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Abstract: In this paper, a two-dimensional variable-order fractional advection-dispersion equation with variable
coeflicient is considered. The numerical method with first order temporal accuracy and first order spatial accuracy
is proposed. The convergence and stability of the numerical method are analyzed by using energy method. Finally,
the results of a numerical example supports the theoretical analysis.

Key—Words: two-dimensional variable-order fractional advection-dispersion equation, finite difference methods,

stability, convergence

1 Introduction

Fractional diffusion equations as the important mathe-
matical models are used widely in physics [1], finance
[2-4] and hydrology [5-9]. In the last decades, for
more accurately describe the behaviors of some com-
plex systems, the concept of variable-order fractional
equations have been introduced by many authors [10-
18] and have received tremendous success. Since the
kernel of the variable-order fractional operator has a
variable exponent, it is more difficult to obtain analyt-
ical solutions of fractional differential equations with
variable order. Hence, to find the solution of these
equations, the numerical approximation method play
an important role.

Up to now, the theoretical study of variable-order
fractional partial differential equations is quite lim-
ited and the numerical process still remains in primary
stage. In 2005, to solve the variable-order differen-
tial equations, Soon et al. [19] gave a second-order
Runge-Kutta method consisting of an explicit Euler
predictor step followed by an implicit Euler correc-
tor step. In 2009, Sun et al. [20] used the Crank-
Nicolson scheme to get the diffusion curve of the
variable-order fractional models. In the same year,

racy, and the other with second order temporal ac-
curacy and fourth spacial accuracy. In 2012, Shen
et al. [23] presented numerical techniques for the
variable-order time fractional diffusion equation and
discussed the stability and convergence. Yang et
al. [24] also proposed a finite difference scheme
for solving time-variable-order time-space fractional
reaction-diffusion equation using the finite difference
scheme. Chen et al. [25] investigated the stability
and convergence of finite difference-approximation
for two dimensional variable-order anomalous sub-
diffusion fractional equation.

In this paper, we will structure a numerical
scheme for solving more general variable-order frac-
tional advection-dispersion equation and study the
stability and convergence of this scheme.

For simplify we introduce the following notations

Q={(xy,)|0<x<X0<y<Y,0<r<T}
ou Pu Fu
ot’ 0x3’ 9y3

Consider the two-dimensional variable-order
fractional advection-dispersion equation

UQ) = {u(x, v,1) ‘ c C(Q)}.

Zhuang et al. [21] presented explicit and implicit Oury.t) _ - o 8 uG 0
Euler approximations for the variable-order fractional ot e ﬁr)g(ix:);)t)
advection-diffusion equation with a nonlinear source +d(x, y t)a PVu(x, y, 1)
term, and also gave the stability and convergence re- o Oxl+e(xy.n
sults of these methods. In 2010, Chen et al. [22] te(x,y I)GB Dy (x, v, 1)
proposed two numerical schemes for a variable-order - QyBx.y.1)
anomalous sub-diffusion equation: one with first or- OMBEYDY(x, y,1)
der temporal accuracy and fourth order spatial accu- +8(x,y. 1) Ayl Beeyn

E-ISSN: 2224-2880

1097

Issue 11, Volume 12, November 2013



WSEAS TRANSACTIONS on MATHEMATICS

(x,y,1) € Q (D
with initial condition
u(x,y,0) =p(x,y), 0<x<X,0<y<Y, (2
and boundary conditions
u(0,y,1) = u(x,0,1) =0,
X,y 1) = y1(y, 1),
u(x, Y,1) = yn(x, 1),
0<x<X, ©)
0<y<Y,
0<t<T,

where
0<alx,y,)<1, 0<pB(xy,1) <1,

the functions c(x, y, 1), d(x, y, 1), e(x, y,1), g(x,y,t) sat-
isfy

c(x,y,t) <0, d(x,y,t) >0, @)
e(x,y, ) <0, glx,y,6) >0,
for (x,y,t) € Q, the operators
I
Ox®’  Gxe+l’ ﬁ W

denote the Riemann-Liouville fractional derivative.
The a order Riemann-Liouville fractional deriva-
tive of a function f is defined as (see [26])

df(x) 1 d" ([ fs)
dx — Tm-a)dx" Jy (x—s5)@
x>0, n—-1l<a<n, 5

where 7 is a positive integer.

The structure of this paper is as follow: In Sec-
tion 2, an implicit finite difference method for Eq.(1)
is proposed. The stability and convergence of the
method are analyzed in Section 3 and 4, respectively.
Finally, a numerical example is given.

2 Numerical scheme

In this section, we will structure a numerical scheme
to approximate problem (1)-(3). Therefor, we apply
the standard Griinwald formula [26] (for0 < a < 1)

[x/h]
df(x) 1 (@)
L ;:0 WOfx -+ R (6)

and the shifted Griinwald formula [27] (for 1 < @ < 2)

[x/h]+1
df(x) 1 (@)
— = " f(x—U-Dh)+R, (7)
dx h ; !
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to discrete the fractional derivatives in equation (1),
where

ala—=1)---(a—-1+1)
-1 0

is called Griinwald coefficient and the symbol [x] de-
notes the integer part of x. The symbols R; and R,
are the remainder terms (also called truncation er-
rors). It is not difficult to see from [27] that, when
f e C3[0, L), there exists constants C; and C, such
that

W\ = A=0,1,--

IRi| < Cih,  |Ro| < Coh (®)

uniformly on [0, L] forall0 < @ < land 1 < a < 2,
respectively.

Lemma 1 The Griinwald coefficient a)fa) has the fol-
lowing properties

(1) ng) = l,a)(l(’) =—a and 12) wg(’) =0.
(2) when 0 <« < 1, we have a)%) <0fork=>1
and §w50)>0 for g=1,2,---,
- when 1 < a <2, we have w,(ca) >0 for k>
2 and iwga) <0 for g=1,2,---.
=0 -

Through the simple deriving, we can get the fol-
lowing lemma.

e

@=1,2-.

(3) w=

Lemma 2 Suppose x,x1,x3, - ,X, are given real
numbers, then we have

lx + X1 + x4+ -+ x| 2 [x] = (Ixg| + x| + -+ + [x]).

In the following, we discretize temporal and spa-

tial variables. Let
te=%kr, k=0,1,2,---,N;
xi:ihx, i:O,l,z,""Nx;
yj:jh”’ j:()’l’za”"Ny’

where 7 = T/N, h, = X/Ny, hy = Y/N, are temporal
and spatial step-size, respectively.
In order to describe simple, we define

gk ;= g(xiyj tn),
Bi ;= Bxi,yj ).

Therefore, on the grid point (x;,y;, %), Eq. (1) can be
rewritten as follows

k _
;= (X yj ),
k _
e; ;= e(xi, yj, ),

k
@; ; = a(Xi, yj, 1),

k
au(xi’ YVjs tk) ok 6"l?fu(x,-,yj,tk)
ot b (’)xaﬁf
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" dk 0" th(xL>,tA)+ k (?ﬁ”u(x,y,tk)

3
6X1+ai’j l] 6y l]
14k
k 0 Hu(xyjt)
+ gt T, ©)
) oy

Noting that u(x, y, 1) € U(£2), we have

Oulxi, yj tr)  ulxi, yj, i) — u(xi, ¥, tk-1)
ot B T
where |R;| < Ct with some constant C.
Applying (6), (7) and (10) to (9), we obtain the
following formula

+R;, (10)

u(xi, yjs k) — u(xi, ¥ te—1)

+ R;
-
k i
Cij @)
— 2w Uiy ) + Ry
hy " 1=0

.
di; & et
Tu(Xiv1-1,yj, ) + Rox

h, 1=
ko
e k
i.J (ZhP))
+ ’Bk Z [ ! u(i,yj—l, tk) +R1’y
A
"' 1=0
k
i X (148 )
g La% M(xz,ym 1 1) + Ray,
h, 1=0
which gives
i k
1 (@)
uCesyj ) =T Z w; " uxies, Y, 1)
=0

Bl k)
2 ij
z(j)k Z w; T u(Xi-1 s )

f k

3 B

,(j)k § w; " u(xi, yj-1, )
1=0

& s
4 ;
! J)k w, X, Y -1 )

=0
= u(xi, Yo k1) + R, (11)

where

Ri;=—tR +T(Riy +Ric+Riy +Ryy)  (12)

and
k
k A
T @) di;
l,j,k_ ok l]k l+ak
h™! hy ij
k ..
r3 =Zu r = BLIT3 (13)
ik = Tk T T
hy" hy
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It is clear from (4), that

A o<o, 2 >0,

14
(3]) <0, (2() > 0. (14
ljk

Let uﬁj denote the approximation of u(x;,y;, f).
Truncating the remainder term Rfj in (11), we get the

implicit finite difference scheme for solving Eq.(1) as
follows

i (ak ) i+1 (1+0/‘ )
b — Y k- ® Mk
i,J i,j,k 1 i-1j i,j,k ! i+1-1,j
1=0 =0
J j+l1
O Nk w N A k
i,jk 1 i,j—-l — "ijk 1 ij+1-1
=0 =0
k—1
= ui,j .
i=1,2,--- ,Ny—=1, j=12,--- ,Ny— 1
k= 1 2,---,N. (15)

The initial and boundary value conditions can be de-
scribed as

NX’
. ,Ny. (16)
and

k _ k _
Uy ; =Uip= 0,

kK _
ui,N)- - ‘ﬁZ(xi, tk)a
J:()’lv"' ’Ny;

uy =101,
i:0a17"' ’Nx;
k=1,2,---,N. (17)

A combination of formulas (15), (16) and (17)
leads to an implicit finite difference method to solve
problem (1)-(3).

3 Stability analysis

In the section, we will analyze the stability of the
method (15)-(17). Suppose that u . and u i are two
solutions of (15) with the same boundary value condi-
tion (16) and the different initial conditions (17) and

ﬁ i,j =§3(Xz,y1)
i=0’1a“. NX’
j:()’l,”"Ny’ (18)

respectively, where ¢(x, y) is a given initial function.
Let

plj—ufj—uﬁj i=1,2,--- ,N.—1;
j=12,--- ,Ny-1;k=0,1,2,--- ,N.
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Then p satisfies

(1) (e
pi] tjkzw ’ llJ

j+1
_@ (k) ok @)
w l]k w pljl

1]k l Pit1- -Lj
=0
& aa
_9 i)k
“Tijk £ "Pi -1
) =0
_ k-1
_pl,] .
k=1,2,--- N. (19)
Fork=0,1,2,---,N, we define vector

k _(k ok
E" =01 1,021

k k
PIN-12P2N—15" "

k
’pNX—l,l’ cee
k
s PN 1N, -1)-

Hence we have

| E® lo<  max
0<x O<

__,__

Id)(x y) — d(x, y)l.

Theorem 3 For the implicit finite difference scheme
(15)-(17) we have

k _ ~
I E [loo=< 0exBX o lp(x, y) — d(x, y)l,
fork =1,2,--- ,N. Therefore the scheme is uncondi-

tionally stable.

Proof. For a given k € {1,2,---, N}, choose p, g so
that |Pl,§,q| =|| E¥ ||co. According to Lemma 1 and (14),
it is seen easily that

i+l (1+aF )
AD aj)) @ 'S U+
z}kzwl 0, ri,j,kl:Owl <0,

j ]+1 (1+ﬂk
re) Zwl ¥ <o, r@?

g <0.

(20)

Applying (19), (20) and Lemma 2, we have

P k
k ko _ ). (@)
Iop.ql < 10 4] {r pak 231
=0
p+l q
(1+ak ) k)
+@ Z e 0 Z wPra
" pak l psq:k l

=0 =0

q+1
@ w(l Bhq) | |
Pk I Pp.q
=0
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W @) _ @ (¥
S(l—rquwo = ek

_® <ﬁpq NG <1+ﬁp.q ok |
qu @ qu 1 Pp.q

14
(1) w(“fnq)| k |

" pqk l p-lg
=1
p+l .
(2) (I+ag, ), &
e 25 @ oy
1=0,l#1
(3) p 7
" pak Z wl Ip g1 |
q+1 "
D w<1+ﬁp.q>| k |
p q.k 1 P p.q+1-1
1=0,1#1

)4
D) @hg) &
"pak 1 Pp-lg
=0

ppq

pHl
(2) (H‘Y Dk
—-r
qu L P

3) (ﬁpq)
quz ppq l

q+1
@ P

qu l p.q+1-1
=0

k-1
Ip "< B oo .
Therefore we can obtain
I ES o<l B! floo< -+ < E 1o -

This completes the proof of Theorem 1.

4 Convergence analysis

In the section, we will consider the convergence of
(15)-(17).  Suppose that the problem(1)-(3) has a
smooth solution u(x,y,t) € U(Q) and uﬁj be the nu-
merical solution of u(x;,y;, t). Let

Uﬁj = ulxp,yjt) —upj 0=12,--  Ne— 1
j=L2--- Ny—-1; k=12
Then 77 satisfies
k
) (@) k
nlj_rtjk [ lni—laj
=0
+1
(2) (l+al ) k 3) (ﬂ, Dk
ik £ Tl -Lj " leZw jn’J’
=0
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j+l
@ (8 have

ik i Mij+1-1 1 1
=0 1YY" lleo= 117,,,]

= q” +Rf‘,, (21) " LA
1 Ppg)) 1
< mp’ql pql Z In Mp- Lq'

where, since u(x, y, ) € U(Q), from (8), for truncation 1=0
error Rkj there exists a positive constant C3 indepen- Ne) ) (1+a), q)l 1 =3 Z ) | |
dent of 7, hy, hy, such that pg.1 @ Mp+1-141 = Tp, @ 77P q-1
G sy
k 4 tPpg) 1
IR | < Cat(t + hy + hy) (22) = D0 g
1=0
: . . p
holds uniformly fori = 1,2,--- ,Ny; j=1,2,-- , Ny; <yt — D Z @) 1
k=1,2,---,N. S\Mpq ~ pqllo 1 Mp-ig
Let p+] (1 . ) )
(@) tpg) 1 3 ) 1
P . _rp,q,lzwl " Mg~ pqlzwllqnpql
- (771’1’]72’1’ ,an7l’1,... R qI:O
k k 1
st . (4) (l+'37)1
nl’N«V_l nNX'l’N"_l) psq,1 w, e np,q+1—l
=0
_ _ 1

Then we have Y° = 0 and can prove the following =g + Rp gl
Theorem. <Y Jloo +|Rl,q|

S Ct(t+hy + hy),

Theorem 4 Suppose that the problem ( 1)-(3) has a which shows that (23) holds when k = 1.

smooth solution M(X y, t) S U(Q) let M ij be the nu- Secondly’ we suppose that
merical solution computed by using (15)-(17), then -
there exists a positive constant C independent of 1YY" [lo< Clk—D7(T+hy+hy), 1 <k<N.(25)

i, j,k, 7, hy, hy such that o ) )
Similar to above derived, we can obtain

)4

Il < Chkr(t +hy+hy), k=12,---,N (23) ' ) @) &

|77p,q| < |77p,q| - rp,q,k wl - | p—l,ql
=0

and since kT < T, then we have

p+1
e (1+w’fz,q>| k

q
3 Bhg)
|—I"() lqlk |

pg-k l p+l-lq Pk Mp.q-1
~ 1=0 1=0
;= uxi, yj, 1)l < C(T + b+ hy), -
_ r(4) w(”ﬁpq)l k |
I = 1 2 Nx; gk ) p.q+1-1
j=12, Ny,k—l 2,---,N, (24 -,
D @)k
- nP q p g,k l p—lgq
where C = CT. =0
e ek (1+ak ) ) B &
@)k
. . Pk @ " MTp+1-Lg = Tpak Z " np,q—l
Proof We prove this Theorem by mathematical =0
induction. g+1
. _® (1+Byq) k
First, for k = 1, we choose p, g so that Toak 23 %1 Mpg+1-1
=0
N S R
gl =1 Y Tl - = Vg *Rpdl
Noting that (20) and Y° = 0, from (21) and (22) we < Cht(T + hy + hy).
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Therefore, (23) holds fork = 1,2,--- , N.
Since kt < T, then form (23) we have

luf = uCxin yj 1] < Dy o} I YS lloo< C(x + Iy + ),

where C = CT. This completes the proof of Theorem
2.

Remark 5 The inequality (24) characterize the con-
vergence property of the method (15)-(17) and it also
indicates that the numerical method possesses first or-
der temporal accuracy and first order spatial accu-
racy.

5 Numerical examples

Consider equation (1) on a finite rectangular domain
0 < x,y,t < 1, with the diffusion coefficients

C()C, ¥, t) — _1"(4—a£x,y,l)) x(z(x,y,t)’

d(x,y,1) = [@-a(xy.n)) x1+oz(x,y,t)’
T'(4-B(xy,t

_ ( ﬁix) ))yﬁ(x,y,t),

LGBy | 1+B(x,y.1)
3 y ’

e(x,y,t) =
gx,y,1) = (26)
and the initial and boundary conditions in the form

u(x,y,0) = xy°, (27)

w0,y,0) = u(x,0,0) =0, u(l,y,t)=e"y>,

u(x, 1,0 = e”'x>, 1> 0. (28)
This problem posses the exact solution
u(x,y, 1) = e”'x3y3, (29)

Let

E,..x = max
1<k<N

{ I uffj — u(Xi, ¥ ) lloo }

Table 1 provides the maximum errors of the nu-
merical solution and accuracy solution at ¢+ = 1.0
for the problem (1), (26)-(28) calculated by (15)-(17),
with some a(x,y, 1), B(x, y, ).

From Table 1, it can be seen that our theoretical
analysis results have been verified by the numerical
results, and the convergence is one order O(t+h,+h,).
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