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 Abstract: By starting from the standard definitions of the incomplete two-variable Hermite polynomials, we propose 
non-trivial generalizations and we show some applications to the Bessel-type functions as the Humbert functions. 
We also present a generalization of the Laguerre polynomials in the same context of the incomplete-type and we use 
these to obtain relevant operational techniques for the Humbert-type functions. Final considerations are inserted to 
include the problem of wave propagation in the present theoretical framework. 
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1 Introduction 
It is possible to introduce a generalization of the 
Hermite polynomials which are a vectorial extension of 
the ordinary Kampé de Feriét one-variable Hermite 
polynomials [1]. We have indicated this class of  the 
Hermite polynomials, of two-index and two-variable, by 
the symbol , ( , )m nHe x y , and we stated their definition 
through the following generating function: 
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are two vectors of the space 2

 such that: t u≠ , 
(| |,| |)t u < +∞ , and the superscript “t” denotes transpose.  
A different generalization of the Hermite polynomials 
could be obtained by using the slight similar procedure 
onto the two-variable generalized Hermite polynomials 
[1,2]: 
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defined by the generating function of the form: 
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Let u and v continuous variables, such that u v≠  and 
(| |,| |)u v < +∞ , τ ∈ , we will say incomplete 2-
dimensional Hermite polynomials, the polynomials 
defined by following generating function: 
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This class of Hermite polynomials has been deeply 
studied for its importance in applications, as quantum 
mechanical problems, harmonic oscillator functions and 
also to investigate the statistical properties of chaotic 
light [3].  
By using the techniques of the generating function 
method [4,5], it is easy to obtain the explicit form of the 
above polynomials: 
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where [ ], min( , )m n m n= . 
An interesting particular case of this class of Hermite 
polynomials is presented when 1x y= =  and xτ = : 
 

, ,(1,1 | ) ( )m n m nh x g x= . (6) 
 
It is significant to study the polynomials , ( )m ng x since 
they can be used to define other forms of the incomplete 
2-dimensional Hermite polynomials of the type 

, (.,. | .)m nh  themselves and  since they often appear in the 
description of the applications in quantum optics. From 
the relation (6) and by using the definitions (4) and (5), 
we can immediately write the following general relation: 
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The incomplete 2-dimensional Hermite polynomials can 
be used to obtain different forms of the multi-index 
Bessel functions, in particular for the case of the 
Humbert functions. We remind that the ordinary 
cylindrical Bessel functions [6] are specified by the 
generating function: 
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and a generalization of them, it is represented by the 
case of two-index, one-variable type [7,8]: 
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with the following generating function: 
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where x ∈  and ,u v ∈ , such that 0 | | | |u v< ≠ < +∞ . 
This class of Bessel functions satisfied analogous 
interesting relations as the ordinary Bessel functions. 
For instance, by deriving in the equation (10) with 
respect to x, we have: 
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which allows us to state the following recurrence 
relation: 
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By using the same procedure, it is easy to obtain the 
other two recurrence relations for this class of Bessel 
functions: 

 

, , 1 , 1

1, 1 1, 1

2 ( ) ( ) ( )

( ) ( ) ,

m n m n m n

m n m n

m J x J x J x
x

J x J x

− +

− − + +

 = − + 

 + − 

 (13) 

 
and: 
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It is interesting to note that, for 0x = , from the explicit 
form of the generalized two-index Bessel function (eq. 
(9)), we get: 
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and, since: 

 
(0) 0sJ ≠ , when 0s = , (16) 

 
we, finally, obtain: 
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As a particular case of the two-index, one-variable 
Bessel functions, we can introduce the Humbert 
functions [9], by setting: 
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defined through the following generating function: 
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It is evident the similar structure between these 
functions and the incomplete 2-dimensional Hermite 
polynomials presented previously (see eqs. (4,5)). For 
this reason, the Humbert functions are usual exploited in 
connection with the Hermite polynomials of the type 

, ( , | )m nh x y τ . 
We can immediately note, for instance, that the Humbert 
functions could be expressed in terms of the incomplete 
Hermite polynomials. By rewriting, in fact, the 
expression in equation (19), we have: 
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and, from the generating function of the ordinary Bessel 
function (eq. (8)), we find: 
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In the following, we will indicate with: 

 
, ( )m ng x  and , ( )m nb x ,  

 
the Humbert polynomials and the Humbert functions 
respectively. In the next sections we will study the 
properties of these particular polynomials and functions 
and we will see some their non trivial generalizations 
along with the analysis of the related applications to 
facilitate some operational computation.  
 
 

2 Relevant properties for Humbert 
polynomials and functions 

  In the previous section we have introduced the 
incomplete 2-dimensional Hermite polynomials through 
the relations (4,5). By using the equivalences stated in 
equations (6,7), we can now state the expression of the 
generating function for the Humbert polynomials 

, ( )m ng x . We have:  
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where, again, u v≠  and (| |,| |)u v < +∞ , τ ∈ . 
By following the same procedure used to derive the 
recurrence relations related to the two-index, one-
variable Bessel function in the previous section, we can 
find similar expressions for this class of Humbert 
polynomials. In fact, by deriving, respectively, with 
respect to x, u and v, we obtain:  
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By using the above relations, it is possible to state the 
differential equation satisfied by the polynomials 

, ( )m ng x . After an easy manipulation of the equations in 
the (23), we get: 
 

1, ,( ) ( )m n m n
dmg x m x g x
dx−

 = − 
 

, (24) 

 

, 1 ,( ) ( )m n m n
dng x n x g x
dx−

 = − 
 

 (25) 

 
and also: 
 

1, 1 ,( ) ( )m n m n
d dmng x m x n x g x
dx dx− −

  = − −  
  

. (26) 

 
After equating equation (24) with the first of the 
relations obtained in (23), we can state the following 
differential equation solved by the Humbert 
polynomials: 
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We note that, from the equation (25), it also follows: 
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Which suggest the introduction of the following 
operators: 
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where we have denoted with the symbols: 
 

^
m  and 

^
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a kind of number operators, in the sense that their action 
read as following: 
 

^ ^
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It is now evident, by using the relations stated in the 
equations (23-28) and by the definition of the operators 
expressed in equation (29), that the following 
expressions hold: 
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The above relations, combined with the first in the 
equation (23), allow us to state the following relevant 
differential equation: 
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It is possible to derive similar relations regarding the 
Humbert functions. Before to proceed, we remind that, 
the function defined by the following generating 
function: 
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is known as the Tricomi function [10], which its explicit 
form is: 
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It is possible to introduce a generalization of the above 
function in the sense of the Humbert functions. In fact, 
from the equation (18) it is immediately recognized that 

we can call generalized Tricomi function, the function 
expressed by the following relation: 
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By using the same procedure outlined above, we can 
derive, for the Humbert functions the analogous 
recurrence relations stated for the polynomials , ( )m ng x . 
In fact, by considering the relation (34), we have: 
 

, 1, 1

, 1, 1, 1

, , 1 1, 1

( ) ( ),

( ) ( ) ( ),
( ) ( ) ( ).

m n m n

m n m n m n

m n m n m n

d C x C x
dx
mC x C x xC x
nC x C x xC x

+ +

− + +

− + +

=

= −

= −

 (35) 

 
We can combine the above relations, to get: 
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These last relations suggest to introduce similar 
operators acting on these generalized Tricomi function 
as well as we have done for the Humbert polynomials. 
We have indeed: 
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We have used, again, the same notation as 
expressed for the operators in equation (29). By 
following the same procedure used for the Humbert 
polynomials, we can easily to state the following 
differential equation: 
 

2 ''' '' '( 3) ( 1)x y m n xy mn m n y y− + + + + + + = . (38) 
 

3 Further generalizations for Humbert 
polynomials and functions and 
incomplete Laguerre polynomials 
In the paper [10], we have showed some relations 

linked the cylindrical Bessel function and the Tricomi 
function; in particular, we have seen that: 
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The relations stated in the previous sections and the 
structure of the 0th order Tricomi function, allow us to 
introduce a generalization of the Laguerre polynomials.  
We will say incomplete 2-dimensional Laguerre 
polynomials, the polynomials defined by the following 
generating function: 
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where their explicit form reads: 
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It is evident the similar structure with the Humbert 
polynomials discussed in the previous sections. 
We remind that the ordinary Laguerre polynomials [10] 
have the following operational expression:   
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 denotes the inverse of the derivative operator 
[11-16], being essentially an integral operator, it will be 
specified by the operational rule: 
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From the above considerations, we can firstly write the 
following expression for the 0th Tricomi function: 
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and then we can state the important equivalence between 
the Humbert polynomials and the incomplete 2-
dimensional Laguerre polynomials, that is: 
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By recalling the explicit forms of the generalized two-
variable Laguerre polynomials: 
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and from the particular expression of their generating 
function, in terms of the Tricomi function: 
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we can finally establish a link between the incomplete 2-
dimensional laguerre polynomials and the generalized 
Laguerre of the form ( , )nL x y . We have: 
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The considerations and the following results obtained to 
define the incomplete 2-dimensional polynomials, can 
be used to introduce a similar generalization for the 
Humbert functions. 
By considering indeed the following generating 
function: 
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we easily obtain the explicit form of the function 
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It is easy to note the analogy between the above 
expression and the generalized Tricomi function 
presented in the previous section. We find in fact: 
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In the same way, it is possible obtain an expression of 
the functions , ( )m nA x  involving the generalized two-
variable Laguerre polynomials. From the relation stated 
in equation (48) and form the (50), we have: 
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4 Concluding remarks and applications to 
wave propagation 
Before closing the paper, we want just to mention 

how the concepts and the formalism discussed in the 
previous sections allows also the generalizations of 
other simple distribution functions like the Poisson 
distribution. 
By using the Tricomi function of order m:   
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we can indeed define the following two-index 
distribution: 
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where the generating function is given by the relation:   
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The evaluation of the associated momenta can be easily 
simplified with the use of the well known property, 
satisfied by the Tricomi functions: 
 

( 1) ( ) ( )
r

r
n n r

d C x C x
dx +

 − = 
 

. (58) 

 
Accordingly, we calculate the following average values: 
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The higher order moments are also given by similar 
closed relations.  
It is remarkable about this probability distribution that, 
unlike the Poisson distribution, the variance: 
 

2_
2n nσ

−

= − , where 
_

a a=   (60) 
 

is smaller than 
_

n . 
This type of distribution can be exploited in quantum 
mechanics within the context of bunching phenomena 
and in nonlinear dynamics [17], continuum mechanics 
[18] and robustness-oriented design [19]. This example 
show that the use of multi-index polynomials and 
Bessel-type functions with their associated formalism 
offers wide possibilities in the applications of pure and 
applied mathematics [20,21]. 
One of the possible application is the study of wave 
propagation in homogeneous medium that is a challenge 
for both theoretical research and engineering practice 
[22,23]. With the rapid development in science and 
technology, wave motion study of the anisotropic 
medium (atmosphere, ocean, earth-crust, functionally 
graded materials and cycle grid structure, etc.) becomes 
much more important. For engineers, physicists, and 
seismologists, the study of longitudinal or flexural 
waves always is a great deal of interest. The theoretical 
studies are helpful in forecasting geophysical parameters 
at deep depths through signal processing and seismic 
data analysis. Metallurgists use this for the analysis of 
rock and material structures through non-destructive 
testing. The knowledge of seismic waves is helpful in 
investigating the exploration of oil, underground water, 
and gas accumulation. In recent years, efforts have been 
made in using seismic methods to characterize 
hydrocarbon reservoirs, to monitor reservoir production, 
and to enhance oil recovery processes. Our globe is a 
spherical body with finite dimension, and the generated 
elastic waves must receive the effect of the boundaries. 
Naturally, this concept leads us to the investigation of 
boundary waves or surface waves, which are confined to 
some surface during their propagation. In fact, the study 
of surface waves in homogenous, heterogeneous, and 
layered media has not been of central interest to 
theoretical seismologists until recently. 
We consider the flexural wave propagation in a circular 
cylinder of hexagonal elastic material of inner and outer 
radii a and b, respectively. The cylinder was subjected 
to an axial magnetic field and initial hydrostatic stress. 
The material of the elastic cylinder is regarded as a 
perfect conductor and the regions inside and outside are 
assumed to be a vacuum. The displacement components 
for the case of plane motions can be written in the 
cylindrical coordinates  ( , , )r tθ as: 
 

( , , ) ( , , ), 0u u r t v v r t wθ θ= = =                               (61) 
 
where ,u v and w  are the displacement components in 
the radial, circumferential, and axial directions, 
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respectively. Note that  all other quantities involved are 
only functions of ,r θ  and t, where t denotes the time. 
To separate the dilatational and rotational components 
of strain, it is possible to introduce the displacement 
potentials Φ  and Ψ , 
 

1( , , ) ,u r t
r r

θ
θ

∂Φ ∂Ψ
= +

∂ ∂
                 (62) 

 
1( , , )v r t
r r

θ
θ

∂Φ ∂Ψ
= −

∂ ∂
.                  (63) 

                                                          
That satisfy the following equations 
 

2
2

2 2
1

1 ,
c t

∂ Φ
∇ Φ =

∂
   

2
2

2 2
2

1
c t

∂ Ψ
∇ Ψ =

∂
                 (64)            

 
where  
 

2 2
2

2 2 2

1 1
r rr r θ

∂ ∂ ∂
∇ = + +

∂∂ ∂
,                  (65) 

 
211

1 ,oc p
c α

ρ
−

= + 66
2

oc p
c

ρ
−

=                 (66) 

 
where 1c   and 2c  are velocity of longitudinal and 
flexural waves, respectively. The coefficients 11c  and 

66c  come from the constitutive stress-strain relation of 
the present anisotropic medium, op  is the hydrostatic 
tension or compression (tension when 0op < and 
compression when 0op > ), ρ  is the mass density of the 
material and where α  is related to the magnetic field 

0B as follows, 

 2
2

4
o oBµ

α
πρ

= . 

 
Now, consider harmonic solutions for  ( , , )r tθΦ = Φ  and   

( , , )r tθΨ = Ψ  in the form: 
 

( , , ) ( ) cos( ) exp( ),r t r n i tθ ϕ θ ωΦ =                   (67) 
 

( , , ) ( )sin( ) exp( ),r t r n i tθ ψ θ ωΨ =                   (68) 
 
where ω  is the frequency of the vibrations and 

( 0,1,2,...)n n =  is an integer indicating the number of 
circumferential waves. Substituting  equations (67-68) 
into equation. (64), we obtain the well-known Bessel 
equations for ( )rϕ  and ( )rψ : 

 

( )
2

2 2 2 2
12 0,d dr r r n

drdr
ϕ ϕ γ ϕ+ + − =                                (69) 

 

 ( )
2

2 2 2 2
22 0d dr r r n

drdr
ψ ψ γ ψ+ + − =

              
(70) 

 
where  
 

2 2 2 2 2 2
1 1 2 2/ , / .c cγ ω γ ω= =

                   
(71) 

 
The general solutions of the equations (69) and (70) may 
take the following form: 
 

1 1 1 1( ) ( ) ( ),n nr A Z r BW rϕ γ γ= +                     (72) 
 
 2 2 2 2( ) ( ) ( )n nr A Z r B W rψ γ γ= +                                   (73) 
 
where 1 2 1, ,A A B and 2B are constants of integration and 
for brevity nZ  denotes the Bessel function nJ  or nI  and 

nW  denotes the Bessel function nY  or nK , all of them are 
of order n, according to the signs of 

2 2
1 2,γ γ . We remind, 

for instance, that one-variable, cylindrical, first type 
Bessel function is defined by the following relation, 
involved its generating function: 
 

1exp ( )
2

m
m

m

x t t J x
t

+∞

=−∞

  − =    
∑            (74) 

 
and, more in general, the two-variable one-parameter 
cylinder generalized Bessel function (GBF) is 
represented by the relation [8]: 
 

2
2

1 1exp ( , ; )
2 2

n
n

n

x yt t t J x y
t t

τ τ
τ

+∞

=−∞

    − + − =        
∑     (75) 

 
Where ,x y ∈  and ,t τ ∈ , such that 0 | | | |t τ< ≠ < +∞ . 
In fact, It is immediately recognized that for 0y = , the 
function in the previous relation, reduces to the well-
known generating function of the one-variable cylinder 
Bessel function ( )nJ x  showed in equation (74) . 
In a further paper, we will discuss about the applications 
of the previous results related to the Laguerre 
polynomials [24] and in some special cases of 
Chebyshev polynomials [25].   
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