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Abstract: - This research is a contribution to the field of solutions for the effective process of technical hardware 
and software development. A mathematical model of providing remote monitoring of the hardware-software 
complex under development at the stage of integration testing is proposed. Monitoring of the hardware-software 
complex functioning in the process of development allows for leveling the limitations connected with resource-
intensive integration testing and determining the influence of the developed parts of the complex (hardware and 
software) on the operability of the inherited functionality of the systems of the external environment. The data 
of mathematical modeling is proposed to be used to develop an emulator of the external environment systems of 
the developed hardware-software complex on a test bench and to conduct integration testing. The solution is a 
stochastic model since the subject of remote monitoring is defined as random events of the process of 
integration testing of the hardware-software complex. The mathematical model for time series modeling takes 
into account a set of metrics of hardware-software complex functioning and requirements for the future 
software implementation of the solution - the remote monitoring service being developed. The implementation 
of the mathematical model can be used by the IT developer when integrating monitoring data into the 
automated test system of hardware and software complex development. 
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1   Introduction 
Hardware and software systems provide a variety 
of often critical information processes. Their 
importance in computing and their place in 
systems engineering have been described in many 
studies, [1], [2], [3], [4]. Applied to the concept of 
the algorithm of a complex system, [5], [6], [7] 
hardware-software complexes combine software 
and hardware parts and constitute a complex of 
hardware and software of the system, allowing the 
collection, processing, storage, and display of 
information about the state of objects in real-time 
(National standard of the Russian Federation 
52980-2008 “Functional safety of electrical, 
electronic, programmable electronic safety-related 
systems applications for railways. Software 
requirements”). In the applied aspect, they 
function in the form of access control systems, 
database systems, technological branch equipment, 
and complexes for production automation, [8], [9], 
[10], [11].  

Despite the fact that the hardware-software 
complex does not realize the information 
technology of performing the established functions, 
but serves for solving certain technical tasks, 
monitoring of its state is an important activity 
throughout the entire product life cycle. And this 
statement finds confirmation in a number of 
studies, [12], [13], [14]. 

Common solutions in the IT market in the field 
of monitoring the operation of hardware and 
software complexes mainly offer systems that 
implement real-time monitoring - showing only 
current indicators, [15], [16], [17], [18]. But in the 
process of development and testing of hardware-
software complexes, it is also necessary to study 
the state of the machine during the test period and 
during the periods of the prototyping cycle with 
varying degrees of detail. This need is reflected in 
studies, [17], [19], [20], [21], [22] abstract reviews  
[23], [24], [25] on hardware, software development 
methods and practices. Solutions for monitoring 
operating hardware and software systems have 
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been implemented many and with different 
functionality, [10], [26], [27], [28], [29], [30]. At 
the same time, there are no open monitoring 
solutions for hardware-software complexes being 
designed, and developed, and even more so for 
future hardware-software complexes, which can be 
built into the system of hardware-software 
complexes development. 

Familiarisation with separate components of 
the technical documentation of several test 
management systems, [31], [32], [33], [34] allowed 
us to establish that the mathematical models on the 
basis of which these systems were developed were 
based on the analytical modeling apparatus, but no 
prediction tools were used. In addition, the studied 
solutions are designed for automatic testing, which 
certainly reduces operational costs, but does not 
enrich the process of developing an emulator of 
systems emulator of the external environment of 
the hardware and software complex under 
development. 

IT developers widely use the practice of 
integration tests, [19], [35], [36], [37], [38]. Their 
results to some extent duplicate the data that are 
formed based on the results of monitoring the 
operation of a hardware-software complex, but 
only in terms of data on the interaction of hardware 
and software parts of the complex with other 
systems. Of course, it is extremely important to 
have an idea of their interrelation and check their 
joint performance. This allows to detect and 
leveling out of defects related to modular assembly, 
launching, and synchronization of information 
architecture components, [39], [40], [41], [42].  

However, the emulation mode of the complex 
environment on the test bench does not provide 
enough information about the state of the machine 
under test directly - they appear to be noisy as a 
result of simultaneous execution of multiple tests 
on different code or data instances. Besides, 
integration testing (namely regression testing as its 
part) is limited to checking that changes in the 
environment have not affected the operability of 
the inherited functionality. This is not applicable to 
designed and future machines, whose task is to 
make changes from the system engineering point of 
view.  

The authors believe that monitoring the 
hardware-software complex at the stages of the life 
cycle, preceding the commissioning of the 
complex, allows not only to control of the process 
of its development but also to determine the impact 
of the developed parts of the complex (hardware 
and software) on the environment, mainly in terms 
of metrological parameters of hardware.  It is also 

necessary to take into account the following 
peculiarity of the hardware-software complex - the 
operator (user) from the point of view of the system 
architecture is not included in its structure, i.e. is 
outside the system. On the one hand, this simplifies 
the monitoring process, because the operator's 
algorithm is outside the observed process. On the 
other hand, the operator's observations and 
experience cease to be a source of monitoring data, 
which limits the results of monitoring to the data of 
hardware state, and measurements of physical 
quantities characterizing the performance of 
technical tasks. This aspect should be emphasized, 
as monitoring results become the basis for making 
decisions on information infrastructure 
management, and also become a source of data for 
designing new IT products and selecting their 
architecture. After all, today monitoring systems do 
not just accumulate the data of observations of 
system behavior, they fully implement the logic of 
the Data-driven approach, [43], [44], [45], [46]. 

Thus, there is a need to develop a solution for 
monitoring the functioning of hardware and 
software complexes (hereinafter - machines) at the 
stage of their development and integration testing. 
We deliberately complicate the task of developing 
such a solution by identifying the need to adapt it to 
the functionality of the automated remote 
monitoring service. The solution should provide 
such service functions as real-time data collection 
and/or one-time collection of certain data (disk read 
and write tests, local network search) and/or data 
collection over a period of time (for example, the 
program starts monitoring and stops it at the end of 
its work). The automated remote monitoring 
service will need to consider the following metrics 
of hardware and software system operation:  
1)  the lifecycle of the processes; 
2) specified algorithm for measuring physical 

quantities of equipment operation; 
3)  system load; 
4)  network activity; 
5)  state of services/background processes; 
6)  information about installed applications; 
7)  information about the local network. 

 
In this study, the authors focused on the aspect 

of mathematical support and administration of 
hardware and software complexes.  The authors' 
area of interest was the processes of functioning of 
technical and mathematical means of automation of 
computations and information processing and, 
search for solutions for effective administration of 
computing equipment. The purpose of the research 
is to show how the problem of providing remote 
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monitoring of a machine at the stage of integration 
testing is mathematically solved. The authors 
propose to use the monitoring data to develop an 
emulator of the systems of the external 
environment of the hardware-software complex on 
a test bench and to conduct integration testing. The 
mathematical model is intended to avoid the 
limitations and difficulties of testing associated 
with the resource-intensive process, [47], [48]. The 
implementation of the mathematical model is 
supposed to be used for the subsequent integration 
of monitoring data into the automated development 
test system.  

Achievement of the set goal is relevant not 
only for IT developers of hardware and software 
complexes (the objects of this study) but also for 
companies specializing in software development. 
Problems at the stage of integration testing arise, in 
particular, due to the fact that the IT developer has 
no control over the load on the system during the 
parallel launch of integration tests. This leads to the 
failure of the whole system, disrupting the work of 
the tests. To prevent this, the authors propose to 
monitor the machine on the basis of a mathematical 
model.  

The mathematical model of solving the problem 
of providing remote monitoring of the machine at 
the stage of integration testing takes into account 
the list of requirements for the future software 
implementation of the solution - the developed 
service of automated remote monitoring. This is 
necessary so that the constructed mathematical 
model can be effectively used by the object.  

The authors also defined the parameters, the 
sample of which was used for a) setting the 
mathematical problem of providing remote 
monitoring of the machine at the stage of 
integration testing; b) setting the problem of 
integrating the mathematical model into the 
automated test system used by the object during the 
development of the hardware-software complex. 
The selection of parameters includes the following 
items: 

1. Running processes. It is necessary to 
display a list of all running processes in a tree 
format to track the inheritance structure. During the 
test bench operation, many background processes 
with a deep level of inheritance are created, so if an 
error occurs in one of them, it is necessary to 
understand the whole path to the exception source.  

2. System load. Output information about the 
current system load of the main hardware 
components: hard disc, processor, RAM, and 
others. It is also supposed to run a performance test 
of certain parameters: the speed of reading and 

writing from the disc, the average response time of 
the disc, and its active time. 

3. Networking. Monitoring of network 
activity, occupied ports and available network 
interfaces is required. 

4. Service Monitoring. Output a list of all 
services and services, their description, and current 
status. 

5. Information about installed applications. A 
list of installed applications and a description of 
each of them. 

6. Local network status. Realization of 
interaction with the local network, search for a user 
or group in the network, ping nodes. 

 
 

2   Building a Mathematical Model 
In order to successfully pass the integration test, the 
optimal build of the external environment emulator 
of the hardware/software system under test must 
take into account the machine monitoring data. 
Since the machine devices may be under load or 
free at the time of monitoring, metrics at the current 
moment in time are not a sufficient indicator. It is 
necessary to predict the future behavior of the 
machine. Stochastic models exist to fulfillthis task.  

Stochastic models are mathematical tools that 
help to understand and predict the behavior of 
systems subject to random influences, they are 
definitely popular in solving mathematical 
modeling problems, [49], [50]. Since the 
performance of a hardware and software system 
can be affected by many external factors, i.e. 
random events, this model is suitable for system 
monitoring tasks. The set of metrics is a time series 
- collected at different points in time values of the 
process under study. The most common and 
accurate model for modeling time series is 
ARIMA, based on the Box-Jenkins methodology.  

Despite the popularity of the ARIMA model in 
general, its use in integration testing scenarios is 
poorly understood. Testing takes at least as much 
time as the development process. Therefore, 
optimization at this stage is an urgent problem in 
the field. Due to the limited computational 
resources of test benches, it is important to 
efficiently distribute tasks between machines, for 
this purpose, it is necessary to predict their 
behavior and workload in the future. At the 
moment there are no offers on the market that can 
solve this problem. Therefore, it was decided to 
develop a mathematical model using ARIMA, on 
the basis of which such a solution could be created. 
This approach will reduce the time spent on the 
integration testing stage, which will have a positive 
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impact on the speed of new product releases. 
Studies show that ARIMA, as well as its variations 
ARIMA-ANN, demonstrates high forecasting 
accuracy compared to other time series models. 
This is due to its ability to adapt to different data 
structures and identify hidden dependencies, [51], 
[52], [53]. 

The authors chose the ARIMA model because 
it allows the modeling of non-stationary time series 
that can be made stationary by differentiation. This 
is applicable to the problem to be solved because 
the model is particularly useful for analyzing data 
where trends are present, which is entirely relative 
to the integration testing process. 

It is worth mentioning a number of other 
methods that were considered as ARIMA analog: 
extrapolation and machine learning methods. Such 
basic methods as simple extrapolation are 
convenient for the simplest series with a small 
amount of data. Such methods allow us to give a 
quick prediction, which, however, may have a high 
error. In the case of integration testing, data are 
collected continuously over a long period of time. 
Such a series includes external factors and noise, 
which are important to consider in forecasting. 
Thus, a basic extrapolation method will not be able 
to give accurate results. Speaking about machine 
learning methods (DeepAR, NBEATS, LSTM), it 
is important to understand that training a neural 
network and further forecasting using it is an 
extremely resource-intensive process that requires a 
large set of data for training. On the plus side, the 
accuracy of the calculation can be emphasized, 
which will allow forecasting for longer periods of 
time. However, the prediction is needed at the time 
of test distribution, which will be immediately sent 
to the required machine, meaning that the target 
prediction time is relatively close to the reference 
point. Therefore, the use of such complex neural 
network models would be impractical, especially 
considering the ultimate goal of optimizing the 
time taken for the entire testing phase. Thus, given 
the specificity of time series, the complexity of the 
task, and the need for resource efficiency, the 
ARIMA model is the most optimal option. 

An autoregressive integrated moving average, or 
ARIMA, is a statistical analysis model that uses 
time series data to predict future trends. The model 
consists of three components: 

1. autoregression (AR). Regression in 
probability theory and mathematical statistics is the 
dependence of the mean value of some quantity on 
some other quantity or on several quantities. 
Autoregression is a model in which the values of a 

time series depend on the previous values of the 
same series. 

2. Integration (I). Differentiation of initial 
observations to achieve stationarity of the series. A 
stationary time series is a series whose mean value 
does not change over time, i.e. the series has no 
trend.  

3. Moving average (MA). A family of functions 
whose values at each point are equal to some 
average value of the original function for the 
previous period. 

The ARIMA equation takes as input three 
standard parameters, each of which is responsible 
for the corresponding component of the model: 

p – autoregressive order. It allows you to 
determine whether the next element of the series 
will be close to the value of X, if p previous values 
were close to it; 

d – order of integration. Shows how close an 
element of a series is to d previous values if the 
difference between them is minimal; 

q – moving average order. Allows to set the 
model error as a linear combination of previously 
observed error values. 

The model is usually referred to as ARIMA (p, 
d, q), where p, d and q are non-negative integers. 

As stated earlier, autoregression refers to the 
dependence of a subsequent value on some number 
of previous values. The prediction is the sum of 
metrics of previous measurements with some 
coefficients, which are constant and determine the 
autoregressive parameters. That is, the final 
formula for calculating the value at time t will be 
represented as a linear combination as shown in 
formula 1. 
𝑌𝑡 = 𝑐 +  𝜀𝑡 +  𝛼1𝑌𝑡−1 + ⋯ +  𝛼𝑝𝑌𝑡−𝑝,    (1) 

 
where α1, ..., αp - coefficients, Yt - value at the 

moment of time 
Two additional terms are introduced:  

• c – constant value that is added to the 
prediction; 

• 𝜀𝑡 – white noise.  
 
White noise in an autoregressive model is a 

random sequence of independent and identically 
distributed random variables with zero mean and 
constant variance. It is usually assumed in time 
series models to account for the random component 
that is not explained by the autoregressive model.  

The least squares method is used to calculate 
the autoregressive coefficients. That is, the 
coefficients are chosen in such a way that the sum 
of squares of deviations of points from the 
regression line is minimized. The coefficients are 
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estimated on the basis of experimental data 
containing random errors. At the end of the 
experiments, the coefficients that minimize the 
difference between the experimental data and the 
theoretical data are selected.  

The moving average method is used to smooth 
time series in order to eliminate the influence of a 
random component. The method consists in 
replacing the initial values of the members of the 
series by the arithmetic mean of the values of 
several members nearest to it. The value at time t is 
given in formula 2. 

𝑌𝑡 =  𝜇 +  𝜀𝑡 +  𝜃1𝜀𝑡−1 + ⋯ +  𝜃𝑞𝜀𝑡−𝑞 (2) 
 
In essence, the series Yt is expressed through 

the sum of some fixed mean μ, the value of white 
noise at the current moment of time εt and not more 
than q previous values of white noise multiplied by 
some coefficients, which are the model parameters. 
The calculation of the coefficients is similar to the 
autoregressive case. 

Summarizing the two formulas, we obtain 
formula 3 - the value of the ARMA model series. 
𝑌𝑡 =  𝑐 +  𝜀𝑡 + 𝛼1𝑌𝑡−1 + ⋯ +  𝛼𝑝𝑌𝑡−𝑝 + 𝜃1𝜀𝑡−1 +

⋯ + 𝜃𝑞𝜀𝑡−𝑞    (3) 
 
At the current stage, the ARMA model is fully 

described, assuming that the original series are 
stationary. In the context of system monitoring of 
machines, the series are not stationary, as they may 
have trends (e.g., the highest loads occur at night 
during test runs). Therefore, it is necessary to bring 
such series to stationary form after applying a 
series differentiation procedure. The ARIMA 
model is defined as an ARMA model for a series of 
finite differences of order d. Therefore, to obtain 
from the ARMA formula the ARIMA formula, it is 
necessary to apply the difference operator of degree 
d to each Yi. 

The finite difference is denoted by ∆𝑑. The 
finite differences are calculated recurrently, as 
shown in formula 4. 

     ∆0𝑦𝑖 =  𝑦𝑖  
      ∆1𝑦𝑖 =  𝑦𝑖+1 − 𝑦𝑖  
      ∆2𝑦𝑖 =  ∆1𝑦𝑖+1 − ∆1𝑦𝑖 
      ∆𝑛𝑦𝑖 =  ∆𝑛−1𝑦𝑖+1 −  ∆𝑛−1𝑦𝑖  

(4) 
 

For example, for y0 the finite differences will look 
as follows: 
     ∆1𝑦0 =  𝑦1 − 𝑦0 
     ∆2𝑦0 =  𝑦2 − 2𝑦1 +  𝑦0 
     ∆3𝑦0 =  𝑦3 − 3𝑦2 + 3𝑦1 −  𝑦0 
     ∆4𝑦0 =  𝑦4 − 4𝑦3 + 6𝑦2 − 4𝑦1 +  𝑦0 

Note that the moduli of the coefficients in the 
calculation of finite differences correspond to the 
rows of Pascal's triangle shown in Figure 1 
(Pascal's triangle is given as an example of how the 
ratios can be easily memorised). The sign of the 
first coefficient is always positive, and further they 
alternate. 

 
Fig. 1: Pascal's triangle (created using Adobe 
photoshop) 
 

If we take yk instead of y0, then when 
computing finite differences, the indices of the 
summands will be equal to 𝑘 + 𝑛, … , 𝑘. For 
example, let us calculate ∆2𝑦1: 

 ∆2𝑦1 =   𝑦3 − 2𝑦2 + 𝑦1 
 
The final formula of the series by ARIMA 

model at time t is presented in formula 5. 

∆𝑑𝑌𝑡 =  𝑐 + 𝜀𝑡 + ∑ 𝛼𝑖(∆𝑑𝑌𝑡−𝑖) +  ∑ 𝜃𝑗(∆𝑑𝜀𝑡−𝑗)

𝑞

𝑗=1

𝑝

𝑖=1

 

(5) 
 
It is important to take into account the fact that 

in real conditions differentiation does not always 
lead to stationarity of the series. Therefore, the 
Dickey-Fuller test is used to verify that the series is 
really stationary. According to this test, a series is 
stationary if it does not have a unit root. A time 
series has a unit root if its first differences form a 
stationary series (formula 6). Thus, further, when 
working with real data, it will be possible to 
confirm the fact that the resulting time series is 
indeed stationary. 

∆𝑦𝑡  ~ 𝐼(0)                     (6) 
 
Now, having a set of already known metrics, 

we can predict future values. The more starting 
points there are, the more accurate the result will 
be. The problem is that storing all metrics in 
minimal time intervals naturally leads to a large 
database size, [36], [39]. n 1 night of monitor 
operation, the size of a single collection was about 
1GB. Thus, there is a need to store data with a 
wider range, but still be able to access the 
information for any point in time. To provide both 
components, it is necessary to approximate known 
values. 
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Let some function bounded by a segment be 
given. In the initial conditions it is not given 
explicitly, but as a set of points and values 
corresponding to these points. As a solution, it is 
necessary to obtain a polynomial that will be 
considered as an approximation to the original 
function.  

The process of calculating such a polynomial is 
called approximation. In the context of a machine 
monitor, the points are timestamps, and the values 
in the points correspond to the values of the 
metrics.  

When defining the concept of function 
proximity, there are several approaches, one of 
which is called interpolation. Interpolation is a 
method of finding intermediate values from an 
existing discrete set of known values. Functions are 
considered approximate if their values at each 
known point are equal. Since a discrete set with 
metrics is initially given, and the function and 
polynomial by which it is formed are unknown, 
only interpolation is a suitable method of 
approximation. 

A polynomial obtained by interpolation is 
called an interpolation polynomial. The degree of 
the polynomial is less than or equal to the number 
of initial points n. It is worth noting that the 
interpolation polynomial is singular. Indeed, let us 
take two such polynomials P(x) and Q(x). Since 
they are interpolative, for all x P(x) - Q(x) = 0. 
Consider R(x) = P(x) - Q(x). For all given points, 
R(x) = 0. Thus, R(x) is of degree no greater than n 
(from the definition of interpolation), but it has n+1 
solutions (that is, degree n+1). We have obtained a 
contradiction, and so P(x) and Q(x) are identical. 
Since the polynomial is singular, all methods of 
calculating it will lead to the same result. 

One of the most accurate approximation 
methods is interpolation by cubic splines. A spline 
is a continuous function defined on some segment, 
which is divided into several sections, each of 
which is represented as a polynomial. Splines 
consist of several polynomials joined at intersection 
points. The junctions must be smooth and there 
must be no change in the curvature of the 
polynomials. Smooth function - a function that has 
a continuous derivative over the entire set of 
definition. Cubic spline - a spline in which each 
segment is represented by a cubic polynomial that 
satisfies the smoothness criterion because it has a 
continuous first and second derivative. The first 
derivative determines at what angle the polynomial 
enters the boundary point, and the second 
derivative determines the curvature it has at that 
point. Therefore, to ensure the smoothness of the 

spline over the entire segment, the first and second 
derivatives of the joint polynomials must be equal. 
From the definition, it is clear why this approach is 
better than conventional interpolation.  

The original function may have discontinuity 
points where the rate of change of the function 
increases dramatically (e.g., a hyperbola near point 
0). Therefore, an attempt to approximate the entire 
function with a single polynomial will lead to 
serious errors. Whereas spline approximation 
breaks the function into sections, each of which 
interpolates separately, which minimizes the 
computational error. 

Let there be a set of n points. It follows that 
there are a total of n-1 intervals, each of which 
must be approximated by a cubic polynomial. The 
equation of the polynomial of degree 3 is given in 
formula 7. 

𝑃3(𝑥) = 𝑎 + 𝑏(𝑥 − 𝑥0) + 𝑐(𝑥 − 𝑥0)2 +
𝑑(𝑥 − 𝑥0)3 = y 

(7) 
 
This formula has four unknown coefficients a, 

b, c, d; x and y are the coordinates of the point, x0 
is the abscissa of the initial point from which the 
function starts. The total is an n-1 polynomial, that 
is, an n-1 equation with 4(n-1) unknowns. For each 
equation of the polynomial, we know its two 
extreme points through which it exactly passes, so 
the total of equations becomes 2(n-1) with the same 
set of unknowns. So far, there are not enough 
equations to find a single solution, since the 
number of unknowns must be no greater than the 
number of equations. 

As noted earlier, at the junctions of two 
polynomials, smoothness, for which the first and 
second derivatives are responsible, must be 
observed. Therefore, in order that smoothness is 
not violated during the transition from one function 
to another, it is necessary that at the junction point 
their first and second derivatives are equal. The 
number of junctions is 1 less than the number of 
polynomials, for each of which two equations are 
made (formula 8). Thus, there are now 2(n-1) + 
2(n-2) equations, that is, 4n - 6, which is two less 
than the number of unknowns. 

𝑃𝑖
′(𝑥стык) =  𝑃𝑖+1

′ (𝑥стык),  
𝑃𝑖

′′(𝑥стык) = 𝑃𝑖+1
′′ (𝑥стык)  

 (8) 
 
The behavior of the spline at the ends of the 

interval is characterized by curvature equal to 0, 
that is, at these points the spline is neither convex 
nor concave. To comply with the achievement of 
this model, it is necessary that the second order 
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derivatives of the extreme polynomials at these 
points are equal to 0. That is, we add two more 
equations of spline behavior at the ends of the 
segment, described in formula 9. 

𝑃𝑛−1
′′ (𝑥𝑛) = 0, 

𝑃1
′′(𝑥1) = 0 

(9) 
 
Thus, we obtain a system of 4n - 4 equations 

with 4n - 4 unknowns. The final system of 
equations is shown in Figure 2. 

 
Fig. 2: Final system of equations 

 
Solving the resulting system, we obtain the 

values of all coefficients, and hence the equations 
of polynomials that make up the spline. Therefore, 
it becomes possible to obtain metrics for any 
intermediate moment of time, even if it is not saved 
in the database. 

As a result, having approximated the input set 
of points, we obtain a curve of values for each 
sample. Once predicted by the ARIMA method, the 
curve continues for the time interval requested by 
the user. Thus, the system allows to determine the 
estimated values of the device state at any time in 
the future. 

 
 

3 Description of the Calculation Logic 
Since the constructed mathematical model is 
supposed to be implemented programmatically, it is 
necessary to describe the development of the 
internal logic of the server and how calculations 
will be performed on the server in advance. 

We have identified five main functional modules 
in the server structure: 
1. urls.py – contains all basic URL paths 

processed by the server, correlated with handler 
methods. 

2. views.py – contains the implementation of all 
handler methods. 

3. db.py – implements methods of interaction with 
the database. 

4. statistics.py – module responsible for the 
reporting section. 

5. common.py – module that implements general-
purpose functions for packet conversion, 
identifier generation, etc. 

 
The implemented server should work with the 

database, exchange messages with agents and 
clients, respond to incoming requests according to 
API and perform all the provided functionality. For 
this purpose, a base for reporting should be 
prepared (documents “avg” and “avg_step” are 
created). Work with reports completes the 
development of the monitoring system and is at the 
same time the starting point of the mathematical 
model. 

The module statistics.py is responsible for 
realization of work with reports. The work itself is 
proposed to be divided into three components: 
1. Metrics prediction. A set of functions 

implementing the described mathematical 
apparatus is used. 

2. Construction of graphs to track the dynamics of 
metrics change. Collection of “avg_step” 
documents, approximation of metrics and their 
visualization are planned. 

3. General information about the machine, its 
averages, problems, etc. The “avg” document is 
used for this purpose. 
 
In the program implementation of the 

approximation algorithm, a matrix of equations A 
with coefficients by which the unknowns are 
multiplied, a vector B of values (the right part of 
each equation) is created.  

Let the final vector with unknowns be denoted 
by X, then we obtain the equation: AX = B. Let us 
multiply both parts on the left by the matrix inverse 
of A, i.e. A-1AX = A-1B. An inverse matrix is such 
a matrix, the multiplication of which by the original 
matrix yields the unit matrix E.  

Therefore, the equation will take the form: EX 
= A-1B. By the property of a unit matrix, its 
multiplication by a square matrix gives the same 
square matrix. Therefore, the final form of the 
equation is as follows: X = A-1B.  

Thus, to find the vector of coefficients of the 
polynomials, we need to multiply the inverse matrix 
A-1 by the vector B. Next, each segment is divided 
into 50 points, for each of which a value is 
calculated by substituting x into the polynomial. At 
the output, the program gives a list of points on 
which the spline graph is plotted. 
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4 Software Implementation of the 

 Mathematical Model 
The forecasting stages include two steps: ARIMA 
forecasting and interpolation of the results. 

The ARIMA prediction stage is implemented 
as follows:  
def predict(x, y, n):  # x - points, y - their values, n 
- how many points to predict 
    x2 = list(range(len(y)-1, len(y)+n)) 
    df = pd.DataFrame({'timestamp': x, 'value': y}) 
    model = ARIMA(df['value'], order=(5,1,0)) 
    model_fit = model.fit() 
    forecast = model_fit.forecast(steps=len(x2)) 
    y2 = list(forecast) 
    y2 = [abs(yy) for yy in y2] 
    res = statistics.generatePoints(y+y2) 
    x = [x1[0] for x1 in res] 
    y = [y1[1] for y1 in res] 
    return x, y 

Now the prediction results need to be 
interpolated. The stage of results interpolation is 
realized as follows.  
 
Input point of the program: 
def generatePoints(values): 
    points = [[x, y] for x, y in enumerate(values)] 
    A = generateSplineMatrix(points)  # Generation of spline 
matrix 
    B = generateAnswersVector(points)  # Generating a vector 
of responses 
    X = np.dot(np.linalg.inv(A), B)  # Multiplication of a matrix 
by a vector 
    x, y = collectResult(points, X)  # Combining segments with 
results into one object 
    return [[xi, yi] for xi, yi in zip(x, y)] 

Next, we go through the functions that are 
called inside generatePoints. The implementation 
of the data prediction component is presented 
below. The component itself also uses “avg_step” 
and builds new points based on the received data: 

def generateSplineMatrix(points: list) -> np.array: 
    result_array = [] 
    num_sectors = len(points) - 1 

Filling of the lines responsible for the equality 
of the spline points to the points of the table 
function is realized as follows: 

  for i in range(num_sectors): 
        row = [0 for j in range(num_sectors * 4)] 
        row[i * 4] = pow(points[i][0], 3) 
        row[i * 4 + 1] = pow(points[i][0], 2) 
        row[i * 4 + 2] = points[i][0] 
        row[i * 4 + 3] = 1 
        result_array.append(row) 
        row = [0 for _ in range(num_sectors * 4)] 
        row[i * 4] = pow(points[i + 1][0], 3) 
        row[i * 4 + 1] = pow(points[i + 1][0], 2) 
        row[i * 4 + 2] = points[i + 1][0] 
        row[i * 4 + 3] = 1 
        result_array.append(row) 

Filling the lines responsible for the equality of 
first derivatives at the points of the tabular function 
between adjacent plots is realized as follows: 

    for i in range(1, len(points) - 1): 
        row = [0 for j in range(num_sectors * 4)] 
        row[(i - 1) * 4] = 3 * pow(points[i][0], 2) 
        row[(i - 1) * 4 + 1] = 2 * points[i][0] 
        row[(i - 1) * 4 + 2] = 1 
        row[(i - 1) * 4 + 4] = -3 * pow(points[i][0], 2) 
        row[(i - 1) * 4 + 5] = -2 * points[i][0] 
        row[(i - 1) * 4 + 6] = -1 
        result_array.append(row) 

Filling the lines responsible for the equality of 
second derivatives at the points of the tabular 
function between adjacent plots is realized as 
follows: 

    for i in range(1, len(points) - 1): 
        row = [0 for j in range(num_sectors * 4)] 
        row[(i - 1) * 4] = 6 * points[i][0] 
        row[(i - 1) * 4 + 1] = 2 
        row[(i - 1) * 4 + 4] = -6 * points[i][0] 
        row[(i - 1) * 4 + 5] = -2 
        result_array.append(row) 

Filling the lines responsible for the equality of 
the second derivatives to zero at the extreme points 
of the segment is realized as follows: 
    row = [0 for j in range(num_sectors * 4)] 
    row[0] = 6 * points[0][0] 
    row[1] = 2 
    result_array.append(row) 
    row = [0 for j in range(num_sectors * 4)] 
    row[num_sectors * 4 - 3] = 6 * points[-1][0] 
    row[num_sectors * 4 - 2] = 2 
    result_array.append(row) 
    return np.array(result_array) 
def generateAnswersVector(points: list) -> np.array: 
    B = [] 
    for i in range(1, len(points)): 
        B.append(points[i - 1][1]) 
        B.append(points[i][1]) 
    return np.array(B + [0] * len(B)) 
def collectResult(points: list, X: np.array): 
    xArgs = [] 
    yValues = [] 
    for i in range(1, len(points)): 
        x = np.linspace(points[i - 1][0], points[i][0]) 
        start_index = (i - 1) * 4 
        y = X[start_index]*(x**3)+X[start_index + 1]*(x**2) + 
X[start_index + 2]*x+X[start_index + 3] 
        xArgs += x.tolist() 
        yValues += y.tolist() 
    return xArgs, yValues 

It is noteworthy that the program 
implementation uses the DataFrame library, which 
performs the calculations. For cases when there is 
no access to this library or its use is considered 
inexpedient by the researchers, the author's 
program implementation of the developed 
mathematical model is presented below. 
 
Program entry point: 
def predict_ARIMA(values, p, d, q, n): 
    phi = np.zeros(p)  
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    theta = np.zeros(q) 
    diff_data = np.copy(values) 

  Then the differentiation by finite differences 
of values (arIma) takes place:    
    for i in range(d): 
        diff_data = diff(diff_data, d, i) 

The realization of the generation of vectors 
with coefficients using correlation is carried out as 
follows: 
    for i in range(p): 
        phi[i] = corrcoef(diff_data[p - i:-1], diff_data[p - i - 1:-2]) 
    for i in range(q): 
        theta[i] = corrcoef(diff_data[q - i:-1], diff_data[q - i - 1:-
2]) 
    predicted_values = np.zeros(n) 

The program implementation also provides for 
the generation of noise values: 
    noise_samples = np.random.normal(size=len(values)+n) 
    d_noise_samples = np.copy(noise_samples) 
    for i in range(len(noise_samples)): 
        d_noise_samples[i] = diff(noise_samples, d, i) 

Next, the generation of predicted values is 
realized: 
    for i in range(n): 
        predicted_values[i] = (np.sum(phi * diff_data[-p:]) + 
np.sum(d_noise_samples[i]*theta) + mean(values) +                       
noise_samples[len(values)+i]) 
    return predicted_values 

The description of functions that 
predict_ARIMA calls is presented below. 
 
The average value of the series is calculated: 
def mean(arr): 
    return sum(arr) / len(arr) 
The covariance is calculated: 
def covariance(x, y): 
    x_mean = mean(x) 
    y_mean = mean(y) 
    covariance_sum = 0 
    for i in range(len(x)): 
        covariance_sum += (x[i] - x_mean) * (y[i] - y_mean) 
    return covariance_sum / len(x) 
The method of least squares is applied: 
def std_dev(arr): 
    arr_mean = mean(arr) 
    variance = sum((x - arr_mean) ** 2 for x in arr) / len(arr) 
    return variance 
The correlation is calculated: 
def corrcoef(x, y): 
    cov = covariance(x, y) 
    x_std = std_dev(x) 
    y_std = std_dev(y) 
    correlation_coefficient = cov / (x_std * y_std) 
    return correlation_coefficient 
The finite difference method is used: 
def diff(arr, n, i=0): 
    if n == 0: 
        return arr[i] 
    return diff(n-1, i+1) - diff(n-1, i) 

The final set of values is interpolated, returning 
a curve, some of which is based on real data and 
some on predicted data. Examples of predictions 
are shown in Figure 3 and Figure 4. 

 
Fig. 3: Predicting metrics. RAM 
 

 
Fig. 4: Predicting metrics. CPU utilization  

 
After taking several measurements, the average 

forecast error was calculated to be 5.1%. 
These results show that the chosen 

mathematical model allows to determine the 
metrics in the future quite accurately.  Figure 3 and 
Figure 4 show that the model was able to predict 
the RAM and CPU load of the test bench in the 
future. The maximum deviation of the prediction 
from the real data was 3.32% and 3.66% 
respectively. This deviation is insignificant in the 
context of machine load. Thus we can conclude 
that the developed mathematical model really 
works in practice and allows us to make an optimal 
choice of a test bench to run tests on it. This feature 
will allow efficient allocation of computing 
resources at the stage of integration testing, which 
will have a positive impact on its duration. 
 
 
5 Interpretation of the Result of the 

 Machine Experiment 
To provide general information about the device, 
data from the “avg” package is extracted, and 
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divided by the “count” field (at the current 
moment or in the predicted one, depending on the 
request). The user will be able to see the average 
performance of the machine, and the acceptable 
norms for each of them. Based on this 
information, he will be able to conclude how 
suitable the device is for operation.  

An overall assessment of the state of the 
machine is also formed. The following parameters 
are used to form the assessment: CPU load, number 
of physical cores, number of logical cores, RAM 
load, free disk space, average disk response time, 
disk active time, and average operation speed. All 
the parameters have different units and orders of 
magnitude, so they must first be put on the same 
scale from 0 to 10. Those values that are measured 
in percentages are divided by 10. 

 
Other parameters are given individually: 

1. The number of physical and logical 
processors in the most advanced mass-market 
models reaches the limit of 16 pieces. Therefore, 
we will consider this value as a reference value, 
and therefore divide it by 1.6.  

2. We will consider 500 mb/s as the 
benchmark value of disk operations speed. 
Therefore, the metric value is divided by 50. 

3. The average response time is the only 
parameter whose increase is negative. We will 
assume that the worst time is equal to 500 ms. 
Therefore, this sample is also divided by 50. 

 
The result, when the parameters are out of the 

scale, will be considered acceptable, as it reflects 
the condition of the machine as ideal, above the 
norm. For a more accurate assessment, we will 
introduce a scale of weights for each parameter, 
which is responsible for their importance: 

1. The load is 25. 
2. Physical cores - 15 
3.  Logic cores - 5 
4.  RAM - 5 
5. Disk space - 10 
6. Response time - 10 
7. Active time - 10 
8. Speed of operations – 10 
 
Then the value of each item is multiplied by its 

weight, and the resulting products are added 
together (the exception is the response time, its 
product is subtracted). As a result, the reference 
result is 1000, and the worst possible result is 0. All 
weights were selected on the basis of the author's 
experience (which values are critical, change of 
which parameter will have a stronger impact on the 

system as a whole) and manual selection of 
coefficients on different samples. When visualizing 
such statistics, the scores (denoted as R) will be 
marked with different colors, indicating the status 
of the state:  

1. R ≥ 1000 – “ perfect” 
2. 700 ≤ R < 1000 – “ excellent” 
3. 500 ≤ R < 700 – “good” 
4. 300 ≤ R < 500 – “normal” 
5. 100 ≤ R < 300 – “bad” 
6. 0 ≤ R < 100 – “terrible” 

 
A critical state is entered for each individual item: 

1. CPU load is greater than 80%. 
2. The number of cores is less than 3. 
3.  RAM load is greater than 80%. 
4. Free disk space is less than 10%. 
5. Response time is greater than 300 ms. 
6. Active disk time is greater than 70%. 
7. Disk transaction rate is less than 100 mb/s. 
 
Thus, the function responsible for collecting 

general statistics queries the “avg” document in the 
database, divides its values by the “count” field, 
and adds the state score to it. An example of the 
document is shown in Figure 5. 

 

 
Fig. 5: Example of a report with general 
information 

 
 

6   Conclusion 
The mathematical model provides the ability to 
process the monitoring data of the hardware and 
software complex and is fair with respect to the 
selected metrics and specified parameters. When 
selecting metrics and parameters as a 
methodological basis for setting the mathematical 
problem, the authors proceeded from the prospect 
of software implementation of the solution in the 
form of a service for remote monitoring of 
hardware and software complex functioning.  

Thus, the obtained result of the research has 
theoretical significance, because it expands the 
field of solutions for effective development and 
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testing of hardware devices and software. Also the 
result claims applied significance, being 
recommended for integration into the work of the 
test bench at the stage of integration testing. The 
solution needs pilot testing, which can be 
considered as an applied task following the logic of 
research prolongation by the authors.  

The possibilities for further development in this 
area are the deepening of research in the direction 
of supplementing the ARIMA methodology with 
other components, such as exogenous factors 
(ARIMAX). This will expand its capabilities and 
make it an even more powerful tool for the analysis 
of time series to monitor the functioning of 
hardware and software complexes. It is also worth 
considering the possibility of optimizing the 
parameters of its mathematical model for 
application beyond the integration testing stage, for 
example, for the purpose of system testing. 
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