

Mathematical Model for Providing Remote Monitoring of Hardware

and Software Complex at the Stage of Integration Testing

NATALIA MAMEDOVA, TIMOFEY BOLONIN

Basic Department of Digital Economy,
Plekhanov Russian University of Economics,

36, Stremyanny Lane, Moscow, 117997,
RUSSIA

Abstract: - This research is a contribution to the field of solutions for the effective process of technical hardware
and software development. A mathematical model of providing remote monitoring of the hardware-software
complex under development at the stage of integration testing is proposed. Monitoring of the hardware-software
complex functioning in the process of development allows for leveling the limitations connected with resource-
intensive integration testing and determining the influence of the developed parts of the complex (hardware and
software) on the operability of the inherited functionality of the systems of the external environment. The data
of mathematical modeling is proposed to be used to develop an emulator of the external environment systems of
the developed hardware-software complex on a test bench and to conduct integration testing. The solution is a
stochastic model since the subject of remote monitoring is defined as random events of the process of
integration testing of the hardware-software complex. The mathematical model for time series modeling takes
into account a set of metrics of hardware-software complex functioning and requirements for the future
software implementation of the solution - the remote monitoring service being developed. The implementation
of the mathematical model can be used by the IT developer when integrating monitoring data into the
automated test system of hardware and software complex development.

Key-Words: - Mathematical modeling, ARIMA, hardware-software complex, remote monitoring system,

development, integration testing, system engineering, machine experiment, software
implementation.

Received: May 17, 2024. Revised: December 8, 2024. Accepted: January 11, 2025. Published: March 10, 2025.

1 Introduction
Hardware and software systems provide a variety
of often critical information processes. Their
importance in computing and their place in
systems engineering have been described in many
studies, [1], [2], [3], [4]. Applied to the concept of
the algorithm of a complex system, [5], [6], [7]
hardware-software complexes combine software
and hardware parts and constitute a complex of
hardware and software of the system, allowing the
collection, processing, storage, and display of
information about the state of objects in real-time
(National standard of the Russian Federation
52980-2008 “Functional safety of electrical,
electronic, programmable electronic safety-related
systems applications for railways. Software
requirements”). In the applied aspect, they
function in the form of access control systems,
database systems, technological branch equipment,
and complexes for production automation, [8], [9],
[10], [11].

Despite the fact that the hardware-software
complex does not realize the information
technology of performing the established functions,
but serves for solving certain technical tasks,
monitoring of its state is an important activity
throughout the entire product life cycle. And this
statement finds confirmation in a number of
studies, [12], [13], [14].

Common solutions in the IT market in the field
of monitoring the operation of hardware and
software complexes mainly offer systems that
implement real-time monitoring - showing only
current indicators, [15], [16], [17], [18]. But in the
process of development and testing of hardware-
software complexes, it is also necessary to study
the state of the machine during the test period and
during the periods of the prototyping cycle with
varying degrees of detail. This need is reflected in
studies, [17], [19], [20], [21], [22] abstract reviews
[23], [24], [25] on hardware, software development
methods and practices. Solutions for monitoring
operating hardware and software systems have

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 258 Volume 22, 2025

been implemented many and with different
functionality, [10], [26], [27], [28], [29], [30]. At
the same time, there are no open monitoring
solutions for hardware-software complexes being
designed, and developed, and even more so for
future hardware-software complexes, which can be
built into the system of hardware-software
complexes development.

Familiarisation with separate components of
the technical documentation of several test
management systems, [31], [32], [33], [34] allowed
us to establish that the mathematical models on the
basis of which these systems were developed were
based on the analytical modeling apparatus, but no
prediction tools were used. In addition, the studied
solutions are designed for automatic testing, which
certainly reduces operational costs, but does not
enrich the process of developing an emulator of
systems emulator of the external environment of
the hardware and software complex under
development.

IT developers widely use the practice of
integration tests, [19], [35], [36], [37], [38]. Their
results to some extent duplicate the data that are
formed based on the results of monitoring the
operation of a hardware-software complex, but
only in terms of data on the interaction of hardware
and software parts of the complex with other
systems. Of course, it is extremely important to
have an idea of their interrelation and check their
joint performance. This allows to detect and
leveling out of defects related to modular assembly,
launching, and synchronization of information
architecture components, [39], [40], [41], [42].

However, the emulation mode of the complex
environment on the test bench does not provide
enough information about the state of the machine
under test directly - they appear to be noisy as a
result of simultaneous execution of multiple tests
on different code or data instances. Besides,
integration testing (namely regression testing as its
part) is limited to checking that changes in the
environment have not affected the operability of
the inherited functionality. This is not applicable to
designed and future machines, whose task is to
make changes from the system engineering point of
view.

The authors believe that monitoring the
hardware-software complex at the stages of the life
cycle, preceding the commissioning of the
complex, allows not only to control of the process
of its development but also to determine the impact
of the developed parts of the complex (hardware
and software) on the environment, mainly in terms
of metrological parameters of hardware. It is also

necessary to take into account the following
peculiarity of the hardware-software complex - the
operator (user) from the point of view of the system
architecture is not included in its structure, i.e. is
outside the system. On the one hand, this simplifies
the monitoring process, because the operator's
algorithm is outside the observed process. On the
other hand, the operator's observations and
experience cease to be a source of monitoring data,
which limits the results of monitoring to the data of
hardware state, and measurements of physical
quantities characterizing the performance of
technical tasks. This aspect should be emphasized,
as monitoring results become the basis for making
decisions on information infrastructure
management, and also become a source of data for
designing new IT products and selecting their
architecture. After all, today monitoring systems do
not just accumulate the data of observations of
system behavior, they fully implement the logic of
the Data-driven approach, [43], [44], [45], [46].

Thus, there is a need to develop a solution for
monitoring the functioning of hardware and
software complexes (hereinafter - machines) at the
stage of their development and integration testing.
We deliberately complicate the task of developing
such a solution by identifying the need to adapt it to
the functionality of the automated remote
monitoring service. The solution should provide
such service functions as real-time data collection
and/or one-time collection of certain data (disk read
and write tests, local network search) and/or data
collection over a period of time (for example, the
program starts monitoring and stops it at the end of
its work). The automated remote monitoring
service will need to consider the following metrics
of hardware and software system operation:
1) the lifecycle of the processes;
2) specified algorithm for measuring physical

quantities of equipment operation;
3) system load;
4) network activity;
5) state of services/background processes;
6) information about installed applications;
7) information about the local network.

In this study, the authors focused on the aspect

of mathematical support and administration of
hardware and software complexes. The authors'
area of interest was the processes of functioning of
technical and mathematical means of automation of
computations and information processing and,
search for solutions for effective administration of
computing equipment. The purpose of the research
is to show how the problem of providing remote

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 259 Volume 22, 2025

monitoring of a machine at the stage of integration
testing is mathematically solved. The authors
propose to use the monitoring data to develop an
emulator of the systems of the external
environment of the hardware-software complex on
a test bench and to conduct integration testing. The
mathematical model is intended to avoid the
limitations and difficulties of testing associated
with the resource-intensive process, [47], [48]. The
implementation of the mathematical model is
supposed to be used for the subsequent integration
of monitoring data into the automated development
test system.

Achievement of the set goal is relevant not
only for IT developers of hardware and software
complexes (the objects of this study) but also for
companies specializing in software development.
Problems at the stage of integration testing arise, in
particular, due to the fact that the IT developer has
no control over the load on the system during the
parallel launch of integration tests. This leads to the
failure of the whole system, disrupting the work of
the tests. To prevent this, the authors propose to
monitor the machine on the basis of a mathematical
model.

The mathematical model of solving the problem
of providing remote monitoring of the machine at
the stage of integration testing takes into account
the list of requirements for the future software
implementation of the solution - the developed
service of automated remote monitoring. This is
necessary so that the constructed mathematical
model can be effectively used by the object.

The authors also defined the parameters, the
sample of which was used for a) setting the
mathematical problem of providing remote
monitoring of the machine at the stage of
integration testing; b) setting the problem of
integrating the mathematical model into the
automated test system used by the object during the
development of the hardware-software complex.
The selection of parameters includes the following
items:

1. Running processes. It is necessary to
display a list of all running processes in a tree
format to track the inheritance structure. During the
test bench operation, many background processes
with a deep level of inheritance are created, so if an
error occurs in one of them, it is necessary to
understand the whole path to the exception source.

2. System load. Output information about the
current system load of the main hardware
components: hard disc, processor, RAM, and
others. It is also supposed to run a performance test
of certain parameters: the speed of reading and

writing from the disc, the average response time of
the disc, and its active time.

3. Networking. Monitoring of network
activity, occupied ports and available network
interfaces is required.

4. Service Monitoring. Output a list of all
services and services, their description, and current
status.

5. Information about installed applications. A
list of installed applications and a description of
each of them.

6. Local network status. Realization of
interaction with the local network, search for a user
or group in the network, ping nodes.

2 Building a Mathematical Model
In order to successfully pass the integration test, the
optimal build of the external environment emulator
of the hardware/software system under test must
take into account the machine monitoring data.
Since the machine devices may be under load or
free at the time of monitoring, metrics at the current
moment in time are not a sufficient indicator. It is
necessary to predict the future behavior of the
machine. Stochastic models exist to fulfillthis task.

Stochastic models are mathematical tools that
help to understand and predict the behavior of
systems subject to random influences, they are
definitely popular in solving mathematical
modeling problems, [49], [50]. Since the
performance of a hardware and software system
can be affected by many external factors, i.e.
random events, this model is suitable for system
monitoring tasks. The set of metrics is a time series
- collected at different points in time values of the
process under study. The most common and
accurate model for modeling time series is
ARIMA, based on the Box-Jenkins methodology.

Despite the popularity of the ARIMA model in
general, its use in integration testing scenarios is
poorly understood. Testing takes at least as much
time as the development process. Therefore,
optimization at this stage is an urgent problem in
the field. Due to the limited computational
resources of test benches, it is important to
efficiently distribute tasks between machines, for
this purpose, it is necessary to predict their
behavior and workload in the future. At the
moment there are no offers on the market that can
solve this problem. Therefore, it was decided to
develop a mathematical model using ARIMA, on
the basis of which such a solution could be created.
This approach will reduce the time spent on the
integration testing stage, which will have a positive

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 260 Volume 22, 2025

impact on the speed of new product releases.
Studies show that ARIMA, as well as its variations
ARIMA-ANN, demonstrates high forecasting
accuracy compared to other time series models.
This is due to its ability to adapt to different data
structures and identify hidden dependencies, [51],
[52], [53].

The authors chose the ARIMA model because
it allows the modeling of non-stationary time series
that can be made stationary by differentiation. This
is applicable to the problem to be solved because
the model is particularly useful for analyzing data
where trends are present, which is entirely relative
to the integration testing process.

It is worth mentioning a number of other
methods that were considered as ARIMA analog:
extrapolation and machine learning methods. Such
basic methods as simple extrapolation are
convenient for the simplest series with a small
amount of data. Such methods allow us to give a
quick prediction, which, however, may have a high
error. In the case of integration testing, data are
collected continuously over a long period of time.
Such a series includes external factors and noise,
which are important to consider in forecasting.
Thus, a basic extrapolation method will not be able
to give accurate results. Speaking about machine
learning methods (DeepAR, NBEATS, LSTM), it
is important to understand that training a neural
network and further forecasting using it is an
extremely resource-intensive process that requires a
large set of data for training. On the plus side, the
accuracy of the calculation can be emphasized,
which will allow forecasting for longer periods of
time. However, the prediction is needed at the time
of test distribution, which will be immediately sent
to the required machine, meaning that the target
prediction time is relatively close to the reference
point. Therefore, the use of such complex neural
network models would be impractical, especially
considering the ultimate goal of optimizing the
time taken for the entire testing phase. Thus, given
the specificity of time series, the complexity of the
task, and the need for resource efficiency, the
ARIMA model is the most optimal option.

An autoregressive integrated moving average, or
ARIMA, is a statistical analysis model that uses
time series data to predict future trends. The model
consists of three components:

1. autoregression (AR). Regression in
probability theory and mathematical statistics is the
dependence of the mean value of some quantity on
some other quantity or on several quantities.
Autoregression is a model in which the values of a

time series depend on the previous values of the
same series.

2. Integration (I). Differentiation of initial
observations to achieve stationarity of the series. A
stationary time series is a series whose mean value
does not change over time, i.e. the series has no
trend.

3. Moving average (MA). A family of functions
whose values at each point are equal to some
average value of the original function for the
previous period.

The ARIMA equation takes as input three
standard parameters, each of which is responsible
for the corresponding component of the model:

p – autoregressive order. It allows you to
determine whether the next element of the series
will be close to the value of X, if p previous values
were close to it;

d – order of integration. Shows how close an
element of a series is to d previous values if the
difference between them is minimal;

q – moving average order. Allows to set the
model error as a linear combination of previously
observed error values.

The model is usually referred to as ARIMA (p,
d, q), where p, d and q are non-negative integers.

As stated earlier, autoregression refers to the
dependence of a subsequent value on some number
of previous values. The prediction is the sum of
metrics of previous measurements with some
coefficients, which are constant and determine the
autoregressive parameters. That is, the final
formula for calculating the value at time t will be
represented as a linear combination as shown in
formula 1.
𝑌𝑡 = 𝑐 + 𝜀𝑡 + 𝛼1𝑌𝑡−1 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝, (1)

where α1, ..., αp - coefficients, Yt - value at the

moment of time
Two additional terms are introduced:

• c – constant value that is added to the
prediction;

• 𝜀𝑡 – white noise.

White noise in an autoregressive model is a

random sequence of independent and identically
distributed random variables with zero mean and
constant variance. It is usually assumed in time
series models to account for the random component
that is not explained by the autoregressive model.

The least squares method is used to calculate
the autoregressive coefficients. That is, the
coefficients are chosen in such a way that the sum
of squares of deviations of points from the
regression line is minimized. The coefficients are

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 261 Volume 22, 2025

estimated on the basis of experimental data
containing random errors. At the end of the
experiments, the coefficients that minimize the
difference between the experimental data and the
theoretical data are selected.

The moving average method is used to smooth
time series in order to eliminate the influence of a
random component. The method consists in
replacing the initial values of the members of the
series by the arithmetic mean of the values of
several members nearest to it. The value at time t is
given in formula 2.

𝑌𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 (2)

In essence, the series Yt is expressed through

the sum of some fixed mean μ, the value of white
noise at the current moment of time εt and not more
than q previous values of white noise multiplied by
some coefficients, which are the model parameters.
The calculation of the coefficients is similar to the
autoregressive case.

Summarizing the two formulas, we obtain
formula 3 - the value of the ARMA model series.
𝑌𝑡 = 𝑐 + 𝜀𝑡 + 𝛼1𝑌𝑡−1 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1 +

⋯ + 𝜃𝑞𝜀𝑡−𝑞 (3)

At the current stage, the ARMA model is fully

described, assuming that the original series are
stationary. In the context of system monitoring of
machines, the series are not stationary, as they may
have trends (e.g., the highest loads occur at night
during test runs). Therefore, it is necessary to bring
such series to stationary form after applying a
series differentiation procedure. The ARIMA
model is defined as an ARMA model for a series of
finite differences of order d. Therefore, to obtain
from the ARMA formula the ARIMA formula, it is
necessary to apply the difference operator of degree
d to each Yi.

The finite difference is denoted by ∆𝑑. The
finite differences are calculated recurrently, as
shown in formula 4.

 ∆0𝑦𝑖 = 𝑦𝑖
 ∆1𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖
 ∆2𝑦𝑖 = ∆1𝑦𝑖+1 − ∆1𝑦𝑖
 ∆𝑛𝑦𝑖 = ∆𝑛−1𝑦𝑖+1 − ∆𝑛−1𝑦𝑖

(4)

For example, for y0 the finite differences will look
as follows:
 ∆1𝑦0 = 𝑦1 − 𝑦0
 ∆2𝑦0 = 𝑦2 − 2𝑦1 + 𝑦0
 ∆3𝑦0 = 𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0
 ∆4𝑦0 = 𝑦4 − 4𝑦3 + 6𝑦2 − 4𝑦1 + 𝑦0

Note that the moduli of the coefficients in the
calculation of finite differences correspond to the
rows of Pascal's triangle shown in Figure 1
(Pascal's triangle is given as an example of how the
ratios can be easily memorised). The sign of the
first coefficient is always positive, and further they
alternate.

Fig. 1: Pascal's triangle (created using Adobe
photoshop)

If we take yk instead of y0, then when
computing finite differences, the indices of the
summands will be equal to 𝑘 + 𝑛, … , 𝑘. For
example, let us calculate ∆2𝑦1:

 ∆2𝑦1 = 𝑦3 − 2𝑦2 + 𝑦1

The final formula of the series by ARIMA

model at time t is presented in formula 5.

∆𝑑𝑌𝑡 = 𝑐 + 𝜀𝑡 + ∑ 𝛼𝑖(∆𝑑𝑌𝑡−𝑖) + ∑ 𝜃𝑗(∆𝑑𝜀𝑡−𝑗)

𝑞

𝑗=1

𝑝

𝑖=1

(5)

It is important to take into account the fact that

in real conditions differentiation does not always
lead to stationarity of the series. Therefore, the
Dickey-Fuller test is used to verify that the series is
really stationary. According to this test, a series is
stationary if it does not have a unit root. A time
series has a unit root if its first differences form a
stationary series (formula 6). Thus, further, when
working with real data, it will be possible to
confirm the fact that the resulting time series is
indeed stationary.

∆𝑦𝑡 ~ 𝐼(0) (6)

Now, having a set of already known metrics,

we can predict future values. The more starting
points there are, the more accurate the result will
be. The problem is that storing all metrics in
minimal time intervals naturally leads to a large
database size, [36], [39]. n 1 night of monitor
operation, the size of a single collection was about
1GB. Thus, there is a need to store data with a
wider range, but still be able to access the
information for any point in time. To provide both
components, it is necessary to approximate known
values.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 262 Volume 22, 2025

Let some function bounded by a segment be
given. In the initial conditions it is not given
explicitly, but as a set of points and values
corresponding to these points. As a solution, it is
necessary to obtain a polynomial that will be
considered as an approximation to the original
function.

The process of calculating such a polynomial is
called approximation. In the context of a machine
monitor, the points are timestamps, and the values
in the points correspond to the values of the
metrics.

When defining the concept of function
proximity, there are several approaches, one of
which is called interpolation. Interpolation is a
method of finding intermediate values from an
existing discrete set of known values. Functions are
considered approximate if their values at each
known point are equal. Since a discrete set with
metrics is initially given, and the function and
polynomial by which it is formed are unknown,
only interpolation is a suitable method of
approximation.

A polynomial obtained by interpolation is
called an interpolation polynomial. The degree of
the polynomial is less than or equal to the number
of initial points n. It is worth noting that the
interpolation polynomial is singular. Indeed, let us
take two such polynomials P(x) and Q(x). Since
they are interpolative, for all x P(x) - Q(x) = 0.
Consider R(x) = P(x) - Q(x). For all given points,
R(x) = 0. Thus, R(x) is of degree no greater than n
(from the definition of interpolation), but it has n+1
solutions (that is, degree n+1). We have obtained a
contradiction, and so P(x) and Q(x) are identical.
Since the polynomial is singular, all methods of
calculating it will lead to the same result.

One of the most accurate approximation
methods is interpolation by cubic splines. A spline
is a continuous function defined on some segment,
which is divided into several sections, each of
which is represented as a polynomial. Splines
consist of several polynomials joined at intersection
points. The junctions must be smooth and there
must be no change in the curvature of the
polynomials. Smooth function - a function that has
a continuous derivative over the entire set of
definition. Cubic spline - a spline in which each
segment is represented by a cubic polynomial that
satisfies the smoothness criterion because it has a
continuous first and second derivative. The first
derivative determines at what angle the polynomial
enters the boundary point, and the second
derivative determines the curvature it has at that
point. Therefore, to ensure the smoothness of the

spline over the entire segment, the first and second
derivatives of the joint polynomials must be equal.
From the definition, it is clear why this approach is
better than conventional interpolation.

The original function may have discontinuity
points where the rate of change of the function
increases dramatically (e.g., a hyperbola near point
0). Therefore, an attempt to approximate the entire
function with a single polynomial will lead to
serious errors. Whereas spline approximation
breaks the function into sections, each of which
interpolates separately, which minimizes the
computational error.

Let there be a set of n points. It follows that
there are a total of n-1 intervals, each of which
must be approximated by a cubic polynomial. The
equation of the polynomial of degree 3 is given in
formula 7.

𝑃3(𝑥) = 𝑎 + 𝑏(𝑥 − 𝑥0) + 𝑐(𝑥 − 𝑥0)2 +
𝑑(𝑥 − 𝑥0)3 = y

(7)

This formula has four unknown coefficients a,

b, c, d; x and y are the coordinates of the point, x0
is the abscissa of the initial point from which the
function starts. The total is an n-1 polynomial, that
is, an n-1 equation with 4(n-1) unknowns. For each
equation of the polynomial, we know its two
extreme points through which it exactly passes, so
the total of equations becomes 2(n-1) with the same
set of unknowns. So far, there are not enough
equations to find a single solution, since the
number of unknowns must be no greater than the
number of equations.

As noted earlier, at the junctions of two
polynomials, smoothness, for which the first and
second derivatives are responsible, must be
observed. Therefore, in order that smoothness is
not violated during the transition from one function
to another, it is necessary that at the junction point
their first and second derivatives are equal. The
number of junctions is 1 less than the number of
polynomials, for each of which two equations are
made (formula 8). Thus, there are now 2(n-1) +
2(n-2) equations, that is, 4n - 6, which is two less
than the number of unknowns.

𝑃𝑖
′(𝑥стык) = 𝑃𝑖+1

′ (𝑥стык),
𝑃𝑖

′′(𝑥стык) = 𝑃𝑖+1
′′ (𝑥стык)

 (8)

The behavior of the spline at the ends of the

interval is characterized by curvature equal to 0,
that is, at these points the spline is neither convex
nor concave. To comply with the achievement of
this model, it is necessary that the second order

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 263 Volume 22, 2025

derivatives of the extreme polynomials at these
points are equal to 0. That is, we add two more
equations of spline behavior at the ends of the
segment, described in formula 9.

𝑃𝑛−1
′′ (𝑥𝑛) = 0,

𝑃1
′′(𝑥1) = 0

(9)

Thus, we obtain a system of 4n - 4 equations

with 4n - 4 unknowns. The final system of
equations is shown in Figure 2.

Fig. 2: Final system of equations

Solving the resulting system, we obtain the

values of all coefficients, and hence the equations
of polynomials that make up the spline. Therefore,
it becomes possible to obtain metrics for any
intermediate moment of time, even if it is not saved
in the database.

As a result, having approximated the input set
of points, we obtain a curve of values for each
sample. Once predicted by the ARIMA method, the
curve continues for the time interval requested by
the user. Thus, the system allows to determine the
estimated values of the device state at any time in
the future.

3 Description of the Calculation Logic
Since the constructed mathematical model is
supposed to be implemented programmatically, it is
necessary to describe the development of the
internal logic of the server and how calculations
will be performed on the server in advance.

We have identified five main functional modules
in the server structure:
1. urls.py – contains all basic URL paths

processed by the server, correlated with handler
methods.

2. views.py – contains the implementation of all
handler methods.

3. db.py – implements methods of interaction with
the database.

4. statistics.py – module responsible for the
reporting section.

5. common.py – module that implements general-
purpose functions for packet conversion,
identifier generation, etc.

The implemented server should work with the

database, exchange messages with agents and
clients, respond to incoming requests according to
API and perform all the provided functionality. For
this purpose, a base for reporting should be
prepared (documents “avg” and “avg_step” are
created). Work with reports completes the
development of the monitoring system and is at the
same time the starting point of the mathematical
model.

The module statistics.py is responsible for
realization of work with reports. The work itself is
proposed to be divided into three components:
1. Metrics prediction. A set of functions

implementing the described mathematical
apparatus is used.

2. Construction of graphs to track the dynamics of
metrics change. Collection of “avg_step”
documents, approximation of metrics and their
visualization are planned.

3. General information about the machine, its
averages, problems, etc. The “avg” document is
used for this purpose.

In the program implementation of the

approximation algorithm, a matrix of equations A
with coefficients by which the unknowns are
multiplied, a vector B of values (the right part of
each equation) is created.

Let the final vector with unknowns be denoted
by X, then we obtain the equation: AX = B. Let us
multiply both parts on the left by the matrix inverse
of A, i.e. A-1AX = A-1B. An inverse matrix is such
a matrix, the multiplication of which by the original
matrix yields the unit matrix E.

Therefore, the equation will take the form: EX
= A-1B. By the property of a unit matrix, its
multiplication by a square matrix gives the same
square matrix. Therefore, the final form of the
equation is as follows: X = A-1B.

Thus, to find the vector of coefficients of the
polynomials, we need to multiply the inverse matrix
A-1 by the vector B. Next, each segment is divided
into 50 points, for each of which a value is
calculated by substituting x into the polynomial. At
the output, the program gives a list of points on
which the spline graph is plotted.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 264 Volume 22, 2025

4 Software Implementation of the

 Mathematical Model
The forecasting stages include two steps: ARIMA
forecasting and interpolation of the results.

The ARIMA prediction stage is implemented
as follows:
def predict(x, y, n): # x - points, y - their values, n
- how many points to predict
 x2 = list(range(len(y)-1, len(y)+n))
 df = pd.DataFrame({'timestamp': x, 'value': y})
 model = ARIMA(df['value'], order=(5,1,0))
 model_fit = model.fit()
 forecast = model_fit.forecast(steps=len(x2))
 y2 = list(forecast)
 y2 = [abs(yy) for yy in y2]
 res = statistics.generatePoints(y+y2)
 x = [x1[0] for x1 in res]
 y = [y1[1] for y1 in res]
 return x, y

Now the prediction results need to be
interpolated. The stage of results interpolation is
realized as follows.

Input point of the program:
def generatePoints(values):
 points = [[x, y] for x, y in enumerate(values)]
 A = generateSplineMatrix(points) # Generation of spline
matrix
 B = generateAnswersVector(points) # Generating a vector
of responses
 X = np.dot(np.linalg.inv(A), B) # Multiplication of a matrix
by a vector
 x, y = collectResult(points, X) # Combining segments with
results into one object
 return [[xi, yi] for xi, yi in zip(x, y)]

Next, we go through the functions that are
called inside generatePoints. The implementation
of the data prediction component is presented
below. The component itself also uses “avg_step”
and builds new points based on the received data:

def generateSplineMatrix(points: list) -> np.array:
 result_array = []
 num_sectors = len(points) - 1

Filling of the lines responsible for the equality
of the spline points to the points of the table
function is realized as follows:

 for i in range(num_sectors):
 row = [0 for j in range(num_sectors * 4)]
 row[i * 4] = pow(points[i][0], 3)
 row[i * 4 + 1] = pow(points[i][0], 2)
 row[i * 4 + 2] = points[i][0]
 row[i * 4 + 3] = 1
 result_array.append(row)
 row = [0 for _ in range(num_sectors * 4)]
 row[i * 4] = pow(points[i + 1][0], 3)
 row[i * 4 + 1] = pow(points[i + 1][0], 2)
 row[i * 4 + 2] = points[i + 1][0]
 row[i * 4 + 3] = 1
 result_array.append(row)

Filling the lines responsible for the equality of
first derivatives at the points of the tabular function
between adjacent plots is realized as follows:

 for i in range(1, len(points) - 1):
 row = [0 for j in range(num_sectors * 4)]
 row[(i - 1) * 4] = 3 * pow(points[i][0], 2)
 row[(i - 1) * 4 + 1] = 2 * points[i][0]
 row[(i - 1) * 4 + 2] = 1
 row[(i - 1) * 4 + 4] = -3 * pow(points[i][0], 2)
 row[(i - 1) * 4 + 5] = -2 * points[i][0]
 row[(i - 1) * 4 + 6] = -1
 result_array.append(row)

Filling the lines responsible for the equality of
second derivatives at the points of the tabular
function between adjacent plots is realized as
follows:

 for i in range(1, len(points) - 1):
 row = [0 for j in range(num_sectors * 4)]
 row[(i - 1) * 4] = 6 * points[i][0]
 row[(i - 1) * 4 + 1] = 2
 row[(i - 1) * 4 + 4] = -6 * points[i][0]
 row[(i - 1) * 4 + 5] = -2
 result_array.append(row)

Filling the lines responsible for the equality of
the second derivatives to zero at the extreme points
of the segment is realized as follows:
 row = [0 for j in range(num_sectors * 4)]
 row[0] = 6 * points[0][0]
 row[1] = 2
 result_array.append(row)
 row = [0 for j in range(num_sectors * 4)]
 row[num_sectors * 4 - 3] = 6 * points[-1][0]
 row[num_sectors * 4 - 2] = 2
 result_array.append(row)
 return np.array(result_array)
def generateAnswersVector(points: list) -> np.array:
 B = []
 for i in range(1, len(points)):
 B.append(points[i - 1][1])
 B.append(points[i][1])
 return np.array(B + [0] * len(B))
def collectResult(points: list, X: np.array):
 xArgs = []
 yValues = []
 for i in range(1, len(points)):
 x = np.linspace(points[i - 1][0], points[i][0])
 start_index = (i - 1) * 4
 y = X[start_index]*(x**3)+X[start_index + 1]*(x**2) +
X[start_index + 2]*x+X[start_index + 3]
 xArgs += x.tolist()
 yValues += y.tolist()
 return xArgs, yValues

It is noteworthy that the program
implementation uses the DataFrame library, which
performs the calculations. For cases when there is
no access to this library or its use is considered
inexpedient by the researchers, the author's
program implementation of the developed
mathematical model is presented below.

Program entry point:
def predict_ARIMA(values, p, d, q, n):
 phi = np.zeros(p)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 265 Volume 22, 2025

 theta = np.zeros(q)
 diff_data = np.copy(values)

 Then the differentiation by finite differences
of values (arIma) takes place:
 for i in range(d):
 diff_data = diff(diff_data, d, i)

The realization of the generation of vectors
with coefficients using correlation is carried out as
follows:
 for i in range(p):
 phi[i] = corrcoef(diff_data[p - i:-1], diff_data[p - i - 1:-2])
 for i in range(q):
 theta[i] = corrcoef(diff_data[q - i:-1], diff_data[q - i - 1:-
2])
 predicted_values = np.zeros(n)

The program implementation also provides for
the generation of noise values:
 noise_samples = np.random.normal(size=len(values)+n)
 d_noise_samples = np.copy(noise_samples)
 for i in range(len(noise_samples)):
 d_noise_samples[i] = diff(noise_samples, d, i)

Next, the generation of predicted values is
realized:
 for i in range(n):
 predicted_values[i] = (np.sum(phi * diff_data[-p:]) +
np.sum(d_noise_samples[i]*theta) + mean(values) +
noise_samples[len(values)+i])
 return predicted_values

The description of functions that
predict_ARIMA calls is presented below.

The average value of the series is calculated:
def mean(arr):
 return sum(arr) / len(arr)
The covariance is calculated:
def covariance(x, y):
 x_mean = mean(x)
 y_mean = mean(y)
 covariance_sum = 0
 for i in range(len(x)):
 covariance_sum += (x[i] - x_mean) * (y[i] - y_mean)
 return covariance_sum / len(x)
The method of least squares is applied:
def std_dev(arr):
 arr_mean = mean(arr)
 variance = sum((x - arr_mean) ** 2 for x in arr) / len(arr)
 return variance
The correlation is calculated:
def corrcoef(x, y):
 cov = covariance(x, y)
 x_std = std_dev(x)
 y_std = std_dev(y)
 correlation_coefficient = cov / (x_std * y_std)
 return correlation_coefficient
The finite difference method is used:
def diff(arr, n, i=0):
 if n == 0:
 return arr[i]
 return diff(n-1, i+1) - diff(n-1, i)

The final set of values is interpolated, returning
a curve, some of which is based on real data and
some on predicted data. Examples of predictions
are shown in Figure 3 and Figure 4.

Fig. 3: Predicting metrics. RAM

Fig. 4: Predicting metrics. CPU utilization

After taking several measurements, the average

forecast error was calculated to be 5.1%.
These results show that the chosen

mathematical model allows to determine the
metrics in the future quite accurately. Figure 3 and
Figure 4 show that the model was able to predict
the RAM and CPU load of the test bench in the
future. The maximum deviation of the prediction
from the real data was 3.32% and 3.66%
respectively. This deviation is insignificant in the
context of machine load. Thus we can conclude
that the developed mathematical model really
works in practice and allows us to make an optimal
choice of a test bench to run tests on it. This feature
will allow efficient allocation of computing
resources at the stage of integration testing, which
will have a positive impact on its duration.

5 Interpretation of the Result of the

 Machine Experiment
To provide general information about the device,
data from the “avg” package is extracted, and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 266 Volume 22, 2025

divided by the “count” field (at the current
moment or in the predicted one, depending on the
request). The user will be able to see the average
performance of the machine, and the acceptable
norms for each of them. Based on this
information, he will be able to conclude how
suitable the device is for operation.

An overall assessment of the state of the
machine is also formed. The following parameters
are used to form the assessment: CPU load, number
of physical cores, number of logical cores, RAM
load, free disk space, average disk response time,
disk active time, and average operation speed. All
the parameters have different units and orders of
magnitude, so they must first be put on the same
scale from 0 to 10. Those values that are measured
in percentages are divided by 10.

Other parameters are given individually:

1. The number of physical and logical
processors in the most advanced mass-market
models reaches the limit of 16 pieces. Therefore,
we will consider this value as a reference value,
and therefore divide it by 1.6.

2. We will consider 500 mb/s as the
benchmark value of disk operations speed.
Therefore, the metric value is divided by 50.

3. The average response time is the only
parameter whose increase is negative. We will
assume that the worst time is equal to 500 ms.
Therefore, this sample is also divided by 50.

The result, when the parameters are out of the

scale, will be considered acceptable, as it reflects
the condition of the machine as ideal, above the
norm. For a more accurate assessment, we will
introduce a scale of weights for each parameter,
which is responsible for their importance:

1. The load is 25.
2. Physical cores - 15
3. Logic cores - 5
4. RAM - 5
5. Disk space - 10
6. Response time - 10
7. Active time - 10
8. Speed of operations – 10

Then the value of each item is multiplied by its

weight, and the resulting products are added
together (the exception is the response time, its
product is subtracted). As a result, the reference
result is 1000, and the worst possible result is 0. All
weights were selected on the basis of the author's
experience (which values are critical, change of
which parameter will have a stronger impact on the

system as a whole) and manual selection of
coefficients on different samples. When visualizing
such statistics, the scores (denoted as R) will be
marked with different colors, indicating the status
of the state:

1. R ≥ 1000 – “ perfect”
2. 700 ≤ R < 1000 – “ excellent”
3. 500 ≤ R < 700 – “good”
4. 300 ≤ R < 500 – “normal”
5. 100 ≤ R < 300 – “bad”
6. 0 ≤ R < 100 – “terrible”

A critical state is entered for each individual item:

1. CPU load is greater than 80%.
2. The number of cores is less than 3.
3. RAM load is greater than 80%.
4. Free disk space is less than 10%.
5. Response time is greater than 300 ms.
6. Active disk time is greater than 70%.
7. Disk transaction rate is less than 100 mb/s.

Thus, the function responsible for collecting

general statistics queries the “avg” document in the
database, divides its values by the “count” field,
and adds the state score to it. An example of the
document is shown in Figure 5.

Fig. 5: Example of a report with general
information

6 Conclusion
The mathematical model provides the ability to
process the monitoring data of the hardware and
software complex and is fair with respect to the
selected metrics and specified parameters. When
selecting metrics and parameters as a
methodological basis for setting the mathematical
problem, the authors proceeded from the prospect
of software implementation of the solution in the
form of a service for remote monitoring of
hardware and software complex functioning.

Thus, the obtained result of the research has
theoretical significance, because it expands the
field of solutions for effective development and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 267 Volume 22, 2025

testing of hardware devices and software. Also the
result claims applied significance, being
recommended for integration into the work of the
test bench at the stage of integration testing. The
solution needs pilot testing, which can be
considered as an applied task following the logic of
research prolongation by the authors.

The possibilities for further development in this
area are the deepening of research in the direction
of supplementing the ARIMA methodology with
other components, such as exogenous factors
(ARIMAX). This will expand its capabilities and
make it an even more powerful tool for the analysis
of time series to monitor the functioning of
hardware and software complexes. It is also worth
considering the possibility of optimizing the
parameters of its mathematical model for
application beyond the integration testing stage, for
example, for the purpose of system testing.

References:

[1] J. M. Alvarez-Rodríguez, R. Mendieta, E.
Cibrián, and J. Llorens, “Towards a method
to quantitatively measure toolchain
interoperability in the engineering lifecycle:
A case study of digital hardware design,”
Comput. Stand. Interfaces, vol. 86, p.
103744, 2023,
https://doi.org/10.1016/j.csi.2023.103744.

[2] L. O. Freire, L. M. Oliveira, R. T.S. Vale,
M. Medeiros, R. E.Y. Diana, R. M. Lopes,
E. L. Pellini, E. A. de Barros, “Development
of an AUV control architecture based on
systems engineering concepts,” Ocean Eng.,
vol. 151, pp. 157–169, 2018,
https://doi.org/10.1016/j.oceaneng.2018.01.
016.

[3] A. Safwat and M. B. Senousy, “Addressing
Challenges of Ultra Large Scale System on
Requirements Engineering,” Procedia

Comput. Sci., vol. 65, pp. 442–449, 2015,
https://doi.org/10.1016/j.procs.2015.09.116.

[4] M. F. Khan and R. A. Paul, “Chapter 4 -
Pragmatic Directions in Engineering Secure
Dependable Systems,” in Dependable and

Secure Systems Engineering, vol. 84, A.
Hurson and S. B. T.-A. in C. Sedigh, Eds.
Elsevier, 2012, pp. 141–167,
https://doi.org/10.1016/B978-0-12-396525-
7.00005-8.

[5] L. R. Welch, A. L. Samuel, M. W. Masters,
R. D. Harrison, M. Wilson, and J. Caruso,
“Reengineering computer-based systems for
enhanced concurrency and layering,” J.

Syst. Softw., vol. 30, no. 1, pp. 45–70, 1995,
https://doi.org/10.1016/0164-
1212(94)00116-5.

[6] A. Ahmad, A. B. Altamimi, and J. Aqib, “A
reference architecture for quantum
computing as a service,” J. King Saud Univ.

- Comput. Inf. Sci., vol. 36, no. 6, p. 102094,
2024,
https://doi.org/10.1016/j.jksuci.2024.102094

[7] H. Beierling, P. Richter, M. Brandt, L.
Terfloth, C. Schulte, H. Wersing, A.-L.
Vollmer, “What you need to know about a
learning robot: Identifying the enabling
architecture of complex systems,” Cogn.

Syst. Res., vol. 88, p. 101286, 2024,
https://doi.org/10.1016/j.cogsys.2024.10128
6.

[8] H. Loschi, D. Nascimento, R. Smolenski,
and P. Lezynski, “Cyber–physical system
for fast prototyping of power electronic
converters in EMI shaping context,” J. Ind.

Inf. Integr., vol. 33, p. 100457, 2023,
https://doi.org/10.1016/j.jii.2023.100457.

[9] T. Zhang, Y. Shi, Y. Cheng, Y. Zeng, X.
Zhang, and S. Liang, “The design and
implementation of distributed architecture
in the CMOR motion control system,”
Fusion Eng. Des., vol. 186, p. 113357,
2023,
https://doi.org/10.1016/j.fusengdes.2022.11
3357.

[10] L. Yang, X. Li zhang, L. Yaoming, L. Liya,
and S. Maolin, “Modeling and control
methods of a multi-parameter system for
threshing and cleaning in grain combine
harvesters,” Comput. Electron. Agric., vol.
225, p. 109251, 2024,
https://doi.org/10.1016/j.compag.2024.1092
51.

[11] P. Anistratov, Y. Golobokov, and V.
Pavlov, “Hardware-software Complex
Prototyping for the Pulse Power Supply
Control System of Tokamak T-15,”
Procedia Comput. Sci., vol. 66, pp. 546–
555, 2015,
https://doi.org/10.1016/j.procs.2015.11.062.

[12] S. Wiesner, S. Nilsson, and K.-D. Thoben,
“Integrating Requirements Engineering for
Different Domains in System Development
– Lessons Learnt from Industrial SME
Cases,” Procedia CIRP, vol. 64, pp. 351–
356, 2017,
https://doi.org/10.1016/j.procir.2017.03.013.

[13] K. H. Kim, T. G. Lee, S. Baek, S. I. Lee, Y.
Chu, Y. O. Kim, J. S. Kim, M. K. Park, Y.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 268 Volume 22, 2025

https://doi.org/10.1016/j.csi.2023.103744
https://doi.org/10.1016/j.oceaneng.2018.01.016
https://doi.org/10.1016/j.oceaneng.2018.01.016
https://doi.org/10.1016/j.procs.2015.09.116
https://doi.org/10.1016/B978-0-12-396525-7.00005-8
https://doi.org/10.1016/B978-0-12-396525-7.00005-8
https://doi.org/10.1016/0164-1212(94)00116-5
https://doi.org/10.1016/0164-1212(94)00116-5
https://doi.org/10.1016/j.jksuci.2024.102094
https://doi.org/10.1016/j.cogsys.2024.101286
https://doi.org/10.1016/j.cogsys.2024.101286
https://doi.org/10.1016/j.jii.2023.100457
https://doi.org/10.1016/j.fusengdes.2022.113357
https://doi.org/10.1016/j.fusengdes.2022.113357
https://doi.org/10.1016/j.compag.2024.109251
https://doi.org/10.1016/j.compag.2024.109251
https://doi.org/10.1016/j.procs.2015.11.062
https://doi.org/10.1016/j.procir.2017.03.013

K. Oh, “Software development of the
KSTAR Tokamak Monitoring System,”
Fusion Eng. Des., vol. 83, no. 2, pp. 291–
294, 2008,
https://doi.org/10.1016/j.fusengdes.2008.01.
016.

[14] F. Cus, M. Milfelner, and J. Balic, “An
intelligent system for monitoring and
optimization of ball-end milling process,” J.

Mater. Process. Technol., vol. 175, no. 1,
pp. 90–97, 2006,
https://doi.org/10.1016/j.jmatprotec.2005.04
.041.

[15] S. Itaya, F. Ohori, T. Osuga, and T.
Matsumura, “Smart Monitoring of Wireless
Environments with Real-Time Aggregation
and Analysis,” Procedia Comput. Sci., vol.
220, pp. 86–93, 2023,
https://doi.org/10.1016/j.procs.2023.03.014.

[16] J. P. Calvez and O. Pasquier, “Real-time
behavior monitoring for multi-processor
systems,” Microprocess.

Microprogramming, vol. 38, no. 1, pp. 213–
220, 1993, https://doi.org/10.1016/0165-
6074(93)90146-C.

[17] M. Lin, D. Hou, P. Liu, Z. Yang, and Y.
Yang, “Main control system verification
and validation of NPP digital I&C system
based on engineering simulator,” Nucl. Eng.

Des., vol. 240, no. 7, pp. 1887–1896, 2010,
https://doi.org/10.1016/j.nucengdes.2010.03
.011.

[18] R. A. Swartz and J. P. Lynch, “3 - Wireless
sensors and networks for structural health
monitoring of civil infrastructure systems,”
in Woodhead Publishing Series in Civil and

Structural Engineering, V. M. Karbhari and
F. B. T.-S. H. M. of C. I. S. Ansari, Eds.
Woodhead Publishing, 2009, pp. 72–112.

[19] H. Honka and M. Kattilakoski, “A
simulation-based system for testing real-
time embedded software in the host
environment,” Microprocess.

Microprogramming, vol. 32, no. 1, pp. 127–
134, 1991, https://doi.org/10.1016/0165-
6074(91)90334-P.

[20] J. Van Noten, K. Gadeyne, and M. Witters,
“Model-based Systems Engineering of
Discrete Production Lines Using SysML:
An Experience Report,” Procedia CIRP,
vol. 60, pp. 157–162, 2017,
https://doi.org/10.1016/j.procir.2017.01.018.

[21] M. Foughali, P.-E. Hladik, and A. Zuepke,
“Compositional verification of embedded
real-time systems,” J. Syst. Archit., vol. 142,

p. 102928, 2023,
https://doi.org/10.1016/j.sysarc.2023.10292
8.

[22] A. EL Zerk, M. Ouassaid, and Y. Zidani,
“Development of a real-time framework
between MATLAB and PLC through OPC-
UA: A case study of a microgrid energy
management system,” Sci. African, vol. 21,
p. e01846, 2023,
https://doi.org/10.1016/j.sciaf.2023.e01846.

[23] E. Stach, B. DeCost, A. G. Kusne, J.
Hattrick-Simpers, K. A. Brown, K. G.
Reyes, J. Schrier, S. Billinge, T. Buonassisi,
I. Foster, C. P. Gomes, J. M. Gregoire, A.
Mehta, J. Montoya, E. Olivetti, Ch. Park, E.
Rotenberg, S. K. Saikin, S. Smullin, V.
Stanev, B. Maruyama, “Autonomous
experimentation systems for materials
development: A community perspective,”
Matter, vol. 4, no. 9, pp. 2702–2726, 2021,
https://doi.org/10.1016/j.matt.2021.06.036.

[24] E. de Araújo Silva, E. Valentin, J. R. H.
Carvalho, and R. da Silva Barreto, “A
survey of Model Driven Engineering in
robotics,” J. Comput. Lang., vol. 62, p.
101021, 2021,
https://doi.org/10.1016/j.cola.2020.101021.

[25] E. Hussein, B. Waschneck, and C. Mayr,
“Automating application-driven
customization of ASIPs: A survey,” J. Syst.

Archit., vol. 148, p. 103080, 2024,
https://doi.org/10.1016/j.sysarc.2024.10308
0.

[26] D. Zoni, L. Cremona, A. Cilardo, M.
Gagliardi, and W. Fornaciari, “PowerTap:
All-digital power meter modeling for run-
time power monitoring,” Microprocess.

Microsyst., vol. 63, pp. 128–139, 2018,
https://doi.org/10.1016/j.micpro.2018.07.00
7.

[27] A. Askhedkar, B. Chaudhari, and M.
Zennaro, “18 - Hardware and software
platforms for low-power wide-area
networks,” B. S. Chaudhari and M. B. T.-L.
T. for I. and M. A. Zennaro, Eds. Academic
Press, 2020, pp. 397–407.
https://doi.org/10.1016/B978-0-12-818880-
4.00019-3.

[28] R. Ligeiro, “Monitoring applications: An
immune inspired algorithm for software-
fault detection,” Appl. Soft Comput., vol. 24,
pp. 1095–1104, 2014,
https://doi.org/10.1016/j.asoc.2014.08.021.

[29] M. J. Ringer, T. M. Quinn, and A. Merolla,
“Autonomous power system: Intelligent

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 269 Volume 22, 2025

https://doi.org/10.1016/j.fusengdes.2008.01.016
https://doi.org/10.1016/j.fusengdes.2008.01.016
https://doi.org/10.1016/j.jmatprotec.2005.04.041
https://doi.org/10.1016/j.jmatprotec.2005.04.041
https://doi.org/10.1016/j.procs.2023.03.014
https://doi.org/10.1016/0165-6074(93)90146-C
https://doi.org/10.1016/0165-6074(93)90146-C
https://doi.org/10.1016/j.nucengdes.2010.03.011
https://doi.org/10.1016/j.nucengdes.2010.03.011
https://doi.org/10.1016/0165-6074(91)90334-P
https://doi.org/10.1016/0165-6074(91)90334-P
https://doi.org/10.1016/j.procir.2017.01.018
https://doi.org/10.1016/j.sysarc.2023.102928
https://doi.org/10.1016/j.sysarc.2023.102928
https://doi.org/10.1016/j.sciaf.2023.e01846.
https://doi.org/10.1016/j.matt.2021.06.036
https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1016/j.sysarc.2024.103080
https://doi.org/10.1016/j.sysarc.2024.103080
https://doi.org/10.1016/j.micpro.2018.07.007
https://doi.org/10.1016/j.micpro.2018.07.007
https://doi.org/10.1016/B978-0-12-818880-4.00019-3
https://doi.org/10.1016/B978-0-12-818880-4.00019-3
https://doi.org/10.1016/j.asoc.2014.08.021

diagnosis and control,” Telemat.

Informatics, vol. 8, no. 4, pp. 365–383,
1991, https://doi.org/10.1016/S0736-
5853(05)80060-7.

[30] P. Charalampidis, A. Makrogiannakis, N.
Karamolegkos, S. Papadakis, Y.
Charalambakis, G. Kamaratakis, A.
Fragkiadakis, “A flexible Compilation-as-a-
Service and Remote-Programming-as-a-
Service platform for IoT devices,” Internet

of Things, vol. 20, p. 100617, 2022,
https://doi.org/10.1016/j.iot.2022.100617.

[31] I. Heider, J. Baumgärtner, A. Bott, R.
Ströbel, A. Puchta, and J. Fleischer,
“Towards a Testing Framework for
Machine Learning Model Deployment in
Manufacturing Systems,” Procedia CIRP,
vol. 127, pp. 122–128, 2024,
https://doi.org/10.1016/j.procir.2024.07.022.

[32] A. Lönnfält, V. Tu, G. Gay, A. Singh, and
S. Tahvili, “An intelligent test management
system for optimizing decision making
during software testing,” J. Syst. Softw., vol.
219, p. 112202, 2025,
https://doi.org/10.1016/j.jss.2024.112202.

[33] R. Seyyedi, S. Schreiner, M. Fakih, K.
Grüttner, and W. Nebel, “Functional test
environment for time-triggered control
systems in complex MPSoCs,”
Microprocess. Microsyst., vol. 76, p.
103072, 2020,
https://doi.org/10.1016/j.micpro.2020.10307
2.

[34] R. Pitschinetz and J. Wegener, “TESSY -
Management of Software Tests,” IFAC

Proc. Vol., vol. 29, no. 2, pp. 11–16, 1996,
https://doi.org/10.1016/S1474-
6670(17)43770-0.

[35] S. Ali, L. C. Briand, M. J. Rehman, H.
Asghar, M. Z. Z. Iqbal, and A. Nadeem, “A
state-based approach to integration testing
based on UML models,” Inf. Softw.

Technol., vol. 49, no. 11, pp. 1087–1106,
2007,
https://doi.org/10.1016/j.infsof.2006.11.002.

[36] F. Mattiello-Francisco, E. Martins, A. R.
Cavalli, and E. T. Yano, “InRob: An
approach for testing interoperability and
robustness of real-time embedded
software,” J. Syst. Softw., vol. 85, no. 1, pp.
3–15, 2012,
https://doi.org/10.1016/j.jss.2011.02.034.

[37] Y. Ding, Y. Zhang, G. Yuan, S. Jiang, and
W. Dai, “Progress on class integration test
order generation approaches: A systematic

literature review,” Inf. Softw. Technol., vol.
156, p. 107133, 2023,
https://doi.org/10.1016/j.infsof.2022.107133

[38] Y. Wang, M. V Mäntylä, Z. Liu, and J.
Markkula, “Test automation maturity
improves product quality—Quantitative
study of open source projects using
continuous integration,” J. Syst. Softw., vol.
188, p. 111259, 2022,
https://doi.org/10.1016/j.jss.2022.111259.

[39] F. Trautsch, S. Herbold, and J. Grabowski,
“Are unit and integration test definitions
still valid for modern Java projects? An
empirical study on open-source projects,” J.

Syst. Softw., vol. 159, p. 110421, 2020,
https://doi.org/10.1016/j.jss.2019.110421.

[40] S. S. Yadav, A. Kumar, P. Johri, and J. N.
Singh, “Chapter 6 - Testing effort-
dependent software reliability growth model
using time lag functions under distributed
environment,” in Emerging Methodologies

and Applications in Modelling, P. Johri, A.
Anand, J. Vain, J. Singh, and M. B. T.-S. A.
Quasim, Eds. Academic Press, 2022, pp.
85–102.

[41] F. Saglietti, N. Oster, and F. Pinte, “White
and grey-box verification and validation
approaches for safety- and security-critical
software systems,” Inf. Secur. Tech. Rep.,
vol. 13, no. 1, pp. 10–16, 2008,
https://doi.org/10.1016/j.istr.2008.03.002.

[42] N. C. W. M. Braspenning, R. Boumen, J. M.
van de Mortel-Fronczak, and J. E. Rooda,
“Estimating and quantifying the impact of
using models for integration and testing,”
Comput. Ind., vol. 62, no. 1, pp. 65–77,
2011,
https://doi.org/10.1016/j.compind.2010.05.0
11.

[43] E. Losi, L. Manservigi, P. R. Spina, and M.
Venturini, “Data-driven approach for the
detection of faults in district heating
networks,” Sustain. Energy, Grids

Networks, vol. 38, p. 101355, 2024,
https://doi.org/10.1016/j.segan.2024.101355

[44] Y. Tan, H. Tian, R. Jiang, Y. Lin, and J.
Zhang, “A comparative investigation of
data-driven approaches based on one-class
classifiers for condition monitoring of
marine machinery system,” Ocean Eng.,
vol. 201, p. 107174, 2020,
https://doi.org/10.1016/j.oceaneng.2020.107
174.

[45] Y. Xu, Y. Qamsane, S. Puchala, A.
Januszczak, D. M. Tilbury, and K. Barton,

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 270 Volume 22, 2025

https://doi.org/10.1016/S0736-5853(05)80060-7
https://doi.org/10.1016/S0736-5853(05)80060-7
https://doi.org/10.1016/j.iot.2022.100617
https://doi.org/10.1016/j.procir.2024.07.022
https://doi.org/10.1016/j.jss.2024.112202
https://doi.org/10.1016/j.micpro.2020.103072
https://doi.org/10.1016/j.micpro.2020.103072
https://doi.org/10.1016/S1474-6670(17)43770-0
https://doi.org/10.1016/S1474-6670(17)43770-0
https://doi.org/10.1016/j.infsof.2006.11.002
https://doi.org/10.1016/j.jss.2011.02.034
https://doi.org/10.1016/j.infsof.2022.107133
https://doi.org/10.1016/j.jss.2022.111259
https://doi.org/10.1016/j.jss.2019.110421
https://doi.org/10.1016/j.istr.2008.03.002
https://doi.org/10.1016/j.compind.2010.05.011
https://doi.org/10.1016/j.compind.2010.05.011
https://doi.org/10.1016/j.segan.2024.101355
https://doi.org/10.1016/j.oceaneng.2020.107174
https://doi.org/10.1016/j.oceaneng.2020.107174

“A data-driven approach toward a machine-
and system-level performance monitoring
digital twin for production lines,” Comput.

Ind., vol. 157–158, p. 104086, 2024,
https://doi.org/10.1016/j.compind.2024.104
086.

[46] A. Puliyanda, K. Srinivasan, K.
Sivaramakrishnan, and V. Prasad, “A
review of automated and data-driven
approaches for pathway determination and
reaction monitoring in complex chemical
systems,” Digit. Chem. Eng., vol. 2, p.
100009, 2022,
https://doi.org/10.1016/j.dche.2021.100009.

[47] S. Hamdan and S. Alramouni, “A Quality
Framework for Software Continuous
Integration,” Procedia Manuf., vol. 3, pp.
2019–2025, 2015,
https://doi.org/10.1016/j.promfg.2015.07.24
9.

[48] Y. Li, J. Wang, Y. Yang, and Q. Wang, “An
extensive study of class-level and method-
level test case selection for continuous
integration,” J. Syst. Softw., vol. 167, p.
110614, 2020,
https://doi.org/10.1016/j.jss.2020.110614.

[49] S. M. Krone, “Spatial models: stochastic
and deterministic,” Math. Comput. Model.,
vol. 40, no. 3, pp. 393–409, 2004,
https://doi.org/10.1016/j.mcm.2003.09.037.

[50] M. Voskoglou, “3.7 - A Stochastic Model
for the Modelling Process,” C. Haines, P.
Galbraith, W. Blum, and S. B. T.-M. M.
Khan, Eds. Woodhead Publishing, 2007, pp.
149–157.

[51] C. N. Babu and B. E. Reddy, “A moving-
average filter based hybrid ARIMA–ANN
model for forecasting time series data,”
Appl. Soft Comput., vol. 23, pp. 27–38,
2014,
https://doi.org/10.1016/j.asoc.2014.05.028.

[52] G. P. Zhang, “Time series forecasting using
a hybrid ARIMA and neural network
model,” Neurocomputing, vol. 50, pp. 159-
175, 2003, https://doi.org/10.1016/S0925-
2312(01)00702-0.

[53] C. Christodoulos, C. Michalakelis, and D.
Varoutas, “Forecasting with limited data:
Combining ARIMA and diffusion models,”
Technol. Forecast. Soc. Change, vol. 77, no.
4, pp. 558–565, 2010,
https://doi.org/10.1016/j.techfore.2010.01.0
09.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

The research was funded by the grant Russian
Science Foundation № 24-21-20089.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.e
n_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2025.22.22 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-3402 271 Volume 22, 2025

https://doi.org/10.1016/j.compind.2024.104086
https://doi.org/10.1016/j.compind.2024.104086
https://doi.org/10.1016/j.dche.2021.100009
https://doi.org/10.1016/j.promfg.2015.07.249
https://doi.org/10.1016/j.promfg.2015.07.249
https://doi.org/10.1016/j.jss.2020.110614
https://doi.org/10.1016/j.mcm.2003.09.037
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/j.techfore.2010.01.009
https://doi.org/10.1016/j.techfore.2010.01.009
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

