	Gisela	a Marie	Clara
Sieglinde	Sophia	Brunk	nilde		

The third multiplication program presents a simplified *gib*-instruction. Below, only the count aggregation is executed. The corresponding elements are counted for one column of each hierarchy level.

<pre>mult_simple_gibagg.otto: seven times eight</pre>
BOYl := Thor Jens Peter Nikolaus Bernd Gerd Siegfried
GIRLl:= Freya Lynn Gisela Marie Clara Sieglinde Sophia Brunhilde at BOY
gibagg ++1
Result (tab)
BOYCNT,GIRLCNT
7 56

The operation **coll* is rarely used in o++o. However, this "cross product" (Cartesian product) is presented here for the sake of completeness.

<pre>mult_cart_</pre>	<pre>_prod.otto: seven times eight</pre>
Thor Jens	Peter Nikolaus Bernd
Gerd	Siegfried
*coll Frey	ya Lynn Gisela Marie Clara
Sie	glinde Sophia Brunhilde
++1	
Result (tab)	
ZAHL	
56	
Intermediate	result after the second line (tab) (excerpt)
WORT,	WORT 1
Thor	Freya
Thor	Lynn
Thor	Gisela
Thor	Marie
Thor	Clara
Thor	Sieglinde
Thor	Sophia
Thor	Brunhilde
Jens	Freya
Jens	Lynn
• • •	
Gerd	Brunhilde
Siegfried	Freya
Siegfried	Lynn
Siegfried	Gisela
Siegfried	Marie
Siegfried	Clara
Siegfried	Sieglinde
Siegfried	Sophia
Siegfried	Brunhilde

x * l y turns x into a list of y x-objects. In many programming languages, the operation is called *make*.

mult_n	nal_l_	cnt.otto): seven ti	mes eig	ht
BOY1:=	Thor	Jens Pet	er Nikolau	IS	
	Bernd	Gerd Si	legfried		
*18					
gib BC)Y1				
++1					
Result (tab)				
ZAHL					
56					
The inte	ermediat	te result af	ter the second	l line (tabł	ı)
BOY1 1	L				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	ried				
Thor	Jens	Peter	Nikolaus	Bernd	Gerd
Siegfr	hoid				

<pre>mult_mal_l.otto: seven times eight</pre>
7 *1 8
++
Result (tab)
ZAHL
56
The intermediate result after the first program line
(tabh)
ZAHL1
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

In the following, the first level of the BOYl l table does not contain a column name, which is why only one column appears in the overall result.

mult_ma	al_1_§	gibagg	g.otto:	sever	n times
eight					
BOY1:=	Thor	Jens	Peter	Nikolaus	Bernd
	Gerd	Sieg	fried		
*1 8					
gibagg	++1				
Result (ta	ab)				
BOYCNT					
56					

In ancient Egypt and Babylon, multiplication was reduced to addition, using an efficient doubling algorithm.

<pre>mult_babylon.otto: 18 * 117</pre>					
NR,F1,POT2 1:=18,1 while POT2 <= 117 !					
		pr	reds+preds		
gib F	1,PO	2 1-			
POT2S	SUM, F1	LSUM:=((POT2,F1) next		
		(preds	5 + (POT2,F1))		
		if POT	2SUM pred +POT2<=117!		
		preds	at POT2		
Result	(tab)				
F1 ,	POT2	,POT2S	SUM,F1SUM l-		
1152	64	64	1152		
576	32	96	1728		
288	16	112	2016		
144	8	112	2016		
72	4	116	2088		
36	2	116	2088		
18	1	117	2106		

The number in the last column and last row represents the final result. preds abbreviates the tuple of the predecessor. In the above whilestatement, it stands for (F1 pred, POT2 pred) and in the last line it abbreviates (POT2SUM pred, F1SUM pred)

Now follows the multiplication program that comes closest to written multiplication. However, the operations used (*mat and cross) have probably a broader application in mathematics and IT practice.

mult_m	at_cı	ross.ott	o: 117	*18			
100 10	100 10 7 *mat (10,8)						
cross	cross ++						
Result (1	tab)						
ZAHL ,	ZAHL	,SUM? 1					
1000	800	1800					
100	80	180					
70	56	126					
1170	936	2106					

It should be noted that the list 100 10 7 can be generated from 117:

117 cut 1 zahl * (100 10 1) 1 10 100 is obtained as follows: X1:= 0 ...2 XPOT:=10 ^ X and (10,8) results from 10 8 transpose Finally, we remark that the operation cross can be omitted: 100 10 7 *mat (10,8) ++ gives also the product.

The following program is also important, as a broadly usable concept is also applied here. The next-operation below adds a new column GIRLS to

the BOY column. The first value is determined by the first expression (8) and all others result from the predecessor (pred) by adding 8 in each case. The last row is not selected here.

<pre>mult_next.otto: seven times eight</pre>				
BOY1:= The	or Jens Peter Nikolaus Bernd			
Gei	rd Siegfried			
GIRLS := 8 n	ext GIRLS pred + 8 at BOY			
Result (tab)				
BOY,	GIRLS 1			
Thor	8			
Jens	16			
Peter	24			
Nikolaus	32			
Bernd	40			
Gerd	48			
Siegfried	56			

The following *while*-loop allows a compact formulation of multiplication. Two columns are introduced here at the same time. The first column BOY takes the values 1, 2, 3, ... etc. This has been set by default. This "syntactic sugar" means that the calculations for the first column no longer need to be specified. The first value of the GIRLS column is again derived from 8 and all other values are determined using the expression *GIRLS pred* +8. The calculation takes as long as the while condition *BOYS* <= 7 is fulfilled.

The notion "syntactic sugar" describes not an essential new concept. It is introduced to simplify the application of the concept.

<pre>mult_while.otto: seven times eight</pre>
BOYS,GIRLS I := 8 while BOYS <= 7 ! preds +8
Result (tab)
BOYS,GIRLS 1
1 8
2 16
3 24
4 32
5 40
6 48
7 56

5 Division

The following program for a division is essentially the same as the program above. Only the while conditions are different and the result is in the first column.

<pre>int_div.otto: fifty-six divided by eight</pre>
BOYS,GIRLS 1 := 8 while GIRLS <= 56 !
preds +8
Result (tab)
BOYS,GIRLS 1
1 8
2 16
3 24
4 32
5 40
6 48
7 56

6 Extrema

4/7

The following are simple examples of maximum aggregation.

maximum1.otto
1 3 7 3 5 max
Result (tab)
ZAHL
7
<pre>maximum2.otto: Calculate the maximum of</pre>
three numbers of different types.
4/7 0.53 0.54 max
Result (tab)
RATIO

In the following, maxima are formed not only from lists of numbers, but also from tuples of expressions. Since the comma is a "normal" operation that is calculated from "left to right", you have to be careful. The last addition of 0.11 is applied to each component of the triple 1.2,1.,1.1. This results in the triple 1.31,1.11,1.21. The first component is then the maximum.

<pre>maximum3.otto:</pre>	Maximum	of	comma-	
separated expres	sions			
1+0.2, 1st, 1.1+0.11 max				
Result (tab)				
PZAHL				
1.31				

The semicolon is also used to form pairs. However, it separates more sharply, which is why the last addition is only applied to the third component.

<pre>maximum4.otto: Maximum</pre>	of	expressions
when a semicolon is used		
1+0.2, 1.; 1.1+0.11		
max		
Result (tab)		
PZAHL		
1.21		

By 1.. 10 the numbers 1 2 3 4 5 6 7 8 9 10 are generated. The *sin*-function is applied to each of the numbers. The maximum of these 10 function values is then output.

<pre>maximum5.otto:</pre>	Maximum	of	ten	function		
values						
MAX10SINE:=1 10	sin max					
Result (tab)						
MAX10SINE						
0.989358246623						

In contrast to "..", "..." is a ternary function. Below, "..." has the input values "1" (start value), "2" (end value) and "0.000'1" (increment). The *sin*function is applied to each of the 10'000 numbers generated and the largest is then output. It represents an approximation for the local maximum of the *sin*function in the interval [1;2]. The apostrophe is used to make numbers easier to read. It is an idea of Switzerland.

<pre>maximum6.otto: Approximation of a local</pre>					
maximum					
LOCAL_MAX_SINE:=1 2! 0.000'1 sin max					
Result (tab)					
LOCAL_MAX_SINE					
0.99999999993					

Now the same program is applied to the parabola " $-X^2 + X$ " in the interval [-1;3]. The coefficients -1 1 0 could also have been written in brackets [-1 1 0].

<pre>maximum7.otto: Local</pre>	. maximum of	f the
parabola "-X^2 + X" o	pened downward	ls
LOCAL_MAX_PARABOLA ::	= -1 3!0.0001	
	poly -1 1 0 max	(
Result (tab)		
LOCAL_MAX_PARABOLA		
0.25		

maximum8.otto: Maximum of the	third-
degree polynomial "-X^3 + X^2"	in the
interval [0;3]	
LOCAL_MAX_POLYNOMIAL_GRADE3:=0 3	!0.1
poly [-1 1 0 0] max	
Result (tab)	
LOCAL_MAX_POLYNOMIAL_GRADE3	
0.147	

We recognize that we can determine local extreme values without understanding differential calculus.

7 Area and Perimeter Calculations

circle.otto: Area and circumference of a
circle with radius 2.34
AREA:= 2.34 ^ 2 * pi
PERIMETER:= 2.34 * 2 * pi
Result (tab)
AREA , PERIMETER
17.202104734 14.7026536188

circles. 3 circle	otto: Are	ea and	circumference	of
RADIUSI :=	2.34 3.456	44.999		
AREA:=RA	DIUS ^ 2 * p	i		
PERIMETER	R:=RADIUS *	* 2 *pi		
rnd 3				
Result (tab)			
RADIUS,	AREA,	PERIME	TER 1	
2.340	17.202	14.70	3	
3.456	37.523	21.71	5	
44.999	6361.442	282.73	7	

rectangle.otto: Area and perimeter of a
rectangle
AREA:=2.34 *5.67
PERIMETER:=2.34 + 5.67 * 2
Result (tab)
AREA, PERIMETER
13.2678 16.02

Note in the above PERIMETER formula that no brackets are required, as the calculation is simply from left to right.

rectangles1.otto: Area and perimeter of
four rectangles with given edge lengths
<tab!< td=""></tab!<>
A, B 1
2.34 5.50
3.45 6.60
6.78 7.70
9.99 8.80
!TAB>
AREA := A * B
PERIMETER := A + B * 2
rnd 2
Result (tab)
A, B, AREA, PERIMETER 1
2.34 5.50 12.87 15.68
3.45 6.60 22.77 20.10
6.78 7.70 52.21 28.96
9.99 8.80 87.91 37.58

<pre>rectangles2.otto: Rectangle</pre>						
calculations, where the edges are given						
in separate lists. Both four-element						
lists are connected by a unary position						
join.						
Al:= 2.34 3.45 6.78 9.99						
BI:= 5.5 6.6 7.7 8.8						
posjoin2						
AREA := A * B						
PERIMETER := A + B * 2						
rnd 2						
Result (tab)						
A, B, AREA, PERIMETER 1						
2.34 5.50 12.87 15.68						
3.45 6.60 22.77 20.10						
6.78 7.70 52.21 28.96						
9.99 8.80 87.91 37.58						

After *posjoin2*, the sub-table is created with the header $A, B \ l$ of the final result. posjoin2 is an abbreviation for posjoinposjoin (analogous to + and ++).

In the following program, the three side lengths of a triangle are given.

triangle.otto: Calculation of the area
of a triangle with 3 given side lengths
AREA := 2.34 3.45 4.56 areatriangle rnd 2
Result (tab)
AREA
3.95

tria	anglo	es.o	tto:	C	alcu	ulati	on	of	two
tria	angu	lar	are	eas	gi	.ven	the	со	rner
000	rdina	ates							
<ta< td=""><td>3!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ta<>	3!								
AX,	AY,	ΒX,	ΒY,	CX,	CY	1			
1	2	3	5	5	6				

2 3	4	5	2	7				
!TAB>								
C := A	Х – В	X ^ 2	2 +	(AY -	BY ^ 2	2) 9	sqr	t
B := A	х - с	x ^ :	2 +	(AY -	- CY ^ 2	2) 9	sqr	t
A := B	х - с	x ^ :	2 +	(AY -	- CY ^ 2	2) 9	sqr	t
AREA:=	А,В,	C tra	anspo	ose a	areatria	ang	le	
rnd 2						-		
Result (t	ab)							
AX ,AY	,BX	,BY	,CX	,CY	,C,	В	,	Α,
AREA 1								
1 2	3	5	5	6	3.61	5.	66	4.47
8.06								
2 3	4	5	2	7	2.83	4.	00	4.47
5.57								

Area_and_perimeter_circle.otto:
Approximation of half the area and half the
circumference of a circle with a radius of 1
Xl:= 01!0.000'001
Y:= X poly [-1 0 1] sqrt
RECTANGLE:= Y *0.000'001
SECANT := $Y - Y$ succ $^2 +$
(0.000'001 ^ 2) sqrt
gib AREA,PERIMETER
AREA:=RECTANGLE!++
PERIMETER:=SECANT!++
*2
Result (tab)
AREA, PERIMETER
1.57079732621 3.1415926533

The above calculation requires relatively large amounts of resources as it has not been optimized, contrary to examples maximum5 – maximum8. Here, we rely on fast computers. (Sub-) Terms are optimized, if they start with ".." or "..." and end with an aggregation like *max*, *min*, ++, ** etc.. In this case classical loops are used, internally.

<pre>area_and_length_of_rope.otto: Length of</pre>
a hanging rope and area under the rope.
Xl:= -22!0.000'1
Y:= e ^ X + (e ^ (X* -1)) * 0.5
RECTANGLE:= Y *0.000'1
SECANT := $Y - Y$ succ $^2 +$
(0.000'1 ^ 2) sqrt
gib AREA,LENGTH
AREA:=RECTANGLE!++
LENGTH:=SECANT!++
Result (tab)
AREA, LENGTH
7.25409704131 7.25372081461
Result of the following "subprogram" (strucdiagram
bar)
Xl:= -22!0.01
Y:= Y:= e ^ X + (e ^ (X* -1)) * 0.5
X::=X text

Fig. 1: Bar diagramm of a hangig rope

The X values had to be converted into text so that they are not interpreted as additional columns but as signatures. This diagram shows a large number of rectangular columns. They illustrate that the blue area is approximately filled by the rectangles. The *cosh*-function can be interpreted as a sagging rope. 7.25 is then the length of the rope.

8 Zero Determination

<pre>integer_zero.otto: Find the integer zeros of the parabola "X^2-9X+20" in the interval [-100:100]</pre>
XI:= -100 100 Y:=X poly [1 -9 20]
sel Y=0 Result (tab)
X,YI
4 0
5 0

This program is probably methodologically valuable as it directly implements the definition of the zero. The fact that not every zero can be determined in this way due to the limitations of the number ranges in the computer must be explained to the pupils. We consider the determination of zeros for parabolas according to the formulas: X1 = p:2 ^ 2 - q sqrt - (p:2)

X2 = p:2 ^2 - q sqrt * -1 - (p:2)

are not universal enough and too complicated, so that they could possibly be removed from some of the school curriculums. In the following, we will not give the programs for the zeros according to the regula falsi, the Newton method and the bisection method, although they can be used relatively universally and are also efficient. On the other hand, we want to give even simpler algorithms. They have never been mentioned in the past due to their inefficiency.

zeropoint.otto: Determine the zero of
the sine function in the interval [3;4]
Xl:= 34 !0.000'001
Y:=X sin
sel Y >0
last
Result (tab)
Х, Үl
3.141592 6.53589793076e-007
zone atta. Dotonming the zones of the

zero.otto: Determine the zeros of the
sine function in the interval [3,10]
Xl:= 310 !0.000'01
Y := X sin
sel Y succ * Y <=0
Result (tab)
Х, Үl
3.14159 2.65358979335e-006
6.28318 -5.30717958669e-006
9.42477 7.9607693791e-006

If, for example, the first zero point is to be determined even more precisely, you can enter a very small interval around this approximation and reduce the step size accordingly:

<pre>zero_more_excact.otto: Improve</pre>	the
accuracy of the first zero digit	
Xl:= 3.141593.1416 !	
0.000'000'001	
Y := X sin	
sel Y succ * Y <=0	
Result (tab)	
X, Y1	
3.141592653 5.89793225706e-010	

It is obvious that the above two programs can also be applied to polynomials of third and higher degree and are therefore more universally applicable than the (p,q)-formula.

<pre>pythagoras_hypo.otto: Compute the</pre>
hypothenuse with the formula $a^2 + b^2 = c^2$
A:= 3
B:= 5
Cl:= 37!0.000'01
PYTHAGORAS:= C,A,B ^2
<pre>sel PYTHAGORAS succ *PYTHAGORAS <=0</pre>
Result (tab)
A,B,(C,PYTHAGORAS 1)
3 5 5.83095 -2.20975000076e-005

The hypothenuse has approximately a length of 5.83095. In the computation, we do not need a square root. -- subtracts all components from the first one.

pythagoras_kathe.otto : Compute the Kathe with the formula $a^2 + b^2 = c^2$
A := 3
Bl:= 37!0.000'01
C := 6
PYTHAGORAS:= C,A,B ^2
sel PYTHAGORAS succ *PYTHAGORAS <=0
Result (tab)
A ,(B ,PYTHAGORAS 1), C
3 5.19615 2.51774999924e-005 6

<pre>percentage_calculation.otto: o++o offers</pre>
four percent operations: % +% -% and net
GROSS:=200
NET1:= 150200!0.000'1
F:=NET +% 19 - 200
sel F succ * F <0
OTTONET:=GROSS net 19
GROSS2:=OTTONET +% 19 at GROSS
MINUS19PROZ:=GROSS -% 19
Result (tab)
GROSS,GROSS2,OTTONET,MINUS19PROZ
,(NET ,F 1)
200 200. 168.067226891 162.
168.0672 -3.2000000045e-005

We believe that it is not sufficient to provide only the simple functions +% and -%. Often the question arises to compute the net value, if the gross value and the tax are given. $o^{++}o$ offers here the operation *net*, such that the user does not need to compute zeros or other more complicated formulas.

9 Number Theory

In this very short section, we will also restrict ourselves to particularly simple algorithms.

lcm.otto:	The	least	common	multiple	of
12 and 8					
Xl:= 1	12 *8	8			
sel X rest	: 12 :	= 0			
min					
Result (tab)					
ZAHL					
24					

gcd.otto: The greatest common divisor of
14 and 21
Xl:= 1 14
sel 21 rest X = 0 & 14 rest X = 0
max
Result (tab)
ZAHL
7

x rest y is an abbreviation for *x divrest y nth 2*.

<pre>sieve_eratosthenes.otto: Find all prime</pre>
numbers under one hundred.
X1:=2 50
Yl:=2 10 at X
PROD:=X*Y
gib PRODm #set of all products
PRIM1:= 2100
sel- PRIM in PRODm
proj- PROD
Result (tabh)
PRIM1
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97

10 o++o-Proofs

Mathematical proofs play a minor role in today's school and outside the world of mathematicians. Nevertheless, everyone needs confidence in the results of the calculator or pocket calculator. When someone is confronted with a new calculator or system, the first thing they do, is set problems, whose solution they already know, e.g. 2 times 3.

<pre>commutativity.otto:</pre>		tto:	"Prove"	the	com-
mutative	law	of	multiplic	ation	for
natural n	umbers	•			
Xl:= 1	1'000				
Yl:= 1	1'000	at X			
sel- X*Y=	Y*X				
Result (tab)					
X ,Yl l					

Obviously not all the numbers have been calculated here. For a third class, however, this could be satisfactory.

<pre>avg_proof.otto: "Proof" that ++: ca</pre>
simply be traced back to ++ and ++1.
RANDOMNR1:=1x 10!10
X1:=1x RANDOMNR!RANDOMNR
SUM:=X1 ++
CNT:=Xl ++1
OTTOAVG:=X1 ++:
MYAVG:=SUM:CNT
<pre>#sel- MYAVG=OTTOAVG</pre>
Result (tab)
RANDOMNR ,SUM ,CNT ,OTTOAVG,
MYAVG, Xl l
4 10 4 2.5
2.5 3223
10 56 10 5.6
5.6 25546810826
9 52 9 5.777777778
5.777777777 8923726599
2 2 2 1.
1. 11
6 20 6 3.3333333333
3.3333333333 1 5 4 4 4 2
1 1 1 1.
1. 1
2 4 2 2.
2. 22
3 4 3 1.3333333333
1.3333333333 2 1 1
6 21 6 3.5
3.5 3 3 6 1 5 3
7 27 7 3.85714285714
3.85714285714 1137456

If the selection (last line) is activated, the first line could be improved:

RANDOMNR1:=1 ... x 1000!1000 and receives the empty list of the above type.

11 Marks Management

As is well known, the average of numbers is calculated as the quotient of the sum of the numbers and the number of numbers. ++: is therefore an abbreviation for ++:++1.

avg.otto: average of several marks.
AVERAGE := 1 2 3 2 1 ++:
Result (tab)
AVERAGE
1.8

Table 1. marks1.tabh is a tabment in "horizontal tab" format

marks1.t	abh	
SUBJECT,	MARK1	1
Math	1 2 3	2
Phy	1 3 5	3 1
Eng	543	1 2

The following four programs use Table 1.

<pre>avg_all.otto:</pre>	Average	of	all	numbers	in
a table					
marks1.tabh ++:					
Result (tab)					
PZAHL					
2.57142857143					

avg_avg.c	otto: Aver	ages for al	l subjects
and the a	average ot	these avera	ges.
marks1.tabl	h		
AVGSUBJEC	T:=MARKI ++:	:	
AVGTOTAL:	= AVGSUBJEC	TI ++:	
rnd 1			
Result (tabh	n)		
AVGTOTAL	,(SUBJECT	,AVGSUBJECT	,MARK1 1)
2.5	Math	2.0	1232
	Phy	2.6	1353
1			
	Eng	3.0	5431
2			

total.ott	o: Set the average and the mean
absolute	deviation from the average
"below" e	ach collection.
marks1.tabh	i de la constante d
total ++:,ma	d
rnd 1	
Result (tabh	
SUBJECT ,	MARK1 1
Math	1 2 3 2 2.0 0.5
Phy	1 3 5 3 1 2.6 1.3
Eng	5 4 3 1 2 3.0 1.2
avg	2.6
mad	1.1

totalhierar.otto: Calculate tw aggregation types of the marks in bot parent hierarchies. MARK is the onl numeric column in the given table, s only MARK aggregations are calculated.	o h y o
marks1.tabh totalhierar ++:,mad rod 1	
Result (tabh)	
MARKAVG ,MARKMAD ,(SUBJECT ,MARKAVG ,MARKMAD2 ,MARK1 1)	2
2.6 1.1 Math 2.	0

0.5	1 2 3 2	
	Phy	2.6
1.3	1 3 5 3 1	
	Eng	3.0
1.2	54312	

cross.ott	o: Ca	lcula	te the	e gra	de av	erages
horizonta	lly a	nd ve	rtical	ly.		
<tabh! SUBJECT, ERNST: Math 2 3 2 Physics 2 3 German 1 1 !TABH> cross ++: rnd 1</tabh! 	1,CLARA 1 1 2 4 2	1,SOPHI 1 3 2 1 2 3 5	Al,ULRIKI 1 2 3 2 5 4	El,KAETH 3 1 2 1 1	HEl,CLAU 1 1 2 3	JDIAl 1
Result (tabh))					
SUBJECT, ERNSTI,	,CLARA1 ,	SOPHIAL	,ULRIKEl	,KAETHE1	,CLAUDIA	,AVG? 1
Math 2.3	, CLARA1, 1.3	SOPHIA1	ULRIKE1	,KAETHE1 1.5	,CLAUDIA 1.0	AVG? 1, AVG? 1 1.8
Math 2.3 Physics 2.5	<u>, CLARA1</u> 1.3 3.0	2.0 1.5	ULRIKE1 2.3 3.5	KAETHE1 1.5 1.0	,CLAUDIA 1.0 2.5	1.8 2.3
Math 2.3 Physics 2.5 German 1.0	<u>, CLARAL</u> 1.3 3.0	SOPHIA1 2.0 1.5 4.0	ULRIKE1 2.3 3.5 4.0	, <u>KAETHE1</u> 1.5 1.0	,CLAUDIA 1.0 2.5	1.8 2.3 2.8
SUBJECT, ERNSII, Math 2.3 Physics 2.5 German 1.0 avg 2.0	<u>, CLARA1</u> 1.3 3.0 2.0	SOPHIA1 2.0 1.5 4.0 2.4	ULRIKE1 2.3 3.5 4.0 2.9	<u>,KAETHE1</u> 1.5 1.0 1.3	,CLAUDIA 1.0 2.5 1.8	1.8 1.8 2.3 2.8 2.1
Math 2.3 Physics 2.5 German 1.0 avg 2.0 Result if crc	,CLARAI , 1.3 3.0 2.0 2.0 2.0 2.0 2.0 1.3 2.0 1.3 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.3 3.0 1.5 1.5 1.5 1.5 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	2.0 1.5 4.0 2.4 replace	ULRIKE1 2.3 3.5 4.0 2.9 ed by Cr	KAETHE1 1.5 1.0 1.3 COSS+	,CLAUDIA 1.0 2.5 1.8 (tabh)	1, AVG? 1 1.8 2.3 2.8 2.1
Math 2.3 Physics 2.5 German 1.0 avg 2.0 Result if crc SUBJECT , ERNST1 ,	,CLARAI , 1.3 3.0 2.0 2.0 SS IS CLARAI ,	SOPHIA1 2.0 1.5 4.0 2.4 replace	ULRIKE1 2.3 3.5 4.0 2.9 ed by cr	KAETHE1 1.5 1.0 1.3 COSS+ KAETHE1	,CLAUDIA 1.0 2.5 1.8 (tabh) ,CLAUDIA1	1, AVG? 1 1.8 2.3 2.8 2.1 ,AVG? 1
SUBJECT, ERNSTI, Math 2.3 Physics 2.5 German 1.0 avg 2.0 Result if crc SUBJECT, ERNSTI, Math 2.3 2.3	CLARAI , 1.3 3.0 2.0 DSS IS <u>CLARA1 ,</u> 1 1 2 1.3	SOPHIA1 2.0 1.5 4.0 2.4 replace SOPHIA1, 1 3 2 2.0	ULRIKE1 2.3 3.5 4.0 2.9 ed by cr ULRIKE1, 1 2 3 3 2.3	KAETHE1 1.5 1.0 1.3 COSS+ KAETHE1 3 1 2 1.5	,CLAUDIA 1.0 2.5 1.8 (tabh) ,CLAUDIA1 1 1 1.0	1, AVG? 1 1.8 2.3 2.8 2.1 ,AVG? 1 1.8
SUBJECT, ERNSTL, Math 2.3 Physics 2.5 German 1.0 avg 2.0 Result if CrC SUBJECT, ERNSTL, Math 2 3 2 2.3 Physics 2 3 2.5		SOPHIA1 2.0 1.5 4.0 2.4 replace SOPHIA1, 1 3 2 2.0 1 2 1.5	ULRIKE1 2.3 3.5 4.0 2.9 ed by cr ULRIKE1, 1 2 3 3 2.3 2 5 3.5	KAETHEI 1.5 1.0 1.3 COSS+ KAETHEI 3 1 2 1.5 1 1 1.0	,CLAUDIA 1.0 2.5 1.8 (tabh) ,CLAUDIAI 1 1 1.0 2 3 2.5	AL ,AVG? 1 1.8 2.3 2.8 2.1 .AVG? 1 1.8 2.3 2.9

The given table seems to represent the grades of a gradebook in a compact way. If all subjects and names already exist in this table, no new subject and no new name need to be inserted when inserting a grade, even if the corresponding grade list is still empty. A hierarchical table of the type SUBJECT,(NAME,MARKl m)m contains each subject only once, but the names must be inserted several times. If this amount of data is stored in a flat table SUBJECT, NAME, MARK l, even more redundancy is created and even more memory space is wasted. In a flat set (relation of the relational data model), a time or position column would also have to be introduced, which makes the whole thing even more unwieldy and inefficient.

The columns and rows in the table above could also be swapped.

12 Conclusions and Future Work

We tested o++o already 10 years ago successfully in a seventh class of a Gymnasium. But, in the last years, we improved and added many operations and concepts, such that we hopefully will have yet greater success in teaching and applying o++o.

Then Chi-square test has to be included, for example. Although o++o algorithms seem to be simpler than the algorithms taught in school now, it will probably take many years until o++o-algorithms will be a part of the curricula of schools. So, o++o has to be taught in schools, probably it can influence and improve the lessons of all classes from 1 to 12.

Nevertheless, there remains also a lot of implementational work. First of all, o++o has to be put on top of Relational and NoSQL database systems. Here, some optimization techniques are needed. This requires for example a good understanding of selection- and join- operations. In the Relational data model, it is possible to commute content-oriented conditions always. This does not hold for selections in structured tables, such that more sophisticated rules have to be applied.

o++o-programs for extrema of or areas under functions seem to be very inefficient, because of large amounts of storage area, which is needed for a statement like $0 \dots 10! 0.000' 001$. This storage area is not needed, if the statement ends with an aggregation like ++ or max, for example. We optimized such subexpressions already by loops.

In which age groups of pupils o++o algorithms are useful?

Examples of stroke-list-operation (gib) can be taught on paper already for preschool children. Table loops probably in lower school and the application of integral and differential calculus in 9 class, because you don't have to understand these complicated theories.

Acknowledgment:

I thank Heinz Kaphengst and Horst Reichel for the development of the algebraic specification language for partial operations and Rüdiger Achilles for valuable remarks to this paper. Further, thanks are directed to the following computer experts for their valuable contributions to the older implementations of the o++o system: Wolfgang Reichstein, Dmitri Schamschurko, Martin Schnabel, Andreas Hauptmann, Stephan Schenkl and Eicke Redweik worked for the project from 2019-2021 "Intelligent Analysis and Visualization of German Wikipedia", which was funded by EFRE EU and IB Sachsen-Anhalt.

References:

- H. Kaphengst, H. Reichel, "Algebraische Algorithmentheorie", VEB Robotron, Wiss. Informationen und Berichte, Nr. 1/71 Reihe A, Sommer 1971.
- [2] H. Reichel "Initial Computability, Algebraic Specifications, and Partial Algebras", Claredon Press, Oxford, UK, 1987.
- [3] E.F.Codd, "A Relational Model of Data for Large Shared Data Banks", *Communications of the ACM*, Vol. 13, No. 6 June 1970, S. 377-387.

- [4] E.F. Codd, "Extending the Database Relational Model to capture more Meaning", *ACM Transactions on Database Systems*, Vol. 4, No 4, Dec. 1979, S. 379-434.
- [5] Donald D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patricia P. Griffiths, Raymond A. Lorie, James W. Mehl, Phyllis Reisner, Bradford W. Wade, "SEQUEL 2: A unified approach to data definition, manipulation and control" *IBM Journal of Research of Development*, 20(6): pp. 560 -575, 1976.
- [6] M. M. Astrahan, D. D. Chamberlain, "Implementation of a Structured English Query Language", Communications of the ACM, 18 10, Oct. 1975 pp. 580-587.
- [7] N. C. Shu, B. C. Housel, V. Y. Lum, "CONVERT- A High Level Translation Definition Language for Data Conversion", *Communications of the ACM*, Vol.18, Nr.10,Oct., 1975, pp. 557-567.
- [8] K. Benecke, "A powerful Tool for Object-Oriented Manipulation", in "Object-Oriented Databases: Analysis, Design & Construction (DS-4) R.A. Meersmann, W. Kent, S. Khosla (editors), Elsevier Science Publisher B.V. (North Holland) 1991, pp. 95-121.
- [9] S. Abiteboul, N. Bidot, "Non First Normal Form Relations: An Algebra Allowing Data Restructuring", Rapports de Recherche No347, Institute de Recherce en Informatique et en Automatique, Rocquencourt, France, Nov. 1984.
- [10] W3C, "XQuery 3.1: An XML Query Language", W3C Recommendation 21 March 2017, Status Update (6 April 2021), [Online]. <u>https://www.w3.org/TR/xquery-31/</u> (Accessed Date: December 9, 2024).
- [11] J. D. Ullman, "Principles of Database Systems", Computer Science Press, Rockville, Maryland 1982.
- [12] H. Zemanek, "Formal Definition the Hard Way", Proc. IFIP TC2 Working Conference, Vienna 1985; North Holland, pp. 411-417.

Copyright Note:

A commercial use of the paper and its ideas is not allowed.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US